首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In pathogenic HIV and SIV infections of humans and rhesus macaques (RMs), preferential depletion of CD4+ Th17 cells correlates with mucosal immune dysfunction and disease progression. Interleukin (IL)-21 promotes differentiation of Th17 cells, long-term maintenance of functional CD8+ T cells, and differentiation of memory B cells and antibody-secreting plasma cells. We hypothesized that administration of IL-21 will improve mucosal function in the context of pathogenic HIV/SIV infections. To test this hypothesis, we infected 12 RMs with SIVmac239 and at day 14 post-infection treated six of them with rhesus rIL-21-IgFc. IL-21-treatment was safe and did not increase plasma viral load or systemic immune activation. Compared to untreated animals, IL-21-treated RMs showed (i) higher expression of perforin and granzyme B in total and SIV-specific CD8+ T cells and (ii) higher levels of intestinal Th17 cells. Remarkably, increased levels of Th17 cells were associated with reduced levels of intestinal T cell proliferation, microbial translocation and systemic activation/inflammation in the chronic infection. In conclusion, IL-21-treatment in SIV-infected RMs improved mucosal immune function through enhanced preservation of Th17 cells. Further preclinical studies of IL-21 may be warranted to test its potential use during chronic infection in conjunction with antiretroviral therapy.  相似文献   

2.
3.
During acute human immunodeficiency virus (HIV) infection, there is a massive depletion of CD4(+) T cells in the gut mucosa that can be reversed to various degrees with antiretroviral therapy. Th17 cells have been implicated in mucosal immunity to extracellular bacteria, and preservation of this subset may support gut mucosal immune recovery. However, this possibility has not yet been evaluated in HIV-1-infected long-term nonprogressors (LTNPs), who maintain high CD4(+) T cell counts and suppress viral replication in the absence of antiretroviral therapy. In this study, we evaluated the immunophenotype and function of CD4(+) T cells in peripheral blood and gut mucosa of HIV-uninfected controls, LTNPs, and HIV-1-infected individuals treated with prolonged antiretroviral therapy (ART) (VL [viral load]<50). We found that LTNPs have intact CD4(+) T cell populations, including Th17 and cycling subsets, in the gut mucosa and a preserved T cell population expressing gut homing molecules in the peripheral blood. In addition, we observed no evidence of higher monocyte activation in LTNPs than in HIV-infected (HIV(-)) controls. These data suggest that, similar to nonpathogenic simian immunodeficiency virus (SIV) infection, LTNPs preserve the balance of CD4(+) T cell populations in blood and gut mucosa, which may contribute to the lack of disease progression observed in these patients.  相似文献   

4.
Impairment of the intestinal barrier and subsequent microbial translocation (MT) may be involved in chronic immune activation, which plays a central role in HIV pathogenesis. Th17 cells are critical to prevent MT. The aim of the study was to investigate, in patients with primary HIV infection (PHI), the early relationship between the Th17/Treg ratio, monocyte activation and MT and their impact on the T-cell activation set point, which is known to predict disease progression. 27 patients with early PHI were included in a prospective longitudinal study and followed-up for 6 months. At baseline, the Th17/Treg ratio strongly negatively correlated with the proportion of activated CD8 T cells expressing CD38/HLA-DR or Ki-67. Also, the Th17/Treg ratio was negatively related to viral load and plasma levels of sCD14 and IL-1RA, two markers of monocyte activation. In untreated patients, the Th17/Treg ratio at baseline negatively correlated with CD8 T-cell activation at month 6 defining the T-cell activation set point (% HLA-DR+CD38+ and %Ki-67+). Soluble CD14 and IL-1RA plasma levels also predicted the T-cell activation set point. Levels of I-FABP, a marker of mucosal damages, were similar to healthy controls at baseline but increased at month 6. No decrease in anti-endotoxin core antibody (EndoCAb) and no peptidoglycan were detected during PHI. In addition, 16S rDNA was only detected at low levels in 2 out 27 patients at baseline and in one additional patient at M6. Altogether, data support the hypothesis that T-cell and monocyte activation in PHI are not primarily driven by systemic MT but rather by viral replication. Moreover, the “innate immune set point” defined by the early levels of sCD14 and IL-1RA might be powerful early surrogate markers for disease progression and should be considered for use in clinical practice.  相似文献   

