首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
To investigate primary effects of a pyruvate kinase (PYK) defect on glucose metabolism in Corynebacterium glutamicum, a pyk-deleted mutant was derived from wild-type C. glutamicum ATCC13032 using the double-crossover chromosome replacement technique. The mutant was then evaluated under glutamic acid-producing conditions induced by biotin limitation. The mutant showed an increased specific rate of glucose consumption, decreased growth, higher glutamic acid production, and aspartic acid formation during the glutamic acid production phase. A significant increase in phosphoenolpyruvate (PEP) carboxylase activity and a significant decrease in PEP carboxykinase activity occurred in the mutant, which suggested an enhanced overall flux of the anaplerotic pathway from PEP to oxaloacetic acid in the mutant. The enhanced anaplerotic flux may explain both the increased rate of glucose consumption and the higher productivity of glutamic acid in the mutant. Since the pyk-complemented strain had similar metabolic profiles to the wild-type strain, the observed changes represented intrinsic effects of pyk deletion on the physiology of C. glutamicum.  相似文献   

6.
As a first step in determining the importance of the anaplerotic function of phosphoenolpyruvate carboxylase (PEPC) in amino acid biosynthesis, the ppc gene coding for PEPC of Corynebacterium glutamicum ATCC13032 has been cloned by complementation of an Escherichia coli ppc mutant strain. PEPC activity encoded by the cloned gene is not affected by acetyl-CoA under conditions where the E. coli enzyme is strongly activated, whereas acetyl-CoA is able to relieve inhibition by L-aspartate used singly or in combination with alpha-ketoglutarate. Amplification of the ppc gene in a C. glutamicum lysine-excreting strain resulted in increased PEPC-specific activity and lysine productivity. The nucleotide sequence of a DNA fragment of 4885 bp encompassing the ppc gene has been determined. At the amino acid level, PEPC from C. glutamicum presents overall a high degree of similarity with corresponding enzymes from three different organisms. The location of some strictly conserved regions may have important implications for PEPC activity and allostery.  相似文献   

7.
8.
Ralstonia sp. strain U2 metabolizes naphthalene via gentisate (2,5-dihydroxybenzoate) to central metabolites, but it was found unable to utilize gentisate as growth substrate. A putative gentisate transporter encoded by ncg12922 from Corynebacterium glutamicum ATCC 13032 was functionally expressed in Ralstonia sp. strain U2, converting strain U2 to a gentisate utilizer. After ncg12922 was inserted into plasmid pGFPe with green fluorescence protein gene gfp, the expressed fusion protein Ncg12922-GFP could be visualized in the periphery of Escherichia coli cells under confocal microscope, consistent with a cytoplasmic membrane location. In contrast, GFP was ubiquitous in the cytoplasm of E. coli cells carrying pGFPe only. Gentisate 1,2-dioxygenase activity was present in the cell extract from strain U2 induced with gentisate but at a much lower level (one-fifth) than that obtained with salicylate. However, it exhibited a similar level in strain U2 containing Ncg12922 induced either by salicylate or gentisate.  相似文献   

9.
The initial strategy of the Corynebacterium glutamicum genome project was to sequence overlapping inserts of an ordered cosmid library. High-density colony grids of approximately 28 genome equivalents were used for the identification of overlapping clones by Southern hybridization. Altogether 18 contiguous genomic segments comprising 95 overlapping cosmids were assembled. Systematic shotgun sequencing of the assembled cosmid set revealed that only 2.84 Mb (86.6%) of the C. glutamicum genome were represented by the cosmid library. To obtain a complete genome coverage, a bacterial artificial chromosome (BAC) library of the C. glutamicum chromosome was constructed in pBeloBAC11 and used for genome mapping. The BAC library consists of 3168 BACs and represents a theoretical 63-fold coverage of the C. glutamicum genome (3.28 Mb). Southern screening of 2304 BAC clones with PCR-amplified chromosomal markers and subsequent insert terminal sequencing allowed the identification of 119 BACs covering the entire chromosome of C. glutamicum. The minimal set representing a 100% genome coverage contains 44 unique BAC clones with an average overlap of 22 kb. A total of 21 BACs represented linking clones between previously sequenced cosmid contigs and provided a valuable tool for completing the genome sequence of C. glutamicum.  相似文献   

10.
The activity of bacteriophages and phage-related mobile elements is a major source for genome rearrangements and genetic instability of their bacterial hosts. The genome of the industrial amino acid producer Corynebacterium glutamicum ATCC 13032 contains three prophages (CGP1, CGP2, and CGP3) of so far unknown functionality. Several phage genes are regularly expressed, and the large prophage CGP3 (∼190 kbp) has recently been shown to be induced under certain stress conditions. Here, we present the construction of MB001, a prophage-free variant of C. glutamicum ATCC 13032 with a 6% reduced genome. This strain does not show any unfavorable properties during extensive phenotypic characterization under various standard and stress conditions. As expected, we observed improved growth and fitness of MB001 under SOS-response-inducing conditions that trigger CGP3 induction in the wild-type strain. Further studies revealed that MB001 has a significantly increased transformation efficiency and produced about 30% more of the heterologous model protein enhanced yellow fluorescent protein (eYFP), presumably as a consequence of an increased plasmid copy number. These effects were attributed to the loss of the restriction-modification system (cg1996-cg1998) located within CGP3. The deletion of the prophages without any negative effect results in a novel platform strain for metabolic engineering and represents a useful step toward the construction of a C. glutamicum chassis genome of strain ATCC 13032 for biotechnological applications and synthetic biology.  相似文献   

