首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To the memory of William Ronald Sendall Sternaspid polychaetes are common and often abundant in soft bottoms in the world oceans. Some authors suggest that only one species should be recognized, whereas others regard a few species as widely distributed in many seas and variable depths from the low intertidal to about 4400 m. There are some problems with species delineation and the distinctive ventro-caudal shield has been disregarded or barely used for identifying species. In order to clarify these issues, the ventral shield is evaluated in specimens from the same locality and its diagnostic potential is confirmed. On this basis, a revision of Sternaspis Otto, 1821 (Polychaeta: Sternaspidae) is presented based upon type materials, or material collected from type localities. The sternaspid body, introvert hooks and shield show three distinct patterns, two genera have seven abdominal segments and tapered introvert hooks, and one genus has eight abdominal segments and spatulate introvert hooks. The ventro-caudal shield has three different patterns: stiff with ribs, and sometimes concentric lines, stiff with feebly-defined ribs but no concentric lines, and soft with firmly adhered sediment particles. Sternaspis is restricted to include species with seven abdominal segments, falcate introvert hooks, and stiff shields, often exhibiting radial ribs, concentric lines or both. Sternaspis includes, besides the type species, Sternaspis thalassemoides Otto, 1821 from the Mediterranean Sea, Sternaspis affinis Stimpson, 1864 from the Northeastern Pacific, Sternaspis africana Augener, 1918, stat. n. from Western Africa, Sternaspis andamanensis sp. n. from the Andaman Sea, Sternaspis costata von Marenzeller, 1879 from Japan, Sternaspis fossor Stimpson, 1853 from the Northwestern Atlantic, Sternaspis islandica Malmgren, 1867 from Iceland, Sternaspis maior Chamberlin, 1919 from the Gulf of California, Sternaspis princeps Selenka, 1885 from New Zealand, Sternaspis rietschi Caullery, 1944 from abyssal depths around Indonesia, Sternaspis scutata (Ranzani, 1817) from the Mediterranean Sea, Sternaspis spinosa Sluiter, 1882 from Indonesia, and Sternaspis thorsoni sp. n. from the Iranian Gulf. Two genera are newly proposed to incorporate the remaining species: Caulleryaspis and Petersenaspis. Caulleryaspis gen. n. is defined by the presence of falcate introvert hooks, seven abdominal segments, and soft shields with sediment particles firmly adhered on them; it includes two species: Caulleryaspis gudmundssoni sp. n. from Iceland and Caulleryaspis laevis (Caullery, 1944) comb. n. from Indonesia. Petersenaspis gen. n. is defined by the presence of spatulate introvert hooks, eight abdominal segments, and stiff shields with poorly defined ribs but no concentric line; it includes Petersenaspis capillata (Nonato, 1966) from Brazil and Petersenaspis palpallatoci sp. n. from the Philippines. Neotypes are proposed for eight species: Sternaspis thalassemoides, Sternaspis affinis, Sternaspis africana, Sternaspis costata, Sternaspis fossor, Sternaspis maior, Sternaspis scutata and Sternaspis spinosa, to stabilize these species-group names, and a lectotype is designated for Sternaspis laevis which is transferred to Caulleryaspis gen. n. The geographic range of most species appears to be much smaller than previously indicated, and for some species additional material in good condition is needed to clarify their distributions. Keys to genera and to all species are also included.  相似文献   

2.
3.
Sorghum (Sorghum bicolor L. Moench) has two isozymes of the cyanogenic β-glucosidase dhurrinase: dhurrinase-1 (Dhr1) and dhurrinase-2 (Dhr2). A nearly full-length cDNA encoding dhurrinase was isolated from 4-d-old etiolated seedlings and sequenced. The cDNA has a 1695-nucleotide-long open reading frame, which codes for a 565-amino acid-long precursor and a 514-amino acid-long mature protein, respectively. Deduced amino acid sequence of the sorghum Dhr showed 70% identity with two maize (Zea mays) β-glucosidase isozymes. Southern-blot data suggested that β-glu-cosidase is encoded by a small multigene family in sorghum. Northern-blot data indicated that the mRNA corresponding to the cloned Dhr cDNA is present at high levels in the node and upper half of the mesocotyl in etiolated seedlings but at low levels in the root—only in the zone of elongation and the tip region. Light-grown seedling parts had lower levels of Dhr mRNA than those of etiolated seedlings. Immunoblot analysis performed using maize-anti-β-glucosidase sera detected two distinct dhurrinases (57 and 62 kD) in sorghum. The distribution of Dhr activity in different plant parts supports the mRNA and immunoreactive protein data, suggesting that the cloned cDNA corresponds to the Dhr1 (57 kD) isozyme and that the dhr1 gene shows organ-specific expression.  相似文献   

4.