5.
Gut-associated lymphoid tissue (GALT) is an early target of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) and a site for severe CD4+ T-cell depletion. Although antiretroviral therapy (ART) is effective in suppressing HIV replication and restoring CD4+ T cells in peripheral blood, restoration in GALT is delayed. The role of restored CD4+ T-cell help in GALT during ART and its impact on antiviral CD8+ T-cell responses have not been investigated. Using the SIV model, we investigated gut CD4+ T-cell restoration in infected macaques, initiating ART during either the primary stage (1 week postinfection), prior to acute CD4+ cell loss (PSI), or during the chronic stage at 10 weeks postinfection (CSI). ART led to viral suppression in GALT and peripheral blood mononuclear cells of PSI and CSI animals at comparable levels. CSI animals had incomplete CD4+ T-cell restoration in GALT. In PSI animals, ART did not prevent acute CD4+ T-cell loss by 2 weeks postinfection in GALT but supported rapid and complete CD4+ T-cell restoration thereafter. This correlated with an accumulation of central memory CD4+ T cells and better suppression of inflammation. Restoration of CD4+ T cells in GALT correlated with qualitative changes in SIV gag-specific CD8+ T-cell responses, with a dominance of interleukin-2-producing responses in PSI animals, while both CSI macaques and untreated SIV-infected controls were dominated by gamma interferon responses. Thus, central memory CD4+ T-cell levels and qualitative antiviral CD8+ T-cell responses, independent of viral suppression, were the immune correlates of gut mucosal immune restoration during ART.  相似文献   

6.
Salmonella typhimurium causes a localized enteric infection in immunocompetent individuals, whereas HIV-infected individuals develop a life-threatening bacteremia. Here we show that simian immunodeficiency virus (SIV) infection results in depletion of T helper type 17 (TH17) cells in the ileal mucosa of rhesus macaques, thereby impairing mucosal barrier functions to S. typhimurium dissemination. In SIV-negative macaques, the gene expression profile induced by S. typhimurium in ligated ileal loops was dominated by TH17 responses, including the expression of interleukin-17 (IL-17) and IL-22. TH17 cells were markedly depleted in SIV-infected rhesus macaques, resulting in blunted TH17 responses to S. typhimurium infection and increased bacterial dissemination. IL-17 receptor-deficient mice showed increased systemic dissemination of S. typhimurium from the gut, suggesting that IL-17 deficiency causes defects in mucosal barrier function. We conclude that SIV infection impairs the IL-17 axis, an arm of the mucosal immune response preventing systemic microbial dissemination from the gastrointestinal tract.  相似文献   

7.
BACKGROUND: Acute human immunodeficiency virus (HIV)/simian immunodeficiency virus (SIV) infections are accompanied by a systemic loss of memory CD4 T cells, with mucosal sites serving as a major site for viral replication, dissemination and CD4 T cell depletion. Protecting the mucosal CD4 T cell compartment thus is critical to contain HIV, and preserve the integrity of the mucosal immune system. The primary objective of this study was to determine if systemic vaccination with DNA/rAd-5 encoding SIV-mac239-env, gag and pol could prevent the destruction of CD4 T cells in mucosal tissues. METHODS: Rhesus macaques were immunized with DNA/r-Ad-5 encoding SIV genes and compared with those immunized with sham vectors following high dose intravenous challenge with SIVmac251. SIV specific CD4 and CD8 T cell responses, cell associated viral loads and mucosal CD4 T cell dynamics were evaluated. RESULTS: Strong SIV specific immune responses were induced in mucosal tissues of vaccinated animals as compared with sham controls. These responses expanded rapidly following challenge suggesting a strong anamnestic response. Immune responses were associated with a decrease in cell associated viral loads, and a loss of fewer mucosal CD4 T cells. Approximately 25% of mucosal CD4 T cells were preserved in vaccinated animals as compared with <5% in sham controls. These results demonstrate that systemic immunization strategies can induce immune responses in mucosal tissues that can protect mucosal CD4 T cells from complete destruction following challenge. CONCLUSIONS: Preservation of mucosal CD4 T cells can contribute to maintaining immune competence in mucosal tissues and provide a substantial immune benefit to the vaccinees.  相似文献   

