首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 185 毫秒
1.
Previous evidence from post-mortem Alzheimer disease (AD) brains and drug (especially rapamycin)-oriented in vitro and in vivo models implicated an aberrant accumulation of the mammalian target of rapamycin (mTor) in tangle-bearing neurons in AD brains and its role in the formation of abnormally hyperphosphorylated tau. Compelling evidence indicated that the sequential molecular events such as the synthesis and phosphorylation of tau can be regulated through p70 S6 kinase, the well characterized immediate downstream target of mTor. In the present study, we further identified that the active form of mTor per se accumulates in tangle-bearing neurons, particularly those at early stages in AD brains. By using mass spectrometry and Western blotting, we identified three phosphoepitopes of tau directly phosphorylated by mTor. We have developed a variety of stable cell lines with genetic modification of mTor activity using SH-SY5Y neuroblastoma cells as background. In these cellular systems, we not only confirmed the tau phosphorylation sites found in vitro but also found that mTor mediates the synthesis and aggregation of tau, resulting in compromised microtubule stability. Changes of mTor activity cause fluctuation of the level of a battery of tau kinases such as protein kinase A, v-Akt murine thymoma viral oncogene homolog-1, glycogen synthase kinase 3β, cyclin-dependent kinase 5, and tau protein phosphatase 2A. These results implicate mTor in promoting an imbalance of tau homeostasis, a condition required for neurons to maintain physiological function.  相似文献   

2.
sAPPalpha, the soluble form of the beta-amyloid precursor protein, has been shown to act as a potent epidermal growth factor by stimulating keratinocyte proliferation and migration. In this report we provide evidence for a cytoprotective role of sAPPalpha. As a model we used HaCaT cells and normal human keratinocytes (NHK) cultured in the absence of fetal calf serum and bovine pituitary extract. Under these conditions keratinocytes began to undergo apoptosis at increasing rates after 96 h of culture. Surprisingly, keratinocytes were protected from apoptosis by the addition of 50 nM recombinant sAPPalpha. Subsequent experiments were performed to elucidate the regulatory basis of the cytoprotective role of sAPPalpha. We found that recombinant sAPPalpha facilitated the substrate adhesion of keratinocytes in the first 30 minutes after seeding. The basis for this adhesion-promoting function was shown by the ability of recombinant sAPPalpha to continuously coat the culture dish thereby promoting the ability to bind keratinocytes. A second mechanism explaining the cytoprotective role was found in the significant inhibition of apoptosis by recombinant sAPPalpha. In HaCaT cells moderate UV-B irradiation was sufficient to induce apoptosis. In contrast, induction of apoptosis in NHK required additionally the depletion of endogenous sAPPalpha suggesting that sAPPalpha mediates protection against UV-B irradiation. Staurosporine-induced apoptosis rates were significantly reduced by about 59% after addition of recombinant sAPPalpha. These results show that sAPPalpha exerts a pronounced cytoprotective effect and that this effect is mediated by facilitated cell adhesion and by the antiapoptotic function of sAPPalpha.  相似文献   

3.
Estrogen-induced cell signalling in a cellular model of Alzheimer's disease   总被引:6,自引:0,他引:6  
Alzheimer's disease (AD) is characterised by deposition of a 4 kDa amyloid-beta peptide (Abeta) into senile plaques of the affected brain. Abeta is a proteolytic product of the membrane protein, amyloid precursor protein (APP). An alternative cleavage pathway involves alpha-secretase activity and results in secretion of a 100 kDa non-amyloidogenic APP (sAPPalpha) and therefore a potential reduction in Abeta secretion. We have shown that estrogen induces alpha-cleavage and therefore results in the secretion of sAPPalpha. This secretion is signalled via MAP-kinase and PI-3 kinase signal-transduction pathways. These pathways also have the potential to inhibit the activation of glycogen synthase kinase 3beta (GSK), a protein involved in cell death. Therefore, the aim of this work was to further elucidate the estrogen-mediated signaling pathways involved in APP processing, with particular emphasis on GSK activity. By stimulating rat hypothalamic neuronal GT1-7 cells with estradiol, we found that estrogen decreases the activation state of GSK via the MAP kinase pathway. Moreover, the inhibition of GSK activity by LiCl causes enhanced sAPPalpha secretion in a pattern similar to that seen in response to estrogen, suggesting a pivotal role for this deactivation in APP processing. Further, inactivation of GSK by estrogen can be confirmed in an in vivo model. Elucidation of the signaling pathways involved in APP processing may help to understand the pathology of AD and may also prove beneficial in developing therapeutic strategies to combat AD.  相似文献   