11.
The complete genomic sequence of Corynebacterium glutamicum ATCC 13032, well-known in industry for the production of amino acids, e.g. of L-glutamate and L-lysine was determined. The C. glutamicum genome was found to consist of a single circular chromosome comprising 3282708 base pairs. Several DNA regions of unusual composition were identified that were potentially acquired by horizontal gene transfer, e.g. a segment of DNA from C. diphtheriae and a prophage-containing region. After automated and manual annotation, 3002 protein-coding genes have been identified, and to 2489 of these, functions were assigned by homologies to known proteins. These analyses confirm the taxonomic position of C. glutamicum as related to Mycobacteria and show a broad metabolic diversity as expected for a bacterium living in the soil. As an example for biotechnological application the complete genome sequence was used to reconstruct the metabolic flow of carbon into a number of industrially important products derived from the amino acid L-aspartate.  相似文献   

12.
We constructed the high-expression system of the alr gene from Corynebacterium glutamicum ATCC 13032 in Escherichia coli BL 21 (DE3) to characterize the enzymological and structural properties of the gene product, Alr. The Alr was expressed in the soluble fractions of the cell extract of the E. coli clone and showed alanine racemase activity. The purified Alr was a dimer with a molecular mass of 78 kDa. The Alr required pyridoxal 5'-phosphate (PLP) as a coenzyme and contained 2 mol of PLP per mol of the enzyme. The holoenzyme showed maximum absorption at 420 nm, while the reduced form of the enzyme showed it at 310 nm. The Alr was specific for alanine, and the optimum pH was observed at about nine. The Alr was relatively thermostable, and its half-life time at 60 degrees C was estimated to be 26 min. The K(m) and V(max) values were determined as follows: l-alanine to d-alanine, K(m) (l-alanine) 5.01 mM and V(max) 306 U/mg; d-alanine to l-alanine, K(m) (d-alanine) 5.24 mM and V(max) 345 U/mg. The K(eq) value was calculated to be 1.07 and showed good agreement with the theoretical value for the racemization reaction. The high substrate specificity of the Alr from C. glutamicum ATCC 13032 is expected to be a biocatalyst for d-alanine production from the l-counter part.  相似文献   

13.
Corynebacterium glutamicum ATCC 13032 has four enzyme II (EII) genes of the phosphotransferase system in its genome encoding transporters for sucrose, glucose, fructose, and an unidentified EII. To analyze the function of these EII genes, they were inactivated via homologous recombination and the resulting mutants characterized for sugar utilization. Whereas the sucrose EII was the only transport system for sucrose in C. glutamicum, fructose and glucose were each transported by a second transporter in addition to their corresponding EII. In addition, the ptsF ptsG double mutant carrying deletions in the EII genes for fructose and glucose accumulated fructose in the culture broth when growing on sucrose. As no fructokinase gene exists in the C. glutamicum genome, the fructokinase gene from Clostridium acetobutylicum was expressed in C. glutamicum and resulted in the direct phosphorylation of fructose without any fructose efflux. Accordingly, since fructokinase could direct fructose flux to the pentose phosphate pathway for the supply of NADPH, fructokinase expression may be a potential strategy for enhancing amino acid production.  相似文献   

14.
15.
16.
Reference maps of the cytosolic, cell surface and extracellular proteome fractions of the amino acid-producing soil bacterium Corynebacterium efficiens YS-314 were established. The analysis window covers a pI range from 3 to 7 along with a molecular mass range from 10 to 130 kDa. After second-dimensional separation on SDS-PAGE and Coomassie staining, computational analysis detected 635 protein spots in the cytosolic proteome fraction, whereas 76 and 102 spots were detected in the cell surface and extracellular proteomes, respectively. By means of MALDI-TOF-MS and tryptic peptide mass fingerprinting, 164 cytosolic proteins, 49 proteins of the cell surface and 89 extracellular protein spots were identified, representing in total 177 different proteins. Additionally, reference maps of the three cellular proteome fractions of the close phylogenetic relative Corynebacterium glutamicum ATCC 13032 were generated and used for comparative proteomics. Classification according to the Clusters of Orthologous Groups of proteins scheme and abundance analysis of the identified proteins revealed species-specific differences. The high abundance of molecular chaperones and amino acid biosynthesis enzymes in C. efficiens points to environmental adaptations of this recently discovered amino acid-producing bacterium.  相似文献   

17.
18.
19.
RP4-mediated transfer of mobilizable plasmids in intergeneric conjugation of Escherichia coli donors with Corynebacterium glutamicum ATCC 13032 is severely affected by a restriction system in the recipient that can be inactivated by a variety of exogenous stress factors. In this study a rapid test procedure based on intergeneric conjugal plasmid transfer that permitted the distinction between restriction-negative and restriction-positive C. glutamicum clones was developed. By using this procedure, clones of the restriction-deficient mutant strain C. glutamicum RM3 harboring a plasmid library of the wild-type chromosome were checked for their restriction properties. A complemented clone with a restriction-positive phenotype was isolated and found to contain a plasmid with a 7-kb insertion originating from the wild-type chromosome. This plasmid, termed pRES806, is able to complement the restriction-deficient phenotype of different C. glutamicum mutants. Sequence analysis revealed the presence of two open reading frames (orf1 and orf2) on the complementing DNA fragment. The region comprising orf1 and orf2 displayed a strikingly low G+C content and was present exclusively in C. glutamicum strains. Gene disruption experiments with the wild type proved that orf1 is essential for complementation, but inactivation of orf2 also resulted in a small but significant increase in fertility. These results were confirmed by infection assays with the bacteriophage CL31 from Corynebacterium lilium ATCC 15990.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号