8.
Production of IL-2 and IFN-gamma by CD4+ T lymphocytes is important for the maintenance of a functional immune system in infected individuals. In the present study, we assessed the cytokine production profiles of functionally distinct subsets of CD4+ T lymphocytes in rhesus monkeys infected with pathogenic or attenuated SIV/simian human immunodeficiency virus (SHIV) isolates, and these responses were compared with those in vaccinated monkeys that were protected from immunodeficiency following pathogenic SHIV challenge. We observed that preserved central memory CD4+ T lymphocyte production of SIV/SHIV-induced IL-2 was associated with disease protection following primate lentivirus infection. Persisting clinical protection in vaccinated and challenged monkeys is thus correlated with a preserved capacity of the peripheral blood central memory CD4+ T cells to express this important immunomodulatory cytokine.  相似文献   

9.
Progressive disease caused by pathogenic SIV/HIV infections is marked by systemic hyperimmune activation, immune dysregulation, and profound depletion of CD4(+) T cells in lymphoid and gastrointestinal mucosal tissues. IL-17 is important for protective immunity against extracellular bacterial infections at mucosa and for maintenance of mucosal barrier. Although IL-17-secreting CD4 (Th17) and CD8 (Tc17) T cells have been reported, very little is known about the latter subset for any infectious disease. In this study, we characterized the anatomical distribution, phenotype, and functional quality of Tc17 and Th17 cells in healthy (SIV-) and SIV+ rhesus macaques. In healthy macaques, Tc17 and Th17 cells were present in all lymphoid and gastrointestinal tissues studied with predominance in small intestine. About 50% of these cells coexpressed TNF-α and IL-2. Notably, ~50% of Tc17 cells also expressed the co-inhibitory molecule CTLA-4, and only a minority (<20%) expressed granzyme B suggesting that these cells possess more of a regulatory than cytotoxic phenotype. After SIV infection, unlike Th17 cells, Tc17 cells were not depleted during the acute phase of infection. However, the frequency of Tc17 cells in SIV-infected macaques with AIDS was lower compared with that in healthy macaques demonstrating the loss of these cells during end-stage disease. Antiretroviral therapy partially restored the frequency of Tc17 and Th17 cells in the colorectal mucosa. Depletion of Tc17 cells was not observed in colorectal mucosa of chronically infected SIV+ sooty mangabeys. In conclusion, our results suggest a role for Tc17 cells in regulating disease progression during pathogenic SIV infection.  相似文献   

10.
Using the simian immunodeficiency virus (SIV)-infected rhesus macaque model, we performed a longitudinal study to determine the effect of antiretroviral therapy on the phenotype and functional potential of CD4(+) T cells repopulating intestinal mucosa in human immunodeficiency virus infection. Severe depletion of CD4(+) and CD4(+) CD8(+) T cells occurred in the intestinal mucosa during primary SIV infection. The majority of these cells were of activated memory phenotype. Phosphonate 9-[2-(phosphomethoxypropyl]adenine (PMPA) treatment led to a moderate suppression of intestinal viral loads and repopulation of intestinal mucosa by predominantly activated memory CD4(+) T-helper cells. This repopulation was independent of the level of viral suppression. Compared to preinfection values, the frequency of naive CD4(+) T cells increased following PMPA therapy, suggesting that new CD4(+) T cells were repopulating the intestinal mucosa. Repopulation by CD4(+) CD8(+) T cells was not observed in either jejunum or colon lamina propria. The majority of CD4(+) T cells repopulating the intestinal mucosa following PMPA therapy were CD29(hi) and CD11ahi. A subset of repopulating intestinal CD4(+) T cells expressed Ki-67 antigen, indicating that local proliferation may play a role in the repopulation process. Although the majority of repopulating CD4(+) T cells in the intestinal mucosa were functionally capable of providing B- and T-cell help, as evidenced by their expression of CD28, these CD4(+) T cells were found to have a reduced capacity to produce interleukin-2 (IL-2) compared to the potential of CD4(+) T cells prior to SIV infection. Persistent viral infection may play a role in suppressing the potential of repopulating CD4(+) T cells to produce IL-2. Hence, successful antiretroviral therapy should aim at complete suppression of viral loads in mucosal lymphoid tissues, such as intestinal mucosa.  相似文献   