The genus Planinasus Cresson is revised and includes 18 extant and one fossil species. We clarify the status of the three previously described species and describe 15 new species as follows (type locality in parenthesis): Planinasus aenigmaticus (Colombia. Bogota: Bogota (04°35.8''N, 74°08.8''W)), Planinasus neotropicus (Panama. Canal Zone: Barro Colorado Island (09°09.1''N, 79°50.8''W)), Planinasus kotrbae (Ecuador. Orellana: Rio Tiputini Biodiversity Station (0°38.2''S, 76°08.9''W)), Planinasus miradorus (Brazil. Maranhão: Parque Estadual Mirador, Base da Geraldina (06°22.2''S, 44°21.8''W)), Planinasus tobagoensis (Trinidad and Tobago. Tobago. St. John: Parlatuvier (11°17.9''N, 60°39''W)), Planinasus xanthops (Ecuador. Orellana: Rio Tiputini Biodiversity Station (0°38.2''S, 76°8.9''W)), Planinasus argentifacies (Peru. Madre de Dios: Río Manu, Pakitza (11°56.6''S, 71°16.9''W; 250 m)), Planinasus insulanus (Dominican Republic. La Vega: near Jarabacoa, Salto Guasara (19°04.4''N, 70°42.1''W, 680 m)), Planinasus nigritarsus (Guyana. Conservation of Ecological Interactions and Biotic Associations (CEIBA; ca. 40 km S Georgetown; 06°29.9''N, 58°13.1''W)), Planinasus atriclypeus (Brazil. Rio de Janeiro: Rio de Janeiro, Floresta da Tijuca (22°57.6''S, 43°16.4''W)), Planinasus atrifrons (Bolivia. Santa Cruz: Ichilo, Buena Vista (4-6 km SSE; Hotel Flora y Fauna; 17°29.95''S, 63°33.15''W; 4-500 m)), P. flavicoxalis (West Indies. Dominica. St. David: 1.6 km N of junction of roads to Rosalie and Castle Bruce (15°23.8''N, 61°18.6''W)), Planinasus mcalpineorum (Mexico. Chiapas: Cacahoatan (7 km N; 15°04.1''N, 92°07.4''W)), Planinasus nigrifacies (Brazil. São Paulo: Mogi das Cruzes, Serra do Itapeti (23°31.5''S, 46°11.2''W)), Planinasus obscuripennis (Peru. Madre de Dios: Río Manu, Erika (near Salvación; 12°50.7''S, 71°23.3''W; 550 m)). In addition to external characters, we also describe and illustrate structures of the male terminalia and for Planinasus kotrbae sp. n., the internal female reproductive organs. Detailed locality data and distribution maps for all species are provided. For perspective and to facilitate genus-group and species-group recognition, the family Periscelididae and subfamily Stenomicrinae are diagnosed and for the latter, a key to included genera is provided.  相似文献   

5.
In the Brazilian Amazon, American tegumentary leishmaniasis (ATL) is endemic and presents a wide spectrum of clinical manifestations due, in part, to the circulation of at least seven Leishmania species. Few reports of Leishmania (Viannia) naiffi infection suggest that its occurrence is uncommon and the reported cases present a benign clinical course and a good response to treatment. This study aimed to strengthen the clinical and epidemiological importance of L. (V.) naiffi in the Amazon Region (Manaus, state of Amazonas) and to report therapeutic failure in patients infected with this species. Thirty Leishmania spp samples isolated from cutaneous lesions were characterised by multilocus enzyme electrophoresis. As expected, the most common species was Leishmania (V.) guyanensis (20 cases). However, a relevant number ofL. (V.) naiffi patients (8 cases) was observed, thus demonstrating that this species is not uncommon in the region. No patient infected withL. (V.) naiffi evolved to spontaneous cure until the start of treatment, which indicated that this species may not have a self-limiting nature. In addition, two of the patients experienced a poor response to antimonial or pentamidine therapy. Thus, either ATL cases due to L. (V.) naiffi cannot be as uncommon as previously thought or this species is currently expanding in this region.  相似文献   

6.
