首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Trypanosoma cruzi is the causal agent of Chagas Disease. Recently, the genomes of representative strains from two major evolutionary lineages were sequenced, allowing the construction of a detailed genetic diversity map for this important parasite. However this map is focused on coding regions of the genome, leaving a vast space of regulatory regions uncharacterized in terms of their evolutionary conservation and/or divergence.

Methodology

Using data from the hybrid CL Brener and Sylvio X10 genomes (from the TcVI and TcI Discrete Typing Units, respectively), we identified intergenic regions that share a common evolutionary ancestry, and are present in both CL Brener haplotypes (TcII-like and TcIII-like) and in the TcI genome; as well as intergenic regions that were conserved in only two of the three genomes/haplotypes analyzed. The genetic diversity in these regions was characterized in terms of the accumulation of indels and nucleotide changes.

Principal Findings

Based on this analysis we have identified i) a core of highly conserved intergenic regions, which remained essentially unchanged in independently evolving lineages; ii) intergenic regions that show high diversity in spite of still retaining their corresponding upstream and downstream coding sequences; iii) a number of defined sequence motifs that are shared by a number of unrelated intergenic regions. A fraction of indels explains the diversification of some intergenic regions by the expansion/contraction of microsatellite-like repeats.  相似文献   

2.
Copy-number variations (CNV), loss of heterozygosity (LOH), and uniparental disomy (UPD) are large genomic aberrations leading to many common inherited diseases, cancers, and other complex diseases. An integrated tool to identify these aberrations is essential in understanding diseases and in designing clinical interventions. Previous discovery methods based on whole-genome sequencing (WGS) require very high depth of coverage on the whole genome scale, and are cost-wise inefficient. Another approach, whole exome genome sequencing (WEGS), is limited to discovering variations within exons. Thus, we are lacking efficient methods to detect genomic aberrations on the whole genome scale using next-generation sequencing technology. Here we present a method to identify genome-wide CNV, LOH and UPD for the human genome via selectively sequencing a small portion of genome termed Selected Target Regions (SeTRs). In our experiments, the SeTRs are covered by 99.73%~99.95% with sufficient depth. Our developed bioinformatics pipeline calls genome-wide CNVs with high confidence, revealing 8 credible events of LOH and 3 UPD events larger than 5M from 15 individual samples. We demonstrate that genome-wide CNV, LOH and UPD can be detected using a cost-effective SeTRs sequencing approach, and that LOH and UPD can be identified using just a sample grouping technique, without using a matched sample or familial information.  相似文献   

3.
Bighorn sheep (Ovis canadensis) populations in the western United States have undergone widespread declines and extirpations since the late nineteenth century as a consequence of introduced diseases, competition with livestock, and unregulated hunting. Washington, Idaho, USA, and British Columbia, Canada were historically thought to be occupied by 2 bighorn lineages or subspecies: Rocky Mountain (O. c. canadensis) and California (O. c. californiana). The putative California lineage was completely extirpated in the United States, and reintroductions to reestablish populations were sourced directly or indirectly from a single region in southern British Columbia. Restoration efforts have attempted to maintain the diversity and divergence of these 2 lineages, sometimes referred to as subspecies although taxonomic classifications have changed over time. In this study we describe genetic variation in a subset of native and reintroduced herds of California and Rocky Mountain bighorn sheep. We examined genetic diversity and divergence between bighorn sheep herds using 15 microsatellite loci, including 4 loci linked to genes involved in immune function. We analyzed 504 samples from reintroduced herds in Washington (n = 10 California herds, n = 4 Rocky Mountain herds) and Idaho (n = 5 California), and source herds in Oregon (n = 1 Rocky Mountain) and British Columbia (n = 5 California, 1 Rocky Mountain). Genetic structure reflected known reintroduction history, and geographic proximity also was associated with decreased genetic divergence. Herds in Washington and Idaho sourced from California bighorn sheep were less genetically diverse than those sourced from Rocky Mountain herds. Also, levels of relatedness within and across California herds were higher than in Rocky Mountain herds and similar to what would be expected for full and half siblings. Lower diversity and higher relatedness among California herds is a concern for long-term fitness and likely related to past population bottlenecks, fewer source populations, and management history, such as entirely sourcing California herds from British Columbia. Genetic divergence of neutral loci between California and Rocky Mountain herds was greater than that of adaptive loci, potentially indicating that balancing selection has maintained similar genetic diversity across lineages in loci associated with immune and other adaptive functions. Thus, we recommend future reintroductions and augmentations should continue to use source populations from the appropriate California or Rocky Mountain lineage to avoid potential outbreeding depression and maintain possible adaptive differences. This could be accomplished by obtaining sheep from ≥1 source within the genetic lineage, while avoiding sourcing from admixed herds. Future work encompassing a broader geographic sampling of populations and a greater portion of the genome is necessary to better evaluate the degree to which contemporary divergence between lineages is associated with recent founder effects and genetic isolation or evolutionary adaptation. © 2021 The Wildlife Society  相似文献   