11.
Massive infection of memory CD4 T cells is a hallmark of early simian immunodeficiency virus (SIV) infection, with viral infection peaking at day 10 postinfection (p.i.), when a majority of memory CD4 T cells in mucosal and peripheral tissues are infected. It is not clear if mononuclear cells from the monocyte and macrophage lineages are similarly infected during this early phase of explosive HIV and SIV infections. Here we show that, at day 10 p.i., Lin(-) HLA-DR(+) CD11c/123(-) CD13(+) CD14(-) macrophages in the jejunal mucosa were infected, albeit at lower levels than CD4 memory T cells. Interestingly, Lin(-) HLA-DR(+) CD11c/123(-) CD13(+) CD14(-) macrophages in peripheral blood, like their mucosal counterparts, were preferentially infected compared to Lin(-) HLA-DR(+) CD11c/123(-) CD13(+) CD14(+) monocytes, suggesting that differentiated macrophages were selectively infected by SIV. CD13(+) CD14(-) macrophages expressed low levels of CD4 compared to CD4 T cells but expressed similar levels of CCR5 as lymphocytes. Interestingly, CD13(+) CD14(-) macrophages expressed Apobec3G at lower levels than CD13(+) CD14(+) monocytes, suggesting that intracellular restriction may contribute to the differential infection of mononuclear subsets. Taken together, our results suggest that CD13(+) CD14(-) macrophages in mucosal and peripheral tissues are preferentially infected very early during the course of SIV infection.  相似文献   

12.
Although the gut-associated lymphoid tissue (GALT) is an important early site for human immunodeficiency virus (HIV) replication and severe CD4+ T-cell depletion, our understanding is limited about the restoration of the gut mucosal immune system during highly active antiretroviral therapy (HAART). We evaluated the kinetics of viral suppression, CD4+ T-cell restoration, gene expression, and HIV-specific CD8+ T-cell responses in longitudinal gastrointestinal biopsy and peripheral blood samples from patients initiating HAART during primary HIV infection (PHI) or chronic HIV infection (CHI) using flow cytometry, real-time PCR, and DNA microarray analysis. Viral suppression was more effective in GALT of PHI patients than CHI patients during HAART. Mucosal CD4+ T-cell restoration was delayed compared to peripheral blood and independent of the time of HAART initiation. Immunophenotypic analysis showed that repopulating mucosal CD4+ T cells were predominantly of a memory phenotype and expressed CD11 alpha, alpha(E)beta 7, CCR5, and CXCR4. Incomplete suppression of viral replication in GALT during HAART correlated with increased HIV-specific CD8+ T-cell responses. DNA microarray analysis revealed that genes involved in inflammation and cell activation were up regulated in patients who did not replenish mucosal CD4+ T cells efficiently, while expression of genes involved in growth and repair was increased in patients with efficient mucosal CD4+ T-cell restoration. Our findings suggest that the discordance in CD4+ T-cell restoration between GALT and peripheral blood during therapy can be attributed to the incomplete viral suppression and increased immune activation and inflammation that may prevent restoration of CD4+ T cells and the gut microenvironment.  相似文献   

13.
In HIV/SIV-infected humans and rhesus macaques (RMs), a severe depletion of intestinal CD4+ T-cells producing interleukin IL-17 and IL-22 associates with loss of mucosal integrity and chronic immune activation. However, little is known about the function of IL-17 and IL-22 producing cells during lentiviral infections. Here, we longitudinally determined the levels and functions of IL-17, IL-22 and IL-17/IL-22 producing CD4+ T-cells in blood, lymph node and colorectum of SIV-infected RMs, as well as how they recover during effective ART and are affected by ART interruption. Intestinal IL-17 and IL-22 producing CD4+ T-cells are polyfunctional in SIV-uninfected RMs, with the large majority of cells producing four or five cytokines. SIV infection induced a severe dysfunction of colorectal IL-17, IL-22 and IL-17/IL-22 producing CD4+ T-cells, the extent of which associated with the levels of immune activation (HLA-DR+CD38+), proliferation (Ki-67+) and CD4+ T-cell counts before and during ART. Additionally, Th17 cell function during ART negatively correlated with residual plasma viremia and levels of sCD163, a soluble marker of inflammation and disease progression. Furthermore, IL-17 and IL-22 producing cell frequency and function at various pre, on, and off-ART experimental points associated with and predicted total SIV-DNA content in the colorectum and blood. While ART restored Th22 cell function to levels similar to pre-infection, it did not fully restore Th17 cell function, and all cell types were rapidly and severely affected—both quantitatively and qualitatively—after ART interruption. In conclusion, intestinal IL-17 producing cell function is severely impaired by SIV infection, not fully normalized despite effective ART, and strongly associates with inflammation as well as SIV persistence off and on ART. As such, strategies able to preserve and/or regenerate the functions of these CD4+ T-cells central for mucosal immunity are critically needed in future HIV cure research.  相似文献   