4.
Alzheimer's disease is the most frequent neurodegenerative disorder in the aged population and is characterized by the deposition of the 40/42-residue amyloid beta protein (Abeta), a proteolytic fragment of the beta-amyloid precursor protein (APP). Recently, it has been shown that physiological doses of estradiol reduce the generation of endogenous Abeta in primary cortical neurons. Here we investigate the influence of estrogen in amyloidogenesis and sAPPalpha secretion in the CNS. By means of primary cortical neurons overexpressing humanized APP(695) bearing the Swedish mutation (hAPP(695sw)), we analyzed APP maturation in the absence or in the presence of estrogen. We show that estrogen at a 2 microM concentration increases the release of the neuroprotective sAPPalpha fragment but does not reduce the release of Abeta in primary neurons overexpressing the Swedish-mutated form of APP. Furthermore, neurons cocultured with astrocytic cells or grown with astrocytes conditioned media do not exhibit the estrogen-induced increase in sAPPalpha secretion. Altogether, our data indicate that astrocytes interfere with estrogen in the regulation of sAPPalpha secretion, probably via secreted factor(s).  相似文献   

5.
6.
Amyloidogenic processing of beta-amyloid precursor protein (APP) leading to Abeta accumulation is critical in Alzheimer's disease (AD). Abeta leads to pre-synaptic molecular changes in hippocampus of the AD mutant transgenic mouse model Tg2576 prior to plaque formation. Since NGF is critical to neuronal growth and is involved in regulating APP processing, we tested the hypothesis that NGF expression is altered early in this model of AD. We measured APP products and mRNAs for NGF and its low-affinity receptor p75 in 10-month-old Tg2576 whole brain after dietary propentofylline (PPF) or acetyl-L-carnitine (ALCAR) for 4 weeks to induce NGF- or p75-expression, respectively. The results (all P<0.0002) show that compared to wild-type or littermate controls, the transgene leads to decreases of 44% in NGF-mRNA, 25% in p75-mRNA, 64% in sAPPalpha, and 21-fold increases in Abeta40/42. PPF increased NGF-mRNA by 20% and sAPPalpha by 42% while decreasing Abeta40/42 by 45/48%, with no effect on p75-mRNA in Tg animals. ALCAR increased p75-mRNA by 16% and decreased Abeta40/42 by 46/26% with no significant effect on sAPPalpha or NGF-mRNA in Tg animals. The results indicate that NGF expression is reduced early in the Tg brain, that this reduction potentiates further Abeta formation in a vicious cycle, and that inducing NGF shifts the balance toward secretory processing of APP. To a lesser extent, p75 decreases Abeta peptides, possibly via peptidases since sAPPalpha level is not changed.  相似文献   

7.
Synaptic dysfunction and degeneration are believed to underlie the cognitive deficits that characterize Alzheimer's disease, and overactivation of glutamate receptors under conditions of increased oxidative stress and metabolic compromise may contribute to the neurodegenerative process in many different disorders. The secreted form of amyloid precursor protein (sAPPalpha), which is released from neurons in an activity-dependent manner, can modulate neurite outgrowth, synaptic plasticity, and neuron survival. We now report that sAPPalpha can enhance glucose and glutamate transport in synaptic compartments. Treatment of cortical synaptosomes with nanomolar concentrations of sAPPalpha resulted in an attenuation of impairment of glutamate and glucose transport induced by exposure to amyloid beta-peptide and Fe2+. The protective effect of sAPPalpha was mimicked by treatment with 8-bromo-cyclic GMP and blocked by a cyclic GMP-dependent protein kinase inhibitor, suggesting that protective action of sAPPalpha is mediated by cyclic GMP. Our data suggest that glucose and glutamate transport can be regulated locally at the level of the synapse and further suggest important roles for sAPPalpha and cyclic GMP in modulating synaptic physiology under normal and pathophysiological conditions.  相似文献   