Linoleate (10R)-dioxygenase (10R-DOX) of Aspergillus fumigatus was cloned and expressed in insect cells. Recombinant 10R-DOX oxidized 18:2n-6 to (10R)-hydroperoxy-8(E),12(Z)-octadecadienoic acid (10R-HPODE; ∼90%), (8R)-hydroperoxylinoleic acid (8R-HPODE; ∼10%), and small amounts of 12S(13R)-epoxy-(10R)-hydroxy-(8E)-octadecenoic acid. We investigated the oxygenation of 18:2n-6 at C-10 and C-8 by site-directed mutagenesis of 10R-DOX and 7,8-linoleate diol synthase (7,8-LDS), which forms ∼98% 8R-HPODE and ∼2% 10R-HPODE. The 10R-DOX and 7,8-LDS sequences differ in homologous positions of the presumed dioxygenation sites (Leu-384/Val-330 and Val-388/Leu-334, respectively) and at the distal site of the heme (Leu-306/Val-256). Leu-384/Val-330 influenced oxygenation, as L384V and L384A of 10R-DOX elevated the biosynthesis of 8-HPODE to 22 and 54%, respectively, as measured by liquid chromatography-tandem mass spectrometry analysis. The stereospecificity was also decreased, as L384A formed the R and S isomers of 10-HPODE and 8-HPODE in a 3:2 ratio. Residues in this position also influenced oxygenation by 7,8-LDS, as its V330L mutant augmented the formation of 10R-HPODE 3-fold. Replacement of Val-388 in 10R-DOX with leucine and phenylalanine increased the formation of 8R-HPODE to 16 and 36%, respectively, whereas L334V of 7,8-LDS was inactive. Mutation of Leu-306 with valine or alanine had little influence on the epoxyalcohol synthase activity. Our results suggest that Leu-384 and Val-388 of 10R-DOX control oxygenation of 18:2n-6 at C-10 and C-8, respectively. The two homologous positions of prostaglandin H synthase-1, Val-349 and Ser-353, are also critical for the position and stereospecificity of the cyclooxygenase reaction.Linoleate diol synthases (LDS)2 and linoleate 10R-DOX are fungal fatty acid dioxygenases of the myeloperoxidase gene family (1-3). LDS have dual enzyme activities and transform 18:2n-6 sequentially to 8R-HPODE in an 8R-dioxygenase reaction and to 5,8-, 7,8-, or 8,11-DiHODE in hydroperoxide isomerase reactions. These oxylipins affect sporulation, development, and pathogenicity of Aspergilli (4-6). Fatty acid dioxygenases of the myeloperoxidase gene family also occur in vertebrates, plants, and algae (7-9). The most thoroughly investigated vertebrate enzymes are ovine PGHS-1 and mouse PGHS-2 with known crystal structures (10-12). PGHS transforms 20:4n-6 to PGG2 in a cyclooxygenase and PGG2 to PGH2 in a peroxidase reaction. Aspirin and other nonsteroidal anti-inflammatory drugs inhibit the cyclooxygenase reaction. This is of paramount medical importance (13, 14), and PGHS-1 and -2 are commonly known as COX-1 and -2 (15). α-DOX occur in plants and algae, and biosynthesis of α-DOX in plants is elicited by pathogens (7). α-DOX oxidizes fatty acids to unstable (2R)-hydroperoxides, which readily break down nonenzymatically to fatty acid aldehydes and CO2 (7).LDS, 10R-DOX, PGHS, and α-DOX oxygenate fatty acids to different products, but their oxygenation mechanisms have mechanistic similarities. Sequence alignment shows that many critical amino acid residues for the cyclooxygenase reaction are conserved in LDS, 10R-DOX, and α-DOX. These include the proximal histidine heme ligand, the distal histidine, and the catalytic important tyrosine (Tyr-385) of PGHS-1. The latter is oxidized to a tyrosyl radical, which initiates the cyclooxygenase reaction by abstraction of the pro-S hydrogen at C-13 of 20:4n-6 (16). In analogy, LDS and 10R-DOX catalyze stereospecific abstraction of the pro-S hydrogen at C-8 of 18:2n-6 (3), whereas α-DOX abstracts the pro-R hydrogen at C-2 of fatty acids (17). Site-directed mutagenesis of the conserved tyrosine homologues of Tyr-385 and proximal heme ligands abolishes the dioxygenase activities of 7,8-LDS and α-DOX (17, 18). The orientation of the substrate at the dioxygenation site differs. The carboxyl groups of fatty acids are positioned in a hydrophobic grove close to the tyrosine residue of α-DOX (19). In contrast, the ω ends of eicosanoic fatty