14.
Suppression of dendritic cell (DC) function in HIV-1 infection is thought to contribute to inhibition of immune responses and disease progression, but the mechanism of this suppression remains undetermined. Using the rhesus macaque model, we show B7-H1 (programmed death [PD]-L1) is expressed on lymphoid and mucosal DCs (both myeloid DCs and plasmacytoid DCs), and its expression significantly increases after SIV infection. Meanwhile, its receptor, PD-1, is upregulated on T cells in both peripheral and mucosal tissues and maintained at high levels on SIV-specific CD8(+) T cell clones in chronic infection. However, both B7-H1 and PD-1 expression in SIV controllers was similar to that of controls. Expression of B7-H1 on both peripheral myeloid DCs and plasmacytoid DCs positively correlated with levels of PD-1 on circulating CD4(+) and CD8(+) T cells, viremia, and declining peripheral CD4(+) T cell levels in SIV-infected macaques. Importantly, blocking DC B7-H1 interaction with PD-1(+) T cells could restore SIV-specific CD4(+) and CD8(+) T cell function as evidenced by increased cytokine secretion and proliferative capacity. Combined, the results indicate that interaction of B7-H1-PD-1 between APCs and T cells correlates with impairment of CD4(+) Th cells and CTL responses in vivo, and all are associated with disease progression in SIV infection. Blockade of this pathway may have therapeutic implications for HIV-infected patients.  相似文献   

15.
Gastrointestinal complications in human immunodeficiency virus (HIV) infection are indicative of impaired intestinal mucosal immune system. We used simian immunodeficiency virus (SIV)-infected rhesus macaques as an animal model for HIV to determine pathogenic effects of SIV on intestinal T lymphocytes. Intestinal CD4+ T-cell depletion and the potential for cytokine responses were examined during SIV infection and compared with results for lymphocytes from lymph nodes and blood. Flow cytometric analysis demonstrated severe depletion of CD4+CD8 single-positive T cells and CD4+CD8+ double-positive T cells in intestinal lamina propria lymphocytes (LPL) and intraepithelial lymphocytes (IEL) during primary SIV infection which persisted through the entire course of SIV infection. In contrast, CD4+ T-cell depletion was gradual in peripheral lymph nodes and blood. Flow cytometric analysis of intracellular gamma interferon (IFN-γ) and interleukin-4 (IL-4) production following short-term mitogenic activation revealed that LPL retained same or higher capacity for IFN-γ production in all stages of SIV infection compared to uninfected controls, whereas peripheral blood mononuclear cells displayed a gradual decline. The CD8+ T cells were the major producers of IFN-γ. There was no detectable change in the frequency of IL-4-producing cells in both LPL and peripheral blood mononuclear cells. Thus, severe depletion of CD4+ LPL and IEL in primary SIV infection accompanied by altered cytokine responses may reflect altered T-cell homeostasis in intestinal mucosa. This could be a mechanism of SIV-associated enteropathy and viral pathogenesis. Dynamic changes in intestinal T lymphocytes were not adequately represented in peripheral lymph nodes or blood.  相似文献   