8.
Acetylcholinesterase inhibitors (AChEIs) are the only currently available drugs for treating Alzheimer's Disease (AD). Some authors have suggested a function of AChEIs not only in the induction of AChE overproduction and alternative splicing shifts but also a possible role of these drugs in amyloid metabolism beyond their well-known symptomatic effect. Here, we investigate the mechanisms of action of the AChEI donepezil on APP (amyloid precursor protein) metabolism and on the activity/trafficking of the alpha-secretase candidate ADAM 10, in differentiated human neuroblastoma cells (SH-SY5Y). In these cells, the activity of AChE is significantly decreased after 2 h of donepezil treatment. Further, SH-SY5Y cells released significantly more sAPPalpha into the medium, whereas total APP levels in cell lysates were unchanged. Interestingly, treated cells showed increased ADAM 10 levels in membrane compartments. This effect was prevented by pretreatment with tunicamycin or brefeldin, suggesting that donepezil affects trafficking and/or maturation of ADAM 10; additionally, this pretreatment significantly decreased sAPPalpha levels. Pre-incubation with atropine decreased release of sAPPalpha significantly but did not revert ADAM 10 activity to control levels further suggesting that donepezil acts not solely through a purely receptor mediated pathway. These findings indicate that donepezil exerts multiple mechanisms involving processing and trafficking of key proteins involved in AD pathogenesis.  相似文献   

9.
The beta-amyloid precursor protein (betaAPP) undergoes a physiological cleavage triggered by one or several proteolytic activities referred to as alpha-secretases, leading to the secretion of sAPPalpha. Several lines of evidence indicate that the alpha-secretase cleavage is a highly regulated process. Thus, besides constitutive production of sAPPalpha, several studies have reported on protein kinase C-regulated sAPPalpha secretion. Studies aimed at identifying alpha-secretase(s) candidates suggest the involvement of enzymes belonging to the pro-hormone convertases and disintegrin families. The delineation of respective contributions of proteolytic activities in constitutive and regulated sAPPalpha secretion is rendered difficult by the fact that the overall regulated response always includes the basal constitutive counterpart that cannot be selectively abolished. Here we report on the fact that the furin-deficient LoVo cells are devoid of regulated PKC-dependent sAPPalpha secretion and therefore represent an interesting model to study exclusively the constitutive sAPPalpha secretion. We show here, by a pharmacological approach using selective inhibitors, that pro-hormone convertases and proteases of the ADAM (disintegrin metalloproteases) family participate in the production/secretion of sAPPalphas in LoVo cells. Transfection analysis allowed us to further establish that the pro-hormone convertase 7 and ADAM10 but not ADAM17 (TACE, tumour necrosis factor alpha-converting enzyme) likely contribute to constitutive sAPPalpha secretion by LoVo cells.  相似文献   

10.
Abstract: Recent studies have demonstrated oxidative damage is one of the salient features of Alzheimer's disease (AD). In these studies, glycoxidation adduction to and direct oxidation of amino acid side chains have been demonstrated in the lesions and neurons of AD. To address whether lipid damage may also play an important pathogenic role, we raised rabbit antisera specific for the lysine-derived pyrrole adducts formed by lipid peroxidation-derived 4-hydroxynonenal (HNE). These antibodies were used in immunocytochemical evaluation of brain tissue from AD and age-matched control patients. HNE-pyrrole immunoreactivity not only was identified in about half of all neurofibrillary tangles, but was also evident in neurons lacking neurofibrillary tangles in the AD cases. In contrast, few senile plaques were labeled, and then only the dystrophic neurites were weakly stained, whereas the amyloid-β deposits were unlabeled. Age-matched controls showed only background HNE-pyrrole immunoreactivity in hippocampal or cortical neurons. In addition to providing further evidence that oxidative stress-related protein modification is a pervasive factor in AD, the known neurotoxicity of HNE suggests that lipid peroxidation may also play a role in the neuronal death in AD that underlies cognitive deficits.  相似文献   