acids are buried deep inside the cyclooxygenase channel so that C-13 lies in the vicinity of Tyr-385 (20). Several observations suggest that 18:2n-6 may also be positioned with its ω end embedded in the interior of 7,8-LDS of Gaeumannomyces graminis (18).7,8-LDS of G. graminis and Magnaporthe grisea and 5,8-LDS of Aspergillus nidulans have been sequenced (5, 8, 21). Gene targeting revealed the catalytic properties of 5,8-LDS, 8,11-LDS, and 10R-DOX in Aspergillus fumigatus and A. nidulans (3). Homologous genes can be found in other Aspergilli spp. Alignment of the two 7,8-LDS amino acid sequences with 5,8-LDS, 8,11-LDS, and 10R-DOX sequences of five Aspergilli revealed several conserved regions with single amino acid differences between the enzymes with 8R-DOX and 10R-DOX activities, as illustrated by the selected sequences in Fig. 1. Leu-306, Leu-384, and Val-388 of 10R-DOX are replaced in 5,8- and 7,8-LDS by valine, valine, and leucine residues, respectively. Whether these amino acids are important for the oxygenation mechanism is unknown, and this is one topic of the present investigation. The predicted secondary structure of 10R-DOX suggests that Leu-384 of 10R-DOX can be present in an α-helix with Val-388 close to its border. This α-helix is homologous to helix 6 of PGHS-1, which contains Val-349 and Ser-353 at the homologous positions of Leu-384 and Val-388 (Fig. 1).Open in a separate windowFIGURE 1.Alignments of partial amino acid sequences of five heme containing fatty acid dioxgenases and a comparison of the predicted secondary structure of 10R-DOX with ovine PGHS-1. A, top, amino acids residues at the presumed peroxidase and hydroperoxide isomerase sites. The last two residues, His and Asn, are conserved in all myeloperoxidases (1). Middle and bottom, amino acid residues of the presumed dioxygenation sites are shown. Conserved residues in all sequences are in boldface, and mutated residues of 10R-DOX and/or 7,8-LDS are marked by an asterisk. B, alignment of partial amino acid sequences of 10R-DOX with ovine PGHS-1, and a secondary structure prediction of the 10R-DOX sequence. The secondary structure of 10R-DOX was predicted by PSIPRED (43) and the secondary structure of ovine PGHS-1 from its crystal structure (Protein Data Bank code 1diy; cf. Ref 19). In short, our first strategy for site-directed mutagenesis was to switch hydrophobic residues between the enzymes with 10R- and 8R-DOX activities and to assess the effects on the DOX and hydroperoxide isomerase activities (10R-DOX/7,8-LDS: Leu-306/Val-256, Leu-384/Val-330, Val-388/Leu-334, and Ala-426/Ile-375) and to switch one hydrophobic/charged residue (Ala-435/Glu-384). Only catalytically active pairs would provide clear information on their importance for the position of dioxygenation (e.g. L384V of 10R-DOX and V330L of 7,8-LDS, both of which were active). Unfortunately, replacements of 7,8-LDS often led to inactivation or very low activity (e.g. V330A, V330M, I375A, E384A). Our second strategy was to study replacements in two homologous positions of ovine PGHS-1 (Val-349 and Ser-353) with smaller and larger hydrophobic residues, i.e. at Leu-384 and Val-388 of 10R-DOX. Abbreviations used are as follows: oCOX-1, ovine cyclooxygenase-1; Af, A. fumigatus; Gg, G. graminis. The GenBank™ protein sequences were derived from P05979, EAL89712, AAD49559, EAL84400, and ACL14177. The amino acid sequences were aligned with the ClustalW algorithm (DNAStar).The overall three-dimensional structures of myeloperoxidases are conserved. It is therefore conceivable that important residues for substrate binding in the cyclooxygenase channel of PGHS could be conserved in LDS and 10R-DOX. The three-dimensional structure of ovine PGHS-1 shows that Val-349 and Ser-353 are close to C-3 and C-4 of 20:4n-6, and residues in these positions can alter both position and stereospecificity of oxygenation (22-24). Replacement of Val-349 of PGHS-1 with alanine increased the biosynthesis of 11R-HETE, whereas V349L decreased the generation of 11R-H(P)ETE