首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Antimicrobial-Resistant Campylobacter Species from Retail Raw Meats   总被引:1,自引:0,他引:1       下载免费PDF全文
The antimicrobial susceptibilities of 378 Campylobacter isolates were determined. Resistance to tetracycline was the most common (82%), followed by resistance to doxycycline (77%), erythromycin (54%), nalidixic acid (41%), and ciprofloxacin (35%). Campylobacter coli displayed significantly higher rates of resistance to ciprofloxacin and erythromycin than Campylobacter jejuni, and Campylobacter isolates from turkey meat showed a greater resistance than those from chicken meat.  相似文献   

2.
The association of four new genetic markers with a chicken, bovine, or human host was studied among 645 Campylobacter jejuni isolates. The γ-glutamate transpeptidase gene and dmsA were common in human and chicken isolates but uncommon among bovine isolates. In the t test, bovine isolates differed significantly (P < 0.05) from human and chicken isolates.  相似文献   

3.
Campylobacteriosis is the most frequent zoonosis in developed countries and various domestic animals can function as reservoir for the main pathogens Campylobacter jejuni and Campylobacter coli. In the present study we compared population structures of 730 C. jejuni and C