11.
Constitutive and PKC-regulated alpha-secretase pathways have been reported to produce the secreted form of alpha-secretase-derived APP (sAPPalpha). Here, we examined putative role of furin in the regulation of alpha-secretase activity in vitro and in vivo. Overexpression of the prodomain of furin and infection with a furin-specific inhibitor significantly reduced the levels of sAPPalpha regardless of PKC activity, whereas total APP levels remained unchanged. Furin mRNA levels in the brains of AD patients and Tg2576 mice were significantly lower than those in controls, whereas ADAM10 and TACE mRNA levels were much alike between Tg2576 and littermate mice. Moreover, the injection of furin-adenovirus into Tg2576 mouse brains markedly increased alpha-secretase activity and reduced beta-amyloid protein (Abeta) production in infected brain regions. Our results suggest that furin enhances alpha-secretase activity via the cleavage of ADAM10 and TACE, and that attenuated furin activity is connected to the production of Abeta.  相似文献   

12.
The beta amyloid cascade plays a crucial role in the pathogenesis of Alzheimer's disease (AD). Therefore, drugs that regulate amyloid precursor protein (APP) processing toward the nonamyloidgenic pathway may have therapeutic potential. Many anti-dementia drugs can regulate APP processing in addition to their pharmacological properties. Deprenyl is a neuroprotective agent used to treat some neurodegenerative diseases, including AD. In the present study, the effects of deprenyl on APP processing were investigated. Using SK-N-SH and PC12 cells, it was demonstrated that deprenyl stimulated the release of the nonamyloidogenic alpha-secretase form of soluble APP (sAPPalpha) in a dose-dependent manner without affecting cellular APP expression. The increase of sAPPalpha secretion by deprenyl was blocked by the mitogen activated protein (MAP) kinase inhibitor U0126 and PD98059, and by the protein kinase C (PKC) inhibitor GF109203X and staurosporine, suggesting the involvement of these signal transduction pathways. Deprenyl induced phosphorylation of p42/44 MAP kinase, which was abolished by specific inhibitors of MAP kinase and PKC. Deprenyl also phosphorylated PKC and its major substrate, and myristoylated alanine-rich C kinase (MARCKS) at specific amino acid residues. The data also indicated that 10microM deprenyl successfully induced two PKC isoforms involved in the pathogenesis of AD, PKCalpha and PKCepsilon, to translocate from the cytosolic to the membrane fraction. This phenomenon was substantiated by immunocytochemistry staining. These data suggest a novel pharmacological mechanism in which deprenyl regulates the processing of APP via activation of the MAP kinase and PKC pathways, and that this mechanism may underlie the clinical efficacy of the drug in some AD patients.  相似文献   

13.
Alzheimer's disease (AD) is associated with degenerative changes in nuclei of the basal forebrain which provide most of the cholinergic input to the cortex and hippocampus and with a reduction in presynaptic cholinergic parameters in these areas. Although the etiology and pathogenesis of AD are not known, several reports indicate the involvement of immunological mechanisms. In the present work we examined the existence of antibodies in sera of AD patients that bind specifically to cholinergic neurons. As antigens we employed the purely cholinergic electromotor neurons of the electric fish Torpedo which are chemically homogeneous and cross-react antigenically with human and other mammalian cholinergic neurons. Our findings show that immunoglobulins from sera of AD patients bind to a specific antigen (molecular mass 200 kilodaltons) in the cell bodies and axons of Torpedo electromotor neurons and that the levels of such antibodies are significantly higher in AD patients than in controls. The possible role of these antibodies in the cholinergic dysfunction in AD and their diagnostic potential are discussed.  相似文献   

14.
Recent evidence supports a role of the Wnt pathway in neurodegenerative disorders such as Alzheimer's disease (AD). A relationship between amyloid-beta-peptide (Abeta)-induced neurotoxicity and a decrease in the cytoplasmatic levels of beta-catenin has been proposed. Also, the inhibition of glycogen synthase kinase (GSK-3beta), a central modulator of the pathway, protects rat hippocampal neurons from Abeta-induced damage. Interestingly, during the progression of AD, it has been described that active GSK-3beta is found in neuronal cell bodies and neurites, co-localizing with pre-neurofibrillary tangles observed in disease brains. Since Abeta oligomers are associated with the post-synaptic region and we have found that the non-canonical Wnt signaling modulates PSD-95 and glutamate receptors, we propose that the synaptic target for Abeta oligomers in AD is the postsynaptic region and at the molecular level is the non-canonical Wnt signaling pathway. Altogether, our evidence suggests that a sustained loss of Wnt signaling function may be involved in the Abeta-dependent neurodegeneration observed in AD brains and that the activation of this signaling pathway could be of therapeutic interest in AD.  相似文献   