4.
Hormonal profiles during the estrous cycle of Finn, Suffolk and Targhee ewes were compared in six ewes of each breed. Blood samples were drawn by venipuncture at 8-h intervals from onset to onset of consecutive estrous periods. Number of corpora lutea (CL) and ovarian follicles >/=3 mm in diameter on Day 10 (estrus = Day 0) were observed using endoscopy. Estrous cycle length was 14.9, 15.6 and 16.4 d (P<0.01) in Finn, Suffolk and Targhee ewes, respectively. Finns had more (P<0.001) CL (3.5) than Suffolks (2.0) and Targhees (1.8), but luteal phase progesterone concentrations were similar among breeds in peak level and area under the curve. In Finn ewes, the amplitude of the preovulatory LH surge was lower (P<0.01) and tended to occur later in estrus; otherwise LH levels and patterns were similar among breeds. A coincident follicle stimulating hormone (FSH) preovulatory surge occurred in most ewes, the amplitude of which was related to that of luteinizing hormone (LH); r = 0.67, P<0.01. Plasma FSH levels and patterns were similar in Finn, Suffolk and Targhee ewes and most ewes had three to four secretory episodes. Follicles >/=3 mm averaged 1.8, 1.0 and 1.2 (P>0.1) in Finn, Suffolk and Targhee ewes, respectively. Results indicate that the higher ovulation rate of the Finn ewe is not elicited by increased FSH levels at any stage of the estrous cycle.  相似文献   

5.
6.
The Japanese crested ibis is an internationally conserved, critically threatened bird. Captive-breeding programs have been established to conserve this species in Japan. Since the current Japanese population of crested ibis originates only from 5 founders donated by the Chinese government, understanding the genetic diversity between them is critical for an effective population management. To discover genome-wide single nucleotide polymorphisms (SNPs) and short tandem repeats (STRs) while obtaining genotype data of these polymorphic markers in each founder, reduced representation libraries were independently prepared from each of the founder genomes and sequenced on an Illumina HiSeq2000. This yielded 316 million 101-bp reads. Consensus sequences were created by clustering sequence reads, and then sequence reads from each founder were mapped to the consensus sequences, resulting in the detection of 52,512 putative SNPs and 162 putative STRs. The numbers of haplotypes and STR alleles and the investigation of genetic similarities suggested that the total genetic diversity between the founders was lower, although we could not identify a pair with closely related genome sequences. This study provided important insight into protocols for genetic management of the captive breeding population of Japanese crested ibis in Japan and towards the national project for reintroduction of captive-bred individuals into the wild. We proposed a simple, efficient, and cost-effective approach for simultaneous detection of genome-wide polymorphic markers and their genotypes for species currently lacking a reference genome sequence.  相似文献   

7.

Background

Angola presents a very complex HIV-1 epidemic characterized by the co-circulation of several HIV-1 group M subtypes, intersubtype recombinants and unclassified (U) variants. The viral diversity outside the major metropolitan regions (Luanda and Cabinda) and the prevalence of transmitted drug resistance mutations (DRM) since the introduction of HAART in 2004, however, has been barely studied.

Methods

One hundred and one individuals from the Central (n = 44), North (n = 35), and South (n = 22) regions of Angola were diagnosed as HIV-1 positive and had their blood collected between 2008 and 2010, at one of the National Referral Centers for HIV diagnosis, the Kifangondo Medical Center, located in the border between the Luanda and Bengo provinces. Angolan samples were genotyped based on phylogenetic and bootscanning analyses of the pol (PR/RT) gene and their drug resistance profile was analyzed.

