首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cyclin-dependent kinase 5 (CDK5) is a serine/threonine kinase homologue attributed to the mitotic cyclin-dependent kinase family. Both the kinase activity and the biological effects of CDK5 in central nervous system are mainly dependent on association with its regulatory subunit 1 known as CDK5R1 (p35). In the present study, the full-length coding regions of CDK5 and CDK5R1 were cloned from pigs. Radiation hybrid mapping localized porcine CDK5 to chromosome 18q12-13, whereas CDK5R1 was electro-localized to chromosome 12q12. Real-time quantitative RT-PCR (qRT-PCR) showed that CDK5 mRNA is ubiquitously present in all porcine tissues examined, with relatively high levels in cerebral cortex, cerebellum, testicle and lung. We also examined the expression profile of porcine CDK5/CDK5R1 in various tissues at different developmental stages. The results indicated that CDK5 mRNA reaches the highest level in cerebral cortex at two months of age and in cerebellum and liver at 4 months of age, respectively, whereas the peak level of CDK5R1 was observed in both cerebral cortex and cerebellum at two months of age, indicating the pivotal role of CDK5/CDK5R1 during the development of porcine brain.  相似文献   

2.
3.
The amyloid precursor protein (APP) and its proteolytic product amyloid beta (Aβ) are associated with both familial and sporadic forms of Alzheimer disease (AD). Aberrant expression and function of microRNAs has been observed in AD. Here, we show that in rat hippocampal neurons cultured in vitro, the down-regulation of Argonaute-2, a key component of the RNA-induced silencing complex, produced an increase in APP levels. Using site-directed mutagenesis, a microRNA responsive element (RE) for miR-101 was identified in the 3′-untranslated region (UTR) of APP. The inhibition of endogenous miR-101 increased APP levels, whereas lentiviral-mediated miR-101 overexpression significantly reduced APP and Aβ load in hippocampal neurons. In addition, miR-101 contributed to the regulation of APP in response to the proinflammatory cytokine interleukin-1β (IL-lβ). Thus, miR-101 is a negative regulator of APP expression and affects the accumulation of Aβ, suggesting a possible role for miR-101 in neuropathological conditions.  相似文献   

4.
5.
Highlights? DCC and netrin-1 are enriched at synapses in the adult mouse forebrain ? DCC is enriched in the PSD and regulates dendritic spine morphology ? LTP induction and memory formation require DCC expression by neurons ? DCC activation of Src is required for NMDAR-dependent LTP in adult CNS  相似文献   

6.
Cyclin-dependent kinase 5 (CDK5) and neuronal cell death   总被引:5,自引:0,他引:5  
Many neurological disorders like Parkinson's and Alzheimer's disease, amyotrophic lateral sclerosis (ALS) or stroke have in common a definite loss of CNS neurons due to apoptotic or necrotic neuronal cell death. Previous studies suggested that proapoptotic stimuli may trigger an abortive and, therefore, eventually fatal cell cycle reentry in postmitotic neurons. Neuroprotective effects of small molecule inhibitors of cyclin-dependent kinases (CDKs), which are key regulators of cell cycle progression, support the cell cycle theory of neuronal apoptosis. However, growing evidence suggests that deregulated CDK5, which is not involved in cell cycle control, rather than cell cycle relevant members of the CDK family, promotes neuronal cell death. Here we summarize the current knowledge about the involvement of CDK5 in neuronal cell death and discuss possible up- or downstream partners of CDK5. Moreover, we discuss potential therapeutic options that might arise from the identification of CDK5 as an important upstream element of neuronal cell death cascades.  相似文献   

7.
8.
人纤溶酶原饼环区5(hPK5)基因的分泌型表达   总被引:3,自引:0,他引:3  
构建人纤溶酶原饼环区5(hPK5)基因的原核可溶性表达载体并进行表达和纯化,获取大量高纯度、具有生物活性的hPK5蛋白。以纤溶酶原cDNA为模板,PCR扩增了hPK5基因,经过适当酶切后构建表达载体pET22b(+)hPK5,转入大肠杆菌BL21(DE3)进行表达并经组氨酸亲和层析获得纯化。带有重组质粒pET22b(+)hPK5的大肠杆菌经IPTG诱导后以可溶性形式表达16kDa的蛋白,其表达量占菌体总蛋白的30%以上,纯化后目的蛋白纯度达95%以上,Western印迹表明重组蛋白具有Histag抗原活性。构建了pET22b(+)hPK5重组质粒并成功地在大肠杆菌中获得可溶性表达,为获得大量hPK5基因工程产品奠定了实验基础。  相似文献   