15.
Alzheimer's disease (AD) is more prevalent following an ischemic or hypoxic episode, such as stroke. Indeed, brain levels of amyloid precursor protein (APP) and the cytotoxic amyloid beta peptide (Abeta) fragment are enhanced in these patients and in animal models following experimental ischaemia. We have investigated the effect of chronic hypoxia (CH; 2.5% O2, 24 h) on processing of APP in the human neuroblastoma, SH-SY5Y. We demonstrate that constitutive and muscarinic-receptor-enhanced secretion of the alpha-secretase cleaved fragment of APP, sAPPalpha, was reduced by approximately 60% in CH cells. The caspase inhibitor BOC-D(Ome)FMK did not reverse this effect of CH, and CH cells were as viable as controls, based on MTT assays. Thus, loss of sAPPalpha is not related to cell death or caspase processing of APP. Pre-incubation with antioxidants did not reverse the effect of CH, and the effect could not be mimicked by H2O2, discounting the involvement of reactive oxygen species in hypoxic loss of sAPPalpha. CH did not affect muscarinic activation of extracellular-signal regulated kinase. However, expression of ADAM 10 (widely believed to be alpha-secretase) was decreased approximately 50% following CH. Thus, CH selectively decreases processing of APP by the alpha-secretase pathway, most likely by decreasing levels of ADAM 10.  相似文献   

16.
The amyloid precursor protein (APP) is an integral membrane glycoprotein whose cleavage products, particularly amyloid-β, accumulate in Alzheimer disease (AD). APP is present at synapses and is thought to play a role in both the formation and plasticity of these critical neuronal structures. Despite the central role suggested for APP in AD pathogenesis, the mechanisms regulating APP in neurons and its processing into cleavage products remain incompletely understood. F-box only protein 2 (Fbxo2), a neuron-enriched ubiquitin ligase substrate adaptor that preferentially binds high-mannose glycans on glycoproteins, was previously implicated in APP processing by facilitating the degradation of the APP-cleaving β-secretase, β-site APP-cleaving enzyme. Here, we sought to determine whether Fbxo2 plays a similar role for other glycoproteins in the amyloid processing pathway. We present in vitro and in vivo evidence that APP is itself a substrate for Fbxo2. APP levels were decreased in the presence of Fbxo2 in non-neuronal cells, and increased in both cultured hippocampal neurons and brain tissue from Fbxo2 knock-out mice. The processing of APP into its cleavage products was also increased in hippocampi and cultured hippocampal neurons lacking Fbxo2. In hippocampal slices, this increase in cleavage products was accompanied by a significant reduction in APP at the cell surface. Taken together, these results suggest that Fbxo2 regulates APP levels and processing in the brain and may play a role in modulating AD pathogenesis.  相似文献   

17.
Both Alzheimer's disease (AD) and almost every second case of frontotemporal lobar degeneration (FTLD) are characterized by the deposition of hyperphosphorylated forms of the microtubule-associated protein tau in neurons and/or glia. This unifying pathology led to coining the umbrella term "tauopathies" for these conditions. While the deposition of tau ultimately results in the formation of typical histopathological lesions, such as the neurofibrillary tangles (NFTs) in AD, it is now well accepted that tau interferes with normal functions in neurons already before its deposition. Together with the identification of pathogenic mutations in the tau-encoding gene MAPT in FTLD and evidence from a rising number of in vivo animal models a central role of tau in neurodegeneration has emerged. Here, we review the role of pathological tau in axonal transport, mitochondrial respiration, and in mediating amyloid-β toxicity in AD. Furthermore, we review recent findings regarding the spreading of tau pathology throughout the brain as disease progresses.  相似文献   