Results

Among the 101 samples analyzed, 51% clustered within a pure group M subtype, 42% were classified as intersubtype recombinants, and 7% were denoted as U. We observed an important variation in the prevalence of different HIV-1 genetic variants among country regions, with high frequency of subtype F1 in the North (20%), intersubtype recombinants in the Central (42%), and subtype C in the South (45%). Statistically significant difference in HIV-1 clade distribution was only observed in subtype C prevalence between North vs South (p = 0.0005) and Central vs South (p = 0.0012) regions. DRM to NRTI and/or NNRTI were detected in 16.3% of patients analyzed.

Conclusions

These results demonstrate a heterogeneous distribution of HIV-1 genetic variants across different regions in Angola and also revealed an unexpected high frequency of DRM to RT inhibitors in patients that have reported no antiretroviral usage, which may decrease the efficiency of the standard first-line antiretroviral regimens currently used in the country.  相似文献   

8.
New sources of genetic diversity must be incorporated into plant breeding programs if they are to continue increasing grain yield and quality, and tolerance to abiotic and biotic stresses. Germplasm collections provide a source of genetic and phenotypic diversity, but characterization of these resources is required to increase their utility for breeding programs. We used a barley SNP iSelect platform with 7,842 SNPs to genotype 2,417 barley accessions sampled from the USDA National Small Grains Collection of 33,176 accessions. Most of the accessions in this core collection are categorized as landraces or cultivars/breeding lines and were obtained from more than 100 countries. Both STRUCTURE and principal component analysis identified five major subpopulations within the core collection, mainly differentiated by geographical origin and spike row number (an inflorescence architecture trait). Different patterns of linkage disequilibrium (LD) were found across the barley genome and many regions of high LD contained traits involved in domestication and breeding selection. The genotype data were used to define ‘mini-core’ sets of accessions capturing the majority of the allelic diversity present in the core collection. These ‘mini-core’ sets can be used for evaluating traits that are difficult or expensive to score. Genome-wide association studies (GWAS) of ‘hull cover’, ‘spike row number’, and ‘heading date’ demonstrate the utility of the core collection for locating genetic factors determining important phenotypes. The GWAS results were referenced to a new barley consensus map containing 5,665 SNPs. Our results demonstrate that GWAS and high-density SNP genotyping are effective tools for plant breeders interested in accessing genetic diversity in large germplasm collections.  相似文献   

9.
Environmental heterogeneity has been hypothesized to influence levels of genetic variation but the effect of heterogeneity depends on (i) the form of heterogeneity, (ii) whether ecologically relevant or neutral loci are being considered, and (iii) the genetic basis of ecological adaptation. We surveyed genome-wide SNP diversity in replicate experimental Drosophila melanogaster populations with equal census sizes that evolved for 42 generations under one of four selection regimes: (i) salt-enriched environment (Salt), (ii) cadmium-enriched environment (Cad), (iii) temporally (Temp) or (iv) spatially (Spatial) variable environments. There was significant differentiation between all pairs of treatments but the greatest differentiation occurred between the two homogenous treatments (Cad and Salt). For sites likely under differential ecological selection (and those closely linked to them), the pattern of within-population diversity π followed the expectation from classic antagonistic selection theory: Spatial>Temp>SaltCad. However, neutral diversity unlinked to selected sites followed a different pattern: Spatial>SaltCad>Temp. As implicated by the latter result, measures of FST among replicate populations within treatments are consistent with differences in effective population sizes among selective regimes despite equal census sizes. Though there are clear changes in the rank order of treatments when contrasting selected and neutral sites with respect to π, the rank ordering of treatments with respect to FST appears reasonably consistent between site categories. These results demonstrate that alternative selective regimes affect within- and among-population diversity differently for different site types.  相似文献   