9.
目的:构建PET-28a-SPA原核表达载体,在大肠杆菌BL21(DE3)中实现其高效可溶性表达,测定对肿瘤细胞的凋亡效果。方法:本实验在获得凋亡蛋白融合基因的基础上,成功地构建了重组表达质粒PET-28a-SPA,将阳性重组质粒转化表达受体菌BL21(DE3)感受态细胞中,经IPTG诱导表达,表达产物经聚丙烯酰胺凝胶电泳检测和Western blot检测,并采用MTT法检测其对肿瘤细胞的增殖抑制。结果:表达产物经聚丙烯酰胺凝胶电泳检测,凋亡蛋白融合基因获得高效表达,软件分析表明表达蛋白占菌体蛋白20%左右。上清表达量约为10%。上清蛋白经纯化后,Western blot结果显示,利用凋亡蛋白单克隆抗体可以很好地和所表达的蛋白带特异性结合,并且对A549肺癌细胞及Hela细胞具有一定的凋亡作用。结论:所获凋亡蛋白以高效胞质可溶形式表达,为其研制有效的肿瘤免疫治疗靶向药物提供一定的基础。  相似文献   

10.
人细胞周期蛋白D1/CDK4基因的真核表达及生物活性鉴定   总被引:2,自引:0,他引:2  
通过生物工程获得人重组细胞周期蛋白 (cyclinD1 )及细胞周期蛋白激酶CDK4蛋白 ,作为抗癌药物筛选的分子靶点 .从人HL 6 0细胞中获得细胞周期蛋白D1 CDK4基因的cDNA ,先克隆至pGEMT Easy载体上 ,再经重组构建供体质粒pFastBac D1和pFastBac CDK4 .重组供体质粒转化感受态DH1 0Bac细胞 ,挑取确证为白色克隆的菌落振荡培养 ,分离制备高纯度杆粒DNA .以重组病毒适量感染昆虫细胞Tn 5B1 4 ,利用Bac to Bac杆状病毒表达系统在昆虫细胞Tn 5B1 4 (Hi5 )中表达相应的重组蛋白 .应用昆虫杆状病毒表达系统 (Bac to Bac)在昆虫细胞Tn 5B1 4中分别高效表达了人细胞周期蛋白D1和CDK4蛋白 .SDS PAGE分析表明 ,表达量占细胞可溶性蛋白质的 2 0 %左右 ,表达产物经Ni2 + NTA亲和层析纯化后纯度达 85 %以上 .研究表明 ,昆虫细胞表达的细胞周期蛋白D1和CDK4蛋白能促进Rb蛋白的磷酸化 ,具有生物活性 .成功构建了细胞周期蛋白D1及CDK4真核杆状病毒表达载体 ,并且在昆虫细胞中正确表达了具有生物活性的细胞周期蛋白D1及CDK4融合蛋白 .  相似文献   

11.
TMPRSS6 is a regulated gene, with a crucial role in the regulation of iron homeostasis by inhibiting hepcidin expression. The main regulator of iron homeostasis, the antimicrobial peptide hepcidin, which also has a role in immunity, is directly upregulated by inflammation. In this study, we analyzed whether inflammation is also a modulator of TMPRSS6 expression in vitro and in vivo and we determined the mechanism of this regulation A Human Hepatoma cell line was treated with interleukin-6 and mice were injected with lipopolysaccharide and TMPRSS6 expression and the regulatory mechanism were addressed. In this study, we demonstrate that inflammation downregulates TMPRSS6 expression in vitro and in vivo. The downregulation of Tmprss6 by inflammation in mice is not dependent on the Bmp-Smad pathway but occurs through a decrease in Stat5 phosphorylation. Moreover, Stat5 positively regulates Tmprss6 expression directly by binding to a Stat5 element located on the Tmprss6 promoter. Importantly, our results highlight the functional role of inflammatory modulation of TMPRSS6 expression in the regulation of hepcidin. TMPRSS6 inhibition via decreased STAT5 phosphorylation may be an additional mechanism by which inflammation stimulates hepcidin expression to regulate iron homeostasis and immunity.  相似文献   

12.
金黄色葡萄球菌肠毒素A的基因克隆、表达及活性试验   总被引:6,自引:0,他引:6  
利用PCR从金黄色葡萄球菌标准株(Staphylococcus aureus, ATCC13565)中克隆了金黄色葡萄球菌肠毒素A(SEA)的基因,序列测定结果与报道完全一致。构建了表达载体pETSEA并获得高效表达,重组蛋白(rSEA)在37℃诱导时以包涵体形式存在,降低温度则出现可溶表达,可溶性rSEA占总rSEA的55%。可溶性rSEA经Ni2+亲和层析纯化,达电泳纯。通过同源模建对rSEA对SEA进行结构比较,结果表明尽管rSEA比野生型SEA多了9个氨基酸但其结构并没有明显的变化。单核细胞增殖试验进一步证明了该结论:将rSEA与SEA同外周血单个核细胞共同培养,两者均能有效地促进其增殖。将rSEA与体内激活的脾细胞共培养,则能增强脾细胞的体外抑瘤活性。  相似文献   