and increased formation of 15(R/S)-H(P)ETE (23, 25). V349I formed PGG2 with 15R configuration (22, 24). Replacement of Ser-353 with threonine reduced cyclooxygenase and peroxidase activities by over 50% and increased the biosynthesis of 11R-HPETE and 15S-HPETE 4-5 times (23).There is little information on the hydroperoxide isomerase and peroxidase sites of LDS (18, 26), but the latter could be structurally related to the peroxidase site of PGHS. PGG2 and presumably 8R-HPODE bind to the distal side of the heme group, which can be delineated by hydrophobic amino acid residues (27). Val-291 is one of these residues, which form a dome over the distal heme side of COX-1. The V291A mutant retained cyclooxygenase and peroxidase activities (27). 5,8- and 7,8-LDS also have valine residues in the homologous position, whereas 8,11-LDS and 10R-DOX have leucine residues (Fig. 1). Whether these hydrophobic residues are important for the peroxidase activities is unknown.In this study we decided to compare the two catalytic sites of 10R-DOX of A. fumigatus and 7,8-LDS (EC 1.13.11.44) of G. graminis (18). Our first aim was to find a robust expression system for 10R-DOX of A. fumigatus. The second objective was to determine whether C16 and C20 fatty acid substrates enter the oxygenation site of 10R-DOX “head” or “tail” first. Unexpectedly, we found that 10R-DOX oxygenated 20:4n-6 by hydrogen abstraction at both C-13 and C-10 with formation of two nonconjugated and four cis-trans-conjugated HPETEs. Our third objective was to investigate the structural differences between 10R-DOX and 7,8-LDS of G. graminis, which could explain that oxygenation of 18:2n-6 mainly occurred at C-10 and at C-8, respectively. The strategy for site-directed mutagenesis of 10R-DOX and 7,8-LDS is outlined in the legend to Fig. 1; an alignment of the amino acid sequences of 10R-DOX and 7,8-LDS is found in supplemental material.  相似文献   

7.
8.
Cell death can be divided into the anti-inflammatory process of apoptosis and the pro-inflammatory process of necrosis. Necrosis, as apoptosis, is a regulated form of cell death, and Poly-(ADP-Ribose) Polymerase-1 (PARP-1) and Receptor-Interacting Protein (RIP) 1/3 are major mediators. We previously showed that absence or inhibition of PARP-1 protects mice from nephritis, however only the male mice. We therefore hypothesized that there is an inherent difference in the cell death program between the sexes. We show here that in an immune-mediated nephritis model, female mice show increased apoptosis compared to male mice. Treatment of the male mice with estrogens induced apoptosis to levels similar to that in female mice and inhibited necrosis. Although PARP-1 was activated in both male and female mice, PARP-1 inhibition reduced necrosis only in the male mice. We also show that deletion of RIP-3 did not have a sex bias. We demonstrate here that male and female mice are prone to different types of cell death. Our data also suggest that estrogens and PARP-1 are two of the mediators of the sex-bias in cell death. We therefore propose that targeting cell death based on sex will lead to tailored and better treatments for each gender.  相似文献   

9.
In Brazil, the entomological surveillance of Aedes (Stegomyia) aegypti is performed by government-mandated larval surveys. In this study, the sensitivities of an adult sticky trap and traditional surveillance methodologies were compared. The study was performed over a 12-week period in a residential neighbourhood of the municipality of Pedro Leopoldo, state of Minas Gerais, Brazil. An ovitrap and a MosquiTRAP were placed at opposite ends of each neighbourhood block (60 traps in total) and inspections were performed weekly. The study revealed significant correlations of moderate strength between the larval survey, ovitrap and MosquiTRAP measurements. A positive relationship was observed between temperature, adult capture measurements and egg collections, whereas precipitation and frequency of rainy days exhibited a negative relationship.  相似文献   

10.
The New World species of Polytrichophora Cresson and Facitrichophora new genus, are revised. Fifteen new species are described (type locality in parenthesis): Facitrichophora atrella sp. n. (Costa Rica. Guanacaste: Murciélago [10°56.9''N, 85°42.5''W; sandy mud flats around mangrove inlet]), Facitrichophora carvalhorum sp. n. (Brazil. São Paulo: Praia Puruba [23°21''S, 44°55.6''W; beach]), Facitrichophora manza sp. n. (Trinidad and Tobago. Trinidad. St. Andrew: Lower Manzanilla (12 km S; 10°24.5''N, 61°01.5''W), bridge over Nariva River), Facitrichophora panama sp. n. (Panama. Darien: Garachine [8°04''N, 78°22''W]), Polytrichophora adarca sp. n. (Barbados. Christ Church: Graeme Hall Nature Sanctuary [13°04.2''N, 59°34.7''W; swamp]), Polytrichophora arnaudorum sp. n. (Mexico. Baja California. San Felipe [31°01.5''N, 114°50.4''W]), Polytrichophora barba sp. n. (Cuba. Sancti Spiritus: Topes de Collantes [21°54.4''N, 80°01.4''W, 670 m]), Polytrichophora flavella sp. n. (Peru. Madre de Dios: Rio Manu, Pakitza [11°56.6''S, 71°16.9''W; 250 m]), Polytrichophora marinoniorum sp. n. (Brazil. Paraná: Antonina [25°28.4''S, 48°40.9''W; mangal]), Polytrichophora rostra sp. n. (Peru. Madre de Dios: Rio Manu, Pakitza [11°56.6''S, 71°16.9''W; 250 m]), Polytrichophora sinuosa sp. n. (Trinidad and Tobago. Trinidad. St. Andrew: Lower Manzanilla [12 km S; 10°24''N, 61°02''W]), Polytrichophora mimbres sp. n. (United States. New Mexico. Grant: Mimbres River [New Mexico Highway 61 & Royal John Mine Road; 32°43.8''N, 107°52''W; 1665 m]), Polytrichophora salix sp. n. (United States. Alaska. Matanuska-Susitna: Willow Creek [61°46.1''N, 150°04.2''W; 50 m]), Polytrichophora sturtevantorum sp. n. (United States. Tennessee. Shelby: Meeman Shelby State Park [Mississippi River; 35°20.4''N, 90°2.1''W; 98 m]), Polytrichophora prolata sp. n. (Belize. Stann Creek: Cockscomb Basin Wildlife Sanctuary [16°45''N, 88°30''W]). All known New World species of both genera are described with an emphasis on structures of the male terminalia, which are fully illustrated. Detailed locality data and distribution maps for all species are provided. For perspective and to facilitate recognition, the tribe Discocerinini is diagnosed and a key to included genera is provided.  相似文献   

11.
Calliostoma tupinamba isa new species from Southeastern Brazil, ranging from southern Rio de Janeiro to northern São Paulo, and found only on coastal islands, on rocks and sessile invertebrates at 3 to 5 meters of depth. Shell and soft part morphology is described here in detail. Calliostoma tupinamba is mainly characterized by a depressed trochoid shell; eight slightly convex whorls; a sharply suprasutural carina starting on the third whorl and forming a peripheral rounded keel; and a whitish, funnel-shaped and deep umbilicus, measuring about 5%–10% of maximum shell width. Calliostoma tupinamba resembles Calliostoma bullisi Clench & Turner, 1960 in shape, but differs from it in being taller and wider, having a smaller umbilicus and lacking a strong and large innermost spiral cord at its base. Finally, an identification key of Brazilian Calliostoma species is presented.  相似文献   

12.