10.
Entropion is an inward rolling of the eyelid allowing contact between the eyelashes and cornea that may lead to blindness if not corrected. Although many mammalian species, including humans and dogs, are afflicted by congenital entropion, no specific genes or gene regions related to development of entropion have been reported in any mammalian species to date. Entropion in domestic sheep is known to have a genetic component therefore, we used domestic sheep as a model system to identify genomic regions containing genes associated with entropion. A genome-wide association was conducted with congenital entropion in 998 Columbia, Polypay, and Rambouillet sheep genotyped with 50,000 SNP markers. Prevalence of entropion was 6.01%, with all breeds represented. Logistic regression was performed in PLINK with additive allelic, recessive, dominant, and genotypic inheritance models. Two genome-wide significant (empirical P<0.05) SNP were identified, specifically markers in SLC2A9 (empirical P = 0.007; genotypic model) and near NLN (empirical P = 0.026; dominance model). Six additional genome-wide suggestive SNP (nominal P<1x10-5) were identified including markers in or near PIK3CB (P = 2.22x10-6; additive model), KCNB1 (P = 2.93x10-6; dominance model), ZC3H12C (P = 3.25x10-6; genotypic model), JPH1 (P = 4.68x20-6; genotypic model), and MYO3B (P = 5.74x10-6; recessive model). This is the first report of specific gene regions associated with congenital entropion in any mammalian species, to our knowledge. Further, none of these genes have previously been associated with any eyelid traits. These results represent the first genome-wide analysis of gene regions associated with entropion and provide target regions for the development of sheep genetic markers for marker-assisted selection.  相似文献   

11.
采用随机扩增多态性DNA(RAPD)分子标记方法从22个随机引物中筛选出TubeB-03、TubeB-07、TubeB-12三个最佳引物分析来源于7个省区的23株白地霉的种内遗传多样性,并用UPGMA聚类分析法评价它们之间的亲缘关系.结果表明,不同来源地的白地霉通过RAPD分析显示出较高的遗传差异性,并且,在系统进化树上处于同一分枝的菌株来源于生态地理相近的区域,仅有个别例外.因此,应用RAPD分子标记技术对来自不同生态区的白地霉种内遗传多样性和亲缘关系进行分析是可行的.  相似文献   

12.
Atlantic salmon have been reared in the British Columbia, Canada aquaculture industry since the early 1980s. No breeding programmes spanned the entire production period and pedigree records were not kept for broodstocks prior to or since importation. Of the three recognized industry strains, two are of European ancestry ('Mowi' from Norway and 'McConnell' from Scotland) and one is of North American heritage ('Cascade' from Gaspe, Quebec). We evaluated the amount and distribution of genetic variation within industry broodstocks by surveying microsatellite variation at 11 loci in 20 broodstock groups sampled from major production facilities. Allelic richness averaged 10.9 (range 5.8-13.8), compared with a value of 20.3 obtained for a North American wild population. Pairwise genetic distances (D(S)) between samples within strains were generally less than those between strains, with samples attributed to the same strain clustering together in a neighbour-joining dendrogram. Nevertheless, average distances between samples within the European strains were high (0.41 for Mowi; 0.71 for McConnell) but lower (0.06) for the Cascade strain. The reduced intra-sample and increased intra-strain genetic variation observed for the BC domesticated samples compared with wild populations was similar to observations for European domesticated Atlantic salmon. Evidence of introgression of the Cascade strain into European broodstocks was provided by the presence of large Ssa202 alleles (confined to North America in wild populations) in some Mowi and McConnell samples. Introgression likely also contributed to the decreased intercontinental genetic distance for the domesticated samples of this study compared with that observed for wild populations.  相似文献   

13.
14.
Domestic sheep and their wild relatives harbor substantial genetic variants that can form the backbone of molecular breeding, but their genome landscapes remain understudied. Here, we present a comprehensive genome resource for wild ovine species, landraces and improved breeds of domestic sheep, comprising high-coverage (∼16.10×) whole genomes of 810 samples from 7 wild species and 158 diverse domestic populations. We detected, in total, ∼121.2 million single nucleotide polymorphisms, ∼61 million of which are novel. Some display significant (P < 0.001) differences in frequency between wild and domestic species, or are private to continent-wide or individual sheep populations. Retained or introgressed wild gene variants in domestic populations have contributed to local adaptation, such as the variation in the HBB associated with plateau adaptation. We identified novel and previously reported targets of selection on morphological and agronomic traits such as stature, horn, tail configuration, and wool fineness. We explored the genetic basis of wool fineness and unveiled a novel mutation (chr25: T7,068,586C) in the 3′-UTR of IRF2BP2 as plausible causal variant for fleece fiber diameter. We reconstructed prehistorical migrations from the Near Eastern domestication center to South-and-Southeast Asia and found two main waves of migrations across the Eurasian Steppe and the Iranian Plateau in the Early and Late Bronze Ages. Our findings refine our understanding of genome variation as shaped by continental migrations, introgression, adaptation, and selection of sheep.  相似文献   