13.
Hypothalamic controls of energy balance rely on the detection of circulating nutrients such as glucose and long-chain fatty acids (LCFA) by the mediobasal hypothalamus (MBH). LCFA metabolism in the MBH plays a key role in the control of food intake and glucose homeostasis, yet it is not known if glucose regulates LCFA oxidation and esterification in the MBH and, if so, which hypothalamic cell type(s) and intracellular signaling mechanisms are involved. The aim of this study was to determine the impact of glucose on LCFA metabolism, assess the role of AMP-activated Kinase (AMPK), and to establish if changes in LCFA metabolism and its regulation by glucose vary as a function of the kind of LCFA, cell type, and brain region. We show that glucose inhibits palmitate oxidation via AMPK in hypothalamic neuronal cell lines, primary hypothalamic astrocyte cultures, and MBH slices ex vivo but not in cortical astrocytes and slice preparations. In contrast, oleate oxidation was not affected by glucose or AMPK inhibition in MBH slices. In addition, our results show that glucose increases palmitate, but not oleate, esterification into neutral lipids in neurons and MBH slices but not in hypothalamic astrocytes. These findings reveal for the first time the metabolic fate of different LCFA in the MBH, demonstrate AMPK-dependent glucose regulation of LCFA oxidation in both astrocytes and neurons, and establish metabolic coupling of glucose and LCFA as a distinguishing feature of hypothalamic nuclei critical for the control of energy balance.  相似文献   

14.
15.
Wang X  Zheng H  Liu C  Zhu C  Wang W  Li Z 《Neurochemical research》2008,33(5):826-832
Astrocytes are activated by ciliary neurotrophic factor (CNTF) in vivo and in vitro, however, the consequences on the L-type calcium channel (LCC) of neurons are still poorly understood. Therefore, in the present study, whole-cell patch clamp, western-blot and RT-PCR assay were performed to evaluate the effects of CNTF-treated astrocyte conditioned medium (CNTF-ACM) on LCC current (ICa-L) and the expression of Cav1.2 and Cav1.3 in Sprague–Dawley rat cortical neurons. The results revealed that CNTF-ACM enhanced the amplitude of Ica-L and the expression of Cav1.3 significantly, but had no effects on Cav1.2 expression. We also found an increase in the concentration of fibroblast growth factor-2 (FGF-2) in CNTF-ACM by ELISA assay. Taken together, these findings indicate that CNTF induces the release of factors, including FGF-2, from astrocytes, thereby potentiating the activity of LCC in cortical neurons. Xiaojing Wang and Honghua Zheng contributed equally.  相似文献   

16.
Abstract: In a previous study, it was observed that the activity of rolipram-sensitive, low- K m, cyclic AMP phosphodiesterase (PDE4) was decreased in vivo with diminished noradrenergic stimulation. The results of the present experiments indicated that the reduction in the activity may be associated with down-regulation of PDE4 protein. Immunoblot analysis using PDE4-specific, subfamily-nonspecific antibody (K116) revealed four major bands of PDE4 in rat cerebral cortex; those with apparent molecular masses of 109 and 102 kDa are variants of PDE4A. Diminished noradrenergic activity, produced by intracerebroventricular infusion of 6-hydroxydopamine (6-OHDA) or chronic subcutaneous infusion of propranolol, decreased the intensities of the protein bands for the 109- and 102-kDa PDE4A variants in rat cerebral cortex but not of the 98- or 91-kDa PDE4 forms. 6-OHDA-induced noradrenergic lesioning also decreased the content of 102-kDa PDE4A in hippocampus as labeled by PDE4A-specific antibody (C-PDE4A). Enhanced noradrenergic stimulation up-regulated PDE4 in cerebral cortex. This was indicated by the finding that repeated treatment with desipramine increased the intensity of the protein band for the 102-kDa PDE4 but not for the other variants of PDE4. These results suggest that PDE4 subtypes are differentially regulated at the level of expression, as evidenced by an apparent change in the amount of PDE4 protein, following changes in noradrenergic activity. These observations are consistent with the notion that PDE4s, especially the PDE4A variants with molecular masses of 109 and 102 kDa, play an important role in maintaining the homeostasis of the noradrenergic signal transduction system in the brain and may be involved in the mediation of antidepressant activity.  相似文献   

17.
CDK5 plays an indispensable role in the central nervous system, and its deregulation is involved in neurodegeneration. We report the crystal structure of a complex between CDK5 and p25, a fragment of the p35 activator. Despite its partial structural similarity with the cyclins, p25 displays an unprecedented mechanism for the regulation of a cyclin-dependent kinase. p25 tethers the unphosphorylated T loop of CDK5 in the active conformation. Residue Ser159, equivalent to Thr160 on CDK2, contributes to the specificity of the CDK5-p35 interaction. Its substitution with threonine prevents p35 binding, while the presence of alanine affects neither binding nor kinase activity. Finally, we provide evidence that the CDK5-p25 complex employs a distinct mechanism from the phospho-CDK2-cyclin A complex to establish substrate specificity.  相似文献   

18.