16.
Mucosal Th17 cells play an important role in maintaining gut epithelium integrity and thus prevent microbial translocation. Chronic HIV infection is characterized by mucosal Th17 cell depletion, microbial translocation and subsequent immune-activation, which remain elevated despite antiretroviral therapy (ART) correlating with increased mortality. However, when Th17 depletion occurs following HIV infection is unknown. We analyzed mucosal Th17 cells in 42 acute HIV infection (AHI) subjects (Fiebig (F) stage I-V) with a median duration of infection of 16 days and the short-term impact of early initiation of ART. Th17 cells were defined as IL-17+ CD4+ T cells and their function was assessed by the co-expression of IL-22, IL-2 and IFNγ. While intact during FI/II, depletion of mucosal Th17 cell numbers and function was observed during FIII correlating with local and systemic markers of immune-activation. ART initiated at FI/II prevented loss of Th17 cell numbers and function, while initiation at FIII restored Th17 cell numbers but not their polyfunctionality. Furthermore, early initiation of ART in FI/II fully reversed the initially observed mucosal and systemic immune-activation. In contrast, patients treated later during AHI maintained elevated mucosal and systemic CD8+ T-cell activation post initiation of ART. These data support a loss of Th17 cells at early stages of acute HIV infection, and highlight that studies of ART initiation during early AHI should be further explored to assess the underlying mechanism of mucosal Th17 function preservation.  相似文献   

17.
BACKGROUND: Although the majority of drug-na?ve HIV-infected patients develop acquired immunodeficiency syndrome (AIDS), a small percentage remains asymptomatic without therapeutic intervention. METHODS: We have utilized the simian immunodeficiency virus (SIV)-infected rhesus macaque model to gain insights into the molecular mechanisms of long-term protection against simian AIDS. RESULTS: Chronically SIV-infected macaques with disease progression had high viral loads and CD4(+) T-cell depletion in mucosal tissue and peripheral blood. These animals displayed pathologic changes in gut-associated lymphoid tissue (GALT) and mesenteric lymph node that coincided with increased expression of genes associated with interferon induction, inflammation and immune activation. In contrast, the animal with long-term asymptomatic infection suppressed viral replication and maintained CD4(+) T cells in both GALT and peripheral blood while decreasing expression of genes involved in inflammation and immune activation. CONCLUSIONS: Our findings suggest that reduced immune activation and effective repair and regeneration of mucosal tissues correlate with long-term survival in SIV-infected macaques.  相似文献   