18.
Alzheimer's disease beta-secretase BACE1 is not a neuron-specific enzyme   总被引:2,自引:0,他引:2  
The brains of Alzheimer's disease (AD) patients are morphologically characterized by neurofibrillar abnormalities and by parenchymal and cerebrovascular deposits of beta-amyloid peptides. The generation of beta-amyloid peptides by proteolytical processing of the amyloid precursor protein (APP) requires the enzymatic activity of the beta-site APP cleaving enzyme 1 (BACE1). The expression of this enzyme has been localized to the brain, in particular to neurons, indicating that neurons are the major source of beta-amyloid peptides in brain. Astrocytes, on the contrary, are known to be important for beta-amyloid clearance and degradation, for providing trophic support to neurons, and for forming a protective barrier between beta-amyloid deposits and neurons. However, under certain conditions related to chronic stress, the role of astrocytes may not be beneficial. Here we present evidence demonstrating that astrocytes are an alternative source of BACE1 and therefore may contribute to beta-amyloid plaque formation. While resting astroyctes in brain do not express BACE1 at detectable levels, cultured astrocytes display BACE1 promoter activity and express BACE1 mRNA and enzymatically active BACE1 protein. Additionally, in animal models of chronic gliosis and in brains of AD patients, there is BACE1 expression in reactive astrocytes. This would suggest that the mechanism for astrocyte activation plays a role in the development of AD and that therapeutic strategies that target astrocyte activation in brain may be beneficial for the treatment of AD. Also, there are differences in responses to chronic versus acute stress, suggesting that one consequence of chronic stress is an incremental shift to different phenotypic cellular states.  相似文献   

19.
Mitochondrial dysfunction is implicated in most neurodegenerative diseases, including Alzheimer's disease (AD). We here combined experimental and computational approaches to investigate mitochondrial health and bioenergetic function in neurons from a double transgenic animal model of AD (PS2APP/B6.152H). Experiments in primary cortical neurons demonstrated that AD neurons had reduced mitochondrial respiratory capacity. Interestingly, the computational model predicted that this mitochondrial bioenergetic phenotype could not be explained by any defect in the mitochondrial respiratory chain (RC), but could be closely resembled by a simulated impairment in the mitochondrial NADH flux. Further computational analysis predicted that such an impairment would reduce levels of mitochondrial NADH, both in the resting state and following pharmacological manipulation of the RC. To validate these predictions, we utilized fluorescence lifetime imaging microscopy (FLIM) and autofluorescence imaging and confirmed that transgenic AD neurons had reduced mitochondrial NAD(P)H levels at rest, and impaired power of mitochondrial NAD(P)H production. Of note, FLIM measurements also highlighted reduced cytosolic NAD(P)H in these cells, and extracellular acidification experiments showed an impaired glycolytic flux. The impaired glycolytic flux was identified to be responsible for the observed mitochondrial hypometabolism, since bypassing glycolysis with pyruvate restored mitochondrial health. This study highlights the benefits of a systems biology approach when investigating complex, nonintuitive molecular processes such as mitochondrial bioenergetics, and indicates that primary cortical neurons from a transgenic AD model have reduced glycolytic flux, leading to reduced cytosolic and mitochondrial NAD(P)H and reduced mitochondrial respiratory capacity.  相似文献   

20.
Previous studies have demonstrated that stimulation of phospholipase C-linked G-protein-coupled receptors, including muscarinic M1 and M3 receptors, increases the release of the soluble form of amyloid precursor protein (sAPPalpha) by alpha-secretase cleavage. In this study, we examined the involvement of capacitative Ca2+ entry (CCE) in the regulation of muscarinic acetylcholine receptor (mAChR)-dependent sAPPalpha release in neuroblastoma SH-SY5Y cells expressing abundant M3 mAChRs. The sAPPalpha release stimulated by mAChR activation was abolished by EGTA, an extracellular Ca2+ chelator, which abolished mAChR-mediated Ca2+ influx without affecting Ca2+ mobilization from intracellular stores. However, mAChR-mediated sAPPalpha release was not inhibited by thapsigargin, which increases basal [Ca2+]i by depletion of Ca2+ from intracellular stores. While these results indicate that the mAChR-mediated increase in sAPPalpha release is regulated largely by Ca2+ influx rather than by Ca2+ mobilization from intracellular stores, we further investigated the Ca2+ entry mechanisms regulating this phenomenon. CCE inhibitors such as Gd3+, SKF96365, and 2-aminoethoxydiphenyl borane (2-APB), dose dependently reduced both Ca2+ influx and sAPPalpha release stimulated by mAChR activation, whereas inhibition of voltage-dependent Ca2+ channels, Na+/Ca2+ exchangers, or Na+-pumps was without effect. These results indicate that CCE plays an important role in the mAChR-mediated release of sAPPalpha.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号