Background

Although quite challenging, neuroprotective therapies in ischemic stroke remain an interesting strategy to counter mechanisms of ischemic injury and reduce brain tissue damage. Among potential neuroprotective drug, cyclin-dependent kinases (CDK) inhibitors represent interesting therapeutic candidates. Increasing evidence indisputably links cell cycle CDKs and CDK5 to the pathogenesis of stroke. Although recent studies have demonstrated promising neuroprotective efficacies of pharmacological CDK inhibitors in related animal models, none of them were however clinically relevant to human treatment.

Methodology/Principal Findings

In the present study, we report that systemic delivery of (S)-roscovitine, a well known inhibitor of mitotic CDKs and CDK5, was neuroprotective in a dose-dependent manner in two models of focal ischemia, as recommended by STAIR guidelines. We show that (S)-roscovitine was able to cross the blood brain barrier. (S)-roscovitine significant in vivo positive effect remained when the compound was systemically administered 2 hrs after the insult. Moreover, we validate one of (S)-roscovitine in vivo target after ischemia. Cerebral increase of CDK5/p25 activity was observed 3 hrs after the insult and prevented by systemic (S)-roscovitine administration. Our results show therefore that roscovitine protects in vivo neurons possibly through CDK5 dependent mechanisms.

Conclusions/Significance

Altogether, our data bring new evidences for the further development of pharmacological CDK inhibitors in stroke therapy.  相似文献   

19.
The SLC45A2 gene encodes a Membrane-Associated Transporter Protein (MATP). Mutations of this gene cause oculocutaneous albinism type 4 (OCA4). However, the molecular mechanism of its action in melanogenesis has not been elucidated. Here, we discuss the role of MATP in melanin production. The SLC45A2 gene is highly enriched in human melanocytes and melanoma cell lines, and its protein, MATP, is located in melanosomes. The knockdown of MATP using siRNAs reduced melanin content and tyrosinase activity without any morphological change in melanosomes or the expression of melanogenesis-related proteins. Interestingly, the knockdown of MATP significantly lowered the melanosomal pH, as verified through DAMP analysis, suggesting that MATP regulates melanosomal pH and therefore affects tyrosinase activity. Finally, we found that the reduction of tyrosinase activity associated with the knockdown of MATP was readily recovered by copper treatment in the in vitro L-DOPA oxidase activity assay of tyrosinase. Considering that copper is an important element for tyrosinase activity and that its binding to tyrosinase depends on melanosomal pH, MATP may play an important role in regulating tyrosinase activity via controlling melanosomal pH.  相似文献   

20.
The regulation of filopodia plays a crucial role during neuronal development and synaptogenesis. Axonal filopodia, which are known to originate presynaptic specializations, are regulated in response to neurotrophic factors. The structural components of filopodia are actin filaments, whose dynamics and organization are controlled by ensembles of actin-binding proteins. How neurotrophic factors regulate these latter proteins remains, however, poorly defined. Here, using a combination of mouse genetic, biochemical, and cell biological assays, we show that genetic removal of Eps8, an actin-binding and regulatory protein enriched in the growth cones and developing processes of neurons, significantly augments the number and density of vasodilator-stimulated phosphoprotein (VASP)-dependent axonal filopodia. The reintroduction of Eps8 wild type (WT), but not an Eps8 capping-defective mutant, into primary hippocampal neurons restored axonal filopodia to WT levels. We further show that the actin barbed-end capping activity of Eps8 is inhibited by brain-derived neurotrophic factor (BDNF) treatment through MAPK-dependent phosphorylation of Eps8 residues S624 and T628. Additionally, an Eps8 mutant, impaired in the MAPK target sites (S624A/T628A), displays increased association to actin-rich structures, is resistant to BDNF-mediated release from microfilaments, and inhibits BDNF-induced filopodia. The opposite is observed for a phosphomimetic Eps8 (S624E/T628E) mutant. Thus, collectively, our data identify Eps8 as a critical capping protein in the regulation of axonal filopodia and delineate a molecular pathway by which BDNF, through MAPK-dependent phosphorylation of Eps8, stimulates axonal filopodia formation, a process with crucial impacts on neuronal development and synapse formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号