15.
An Iranian National Quince collection containing 40 quince genotypes, originating from six distinct geographic areas, was screened using 15 SSR markers developed originally for apple and pear genomes. Overall, 13 markers exhibited polymorphism, with an average of 5.36 putative alleles per locus and a mean PIC value of 0.76. An UPGMA analysis divided the quince genotypes into five major clusters. The same results were obtained when the principal coordinates were plotted. The assignment test successfully allocated 83% of individuals into their place of origin. These results agree somewhat with the geographic origin of the quince accessions, and we conclude that geographic isolation leads to considerable genetic differentiation among Iranian quince collections. A significant ratio of transferability with a mean of 87.86% was measured, and we deduced that STMS markers derived from pear and apple have enough potential to detect polymorphism and differentiation in quince.  相似文献   

16.
以多浪羊为研究对象,分析绵羊线粒体D-loop区的遗传多样性,为研究多浪羊的起源和进化历史奠定基础。结果显示,多浪羊线粒体DNA D-loop序列长度为945~1 039 bp,A、T、G和C含量分别为29.4%、27.7%、17.7%和25.1%,其中A+T为57.1%,G+C为42.8%。研究获得了26种单倍型,56个多态位点,其中单一多态位点42个,简约信息位点14个。平均核苷酸差异数k为5.289,核苷酸多样度Pi为0.02 415,核苷酸多样度较低,说明多浪羊的遗传多样性贫乏,应采取重点措施予以保护。另外研究发现多浪羊经历过群体扩张,其母系起源除A、B和C世系外,可能存在D或E世系。  相似文献   

17.
以我国主要地方绵羊品种湖羊、同羊、小尾寒羊、滩羊和洼地绵羊为研究对象,检测位于不同染色体的微卫星位点的基因频率分布,进行比较分析.结果表明 1) 就本研究涉及的微卫星标记而言,湖羊处于Hardy-Weinberg极不平衡状态 (P < 0.01),而其余群体包括同羊、小尾寒羊、滩羊和洼地绵羊却处于Hardy-Weinberg平衡 (P < 0.05).2) 就本研究涉及的微卫星标记而言,平均杂合度、多型信息含量和有效等位基因数三个遗传变异指标的方差分析表明不同群体间杂合度、多型信息含量均不存在显著差异 (P > 0.05),有效等位基因数遗传变异指标在、滩羊、湖羊、同羊和洼地羊相互之间以及洼地羊与小尾寒羊之间亦差异不显著(P > 0.05),但是有效等位基因数在前3个群体与后2个群体之间存在显著差异 (0.01 < P < 0.05).5个绵羊群体的变异水平以小尾寒羊最高,其次为洼地绵羊、同羊和滩羊,最低的是湖羊.3) 本研究涉及的我国蒙古羊系统内5个绵羊群体间的系统发生关系不满足距离隔离模式,绵羊群体间的遗传分化关系的远近与其地理分布并未表现出紧密的线性相关.这与5个绵羊起源于不同时期的蒙古羊始祖群体,同时在品种间存在一定程度的基因交流,并在各自特有的生态环境中经历不同程度的自然选择和人为选择品种培育史实相符.  相似文献   