18.
We studied the innate and adaptive immune system of rhesus macaques infected with the virulent simian immunodeficiency virus isolate SIVmac251 by evaluating natural killer (NK) cell activity, cytokine levels in plasma, humoral and virological parameters, and changes in the activation markers CD25 (interleukin 2R [IL-2R] α chain), CD69 (early activation marker), and CD154 (CD40 ligand) in lymphoid cells. We found that infection with SIVmac251 induced the sequential production of interferon-α/β (IFN-α/β), IL-18, and IL-12. IFN-γ, IL-4, and granulocyte-macrophage colony-stimulating factor were undetected in plasma by the assays used. NK cell activity peaked at 1 to 2 weeks postinfection and paralleled changes in viral loads. Maximum expression of CD69 on CD3CD16+ lymphocytes correlated with NK cytotoxicity during this period. CD25 expression, which is associated with proliferation, was static or slightly down-regulated in CD4+ T cells from both peripheral blood (PB) and lymph nodes (LN). CD69, which is normally present in LN CD4+ T cells and absent in peripheral blood leukocyte (PBL) CD4+ T cells, was down-regulated in LN CD4+ T cells and up-regulated in PBL CD4+ T cells immediately after infection. CD8+ T cells increased CD69 but not CD25 expression, indicating the activation of this cellular subset in PB and LN. Finally, CD154 was transiently up-regulated in PBL CD4+ T cells but not in LN CD4+ T cells. Levels of antibodies to SIV Gag and Env did not correlate with the level of activation of CD154, a critical costimulatory molecule for T-cell-dependent immunity. In summary, we present the first documented evidence that the innate immune system of rhesus macaques recognizes SIV infection by sequential production of proinflammatory cytokines and transient activation of NK cytotoxic activity. Additionally, pathogenic SIV induces drastic changes in the level of activation markers on T cells from different anatomic compartments. These changes involve activation in the absence of proliferation, indicating that activation-induced cell death may cause some of the reported increase in lymphocyte turnover during SIV infection.The immune system of higher vertebrates consists of innate and adaptive components. Innate immunity exhibits immediate recognition and response without prior sensitization. Cells of the innate immune system (i.e., monocytes/macrophages, natural killer [NK] cells, and polymorphonuclear leukocytes) recognize pathogen-associated molecular patterns and activate events such as phagocytosis, induction of the synthesis of antimicrobial peptides, expression of inflammatory and effector cytokines and chemokines, induction of nitric oxide synthase in macrophages, and expression of costimulatory molecules on antigen-presenting cells. The adaptive immune system uses somatically generated antigen receptors that are clonally distributed on T and B lymphocytes. Generally, adaptive immune recognition in the absence of innate immune recognition results in inactivation of lymphocytes that express receptors involved in the identification events (20). Thus, innate immune responses have critical consequences in adaptive immune responses.Little is known of the contribution of the innate immune system during infection with the human immunodeficiency virus (HIV). Based on similarities of biologic and genetic features, simian immunodeficiency virus (SIV) infection of rhesus macaques provides the best animal model of HIV infection and AIDS. Accordingly, this animal model is critical for the elucidation of mechanisms of pathogenesis and for the development of vaccines and antiviral therapies (12). As with almost all viral infections, the innate immune system is thought to be the first component of the immune system that recognizes SIV infection. However, few studies have methodically analyzed the changes induced in cell phenotype and cytokine levels by SIV infection. Recent studies have demonstrated that SIV infection results in a generalized increase in lymphocyte turnover (23) and that the primary site for viral replication is activated memory CD4+ T cells that are present in the intestinal lamina propia (46). Although cellular changes are not that dramatic at this early stage in peripheral lymphoid tissue, peripheral blood (PB) and lymph nodes (LN) still reflect the pathologic changes induced by the viral infection and are readily available for longitudinal studies.To analyze changes in the activation state of cells from the innate and adaptive immune system after SIV infection, we evaluated NK activity, cytokine levels in plasma, and changes in activation markers on lymphoid cells of rhesus macaques after infection with pathogenic SIVmac251. We found the sequential appearance in plasma of interferon-α/β (IFN-α/β) interleukin-18 (IL-18) and IL-12, whereas IL-4, IFN-γ and granulocyte-macrophage colony-stimulating factor (GM-CSF) remained undetectable. We also found transient activation of NK cells during the peak of viral replication, and this activation was not predictive of disease progression. Finally, we observed that after SIV infection, both CD4+ and CD8+ T cells became activated in the absence of markers for proliferation, suggesting that the increased turnover of these cells reflects activation-induced cell death rather than differential compartmentalization.  相似文献   

19.
20.
HIV infection is associated with depletion of intestinal CD4(+) T cells, resulting in mucosal immune dysfunction, microbial translocation, chronic immune activation, and progressive immunodeficiency. In this study, we examined HIV-infected individuals with active virus replication (n = 15), treated with antiretroviral therapy (n = 13), and healthy controls (n = 11) and conducted a comparative analysis of T cells derived from blood and four gastrointestinal (GI) sites (terminal ileum, right colon, left colon, and sigmoid colon). As expected, we found that HIV infection is associated with depletion of total CD4(+) T cells as well as CD4(+)CCR5(+) T cells in all GI sites, with higher levels of these cells found in ART-treated individuals than in those with active virus replication. While the levels of both CD4(+) and CD8(+) T cell proliferation were higher in the blood of untreated HIV-infected individuals, only CD4(+) T cell proliferation was significantly increased in the gut of the same patients. We also noted that the levels of CD4(+) T cells and the percentages of CD4(+)Ki67(+) proliferating T cells are inversely correlated in both blood and intestinal tissues, thus suggesting that CD4(+) T cell homeostasis is similarly affected by HIV infection in these distinct anatomic compartments. Importantly, the level of intestinal CD4(+) T cells (both total and Th17 cells) was inversely correlated with the percentage of circulating CD4(+)Ki67(+) T cells. Collectively, these data confirm that the GI tract is a key player in the immunopathogenesis of HIV infection, and they reveal a strong association between the destruction of intestinal CD4(+) T cell homeostasis in the gut and the level of systemic CD4(+) T cell activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号