We dedicate this article to the memory of Sergio de Freitas, FCAV-UNESP, Jaboticabal, São Paulo, Brazil (deceased, 2012). He was an active and enthusiastic Neuropterist and the cherished mentor and friend of Francisco Sosa.Leucochrysa McLachlan is the largest genus in the Chrysopidae, yet it has received relatively little taxonomic attention. We treat two problematic and common Leucochrysa species – Leucochrysa (Leucochrysa) varia (Schneider, 1851) and Leucochrysa (Leucochrysa) pretiosa (Banks, 1910). Both are highly variable in coloration and were described before the systematic importance of chrysopid genitalia was recognized. Recent studies show that these species occur within a large complex of cryptic species and that they have accumulated a number of taxonomic problems. We identify new synonymies for each of the species–for Leucochrysa (Leucochrysa) varia: Leucochrysa (Leucochrysa) ampla (Walker, 1853), Leucochrysa internata (Walker, 1853), and Leucochrysa (Leucochrysa) walkerina Navás, 1913; for Leucochrysa (Leucochrysa) pretiosa: Leucochrysa (Leucochrysa) erminea Banks, 1946. The synonymy of Leucochrysa delicata Navás, 1925 with Leucochrysa (Leucochrysa) pretiosa is stabilized by the designation of a neotype. The following species, which were previously synonymized with Leucochrysa (Leucochrysa) varia or Leucochrysa (Leucochrysa) pretiosa, are reinstated as valid: Leucochrysa (Leucochrysa) phaeocephala Navás, 1929, Leucochrysa (Leucochrysa) angrandi (Navás, 1911), and Leucochrysa (Leucochrysa) variata (Navás, 1913). To help stabilize Leucochrysa taxonomy, lectotypes are designated for Allochrysa pretiosa and Allochrysa variata. Finally, Leucochrysa vegana Navás, 1917 is considered a nomen dubium.  相似文献   

13.
14.
The preimaginal stages including egg, mature larva and pupa of Pseudaspidapion botanicum Alonso-Zarazaga & Wang, 2011 were described and figured, diagnostic characters of larva and pupa were discussed, and corresponding biological information was supplied. The nomenclature of frontal setae in the larva compared with curculionid weevils, the absence of the hypopharyngeal bracon in the larva, and the metafemoral setae in the pupa were discussed. Common and different characters among the larvae of Pseudaspidapion botanicum, Aspidapion radiolus (Marsham, 1802) and Aspidapion aeneum (Fabricius, 1775) were also provided.  相似文献   

15.
Labonte JR 《ZooKeys》2011,(147):497-543
Nebria brevicollis (Fabricius) is one of the most frequently encountered and widely distributed carabid beetles in Europe. Until recently, the only North American records were based on two single specimens, both from the 1930's in southeastern Canada. In 2008, this species was found at thirteen different sites in five counties in northwestern Oregon. As of the end of 2010, it has been found in thirty-four different sites in ten Oregon counties, with a north-south range of ~150 km and an east-west range of ~90 km. It was also detected in 2010 in southwestern Washington (Vancouver), just north of Portland and the Columbia River.The ecological amplitude of Nebria brevicollis in Oregon rivals that of the most eurytopic native carabid species, e.g., Pterostichus algidus LeConte and Scaphinotus marginatus (Fischer von Waldheim). It has been found in highly degraded heavy industrial sites, agricultural fields, city parks, gardens, second growth woodlands, mature conifer forests, montane rock gardens, and otherwise pristine stands of old growth noble fir, with elevations ranging from essentially sea level to 1,249 meters. Climates at these locales vary from that of the Mediterranean Willamette Valley floor, where snow rarely occurs and summers are hot and dry, to the summit of the Oregon Coast Range, where deep snow may be present from November through April and summers are cool. The carabid communities in which Nebria brevicollis has been found range from those predominantly of fellow exotic species, e.g., at heavily perturbed sites, to those where it is the only exotic species, such as at the Coast Range summit.Nebria brevicollis is clearly an invasive species in that it is not restricted to anthropogenic habitats, is rapidly expanding its North American range, and can be abundant in essentially pristine settings. What is not yet clear is whether it is or will become a damaging species. Although it is already the most abundant carabid species in some settings, based upon pitfall catches, it is unknown whether this represents competitive superiority, trap vulnerability, or utilization of previously untapped or non-limiting resources. Deleterious ecological effects could include not only competition with other predators (including other carabid species) in agricultural and natural settings but also predation upon non-adult stages of threatened and endangered species of butterflies.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号