18.
用mtDNA D-环序列探讨蒙古和中国绵羊的起源及遗传多样性   总被引:16,自引:0,他引:16  
为了在分子水平上探讨绵羊的起源,对中国和蒙古共20个绵羊群体、314只绵羊mtDNA D-环的部分序列进行了测定,结果表明:中国绵羊和蒙古绵羊mtDNA D-环区的部分序列中A、T、G、C含量没有明显的差别;蒙古绵羊的多态位点数(28.85%)略高于中国绵羊(24.22%);中国绵羊群体的单倍型多样度在青海藏羊、甘肃藏羊、甘肃高山细毛羊、青海细:色羊、甘南藏羊、小尾寒羊和滩羊群体中较高,但在湖羊和岷县黑裘皮羊中较低;蒙古绵羊的单倍型多样度在Bayad和Baidrag群体中最高,但在Gobi—Altai群体中最低。从总体上看,蒙古绵羊的遗传多样性要略高于中国绵羊,例如单倍犁比例的平均值为86.06%(142/185):78.83%(108/137),单倍型多样度(Hd)的甲均值为0.976:0.936,核苷酸多样度(Pi(π))的平均值为0.036:0.034,平均核苷酸差异数(k)的平均值为23.50:22.48~217个中国和蒙古绵羊的单倍型序列的系统发生分析表明,中国和蒙古绵羊均有3个母系起源,被定义为A、B和C3类主要的单倍型。其中A类单倍型在所有中国绵羊群体及绝大多数蒙古绵羊群体(9/11)中占优势,平均比例为58.73%;B类单倍型居中,为24.88%;C类单倍型最少,仅为16.59%。进一步从GenBank获得的91个绵羊D-环区的序列与中国和蒙古绵羊D-环区的单倍型的进行网络关系分析,发现欧洲摩弗仑羊(European mouflon,O.musimon)与中国和蒙古绵羊具有较近的亲缘关系,但没有发现塬羊(Argali.O.ammon)、盘羊(0.rignei bochariensis)和东方盘羊(0.ammon nigrimontana)对中国和蒙古绵羊起源有贡献的证据。  相似文献   

19.
利用25对SSR分子标记和24个表型性状对105份中俄茄子材料进行遗传多样性分析。表型变异分析结果表明:24个表型性状在中俄材料间均表现出了不同程度的多样性,但是同一性状在中俄材料中多样性不同;主成分分析可将24个表型性状概括为果形因子、颜色因子、果实外观因子、叶片形态因子、果萼刺和花药条纹6个指标,其中果实特征占主要成分;利用UPGMA法进行聚类,遗传相似系数在0.4~0.8之间,平均值0.6。25对多态性SSR标记,扩增出122个条带,含有等位基因82个,其中有效等位数24.8个,PIC值为0.3~0.7。分子聚类的遗传相似系数在0.5~1之间,平均值是0.7。表型聚类和分子标记聚类的结果相似,105份茄子种质资源间的类群划分与地理来源之间没有直接关系,但与茄子的果实性状有一定的相关性。  相似文献   

20.
新疆8个绵羊品种遗传多样性和系统发生关系的微卫星分析   总被引:62,自引:0,他引:62  
为分析新疆北疆地区主要绵羊品种的遗传多样性和系统发生关系,利用10个微卫星标记,采用PCR扩增,12%非变性聚丙烯酰胺凝胶电泳、Sanguinetti银染法显色,对新疆北疆地区8个品种、1个杂交一代绵羊群体遗传多样性进行了检测,统计了各群体的等位基因组成、平均有效等位基因数(E)和平均基因纯合率,利用等位基因频率计算出各群体的平均遗传杂合度(h)、多态信息含量(PIC)和群体间的遗传距离。利用分子进化遗传分析软件,采用邻结法构建系统发生树;同时根据等位基因频率,利用PHYLIP(3.6)分析软件,采用最大似然法构建系统发生树,应用白举检验估计系统树中结点的白引导值,并进行了系统发生分析。结果表明:10个微卫星位点在9个绵羊群体中的多态信息含量除BMI824、MAF65为低、中度多态外,其余8个微卫星均为高度多态,可作为有效的遗传标记用于各绵羊品种的遗传多样性和系统发生关系的分析;所有绵羊群体的平均PIC(0.5631)、h(0.5721)和E(2.9)均低于国外其他品种的绵羊,其基因多态性和遗传多样性相对贫乏;新疆本地土种阿勒泰羊、哈萨克羊和巴什拜羊与国外引进绵羊品种及混有外血的本地培育品种遗传距离较远,他们聚为不同的两类,各绵羊品种的分子系统发生关系与其来源、育成史、分化及地理分布基本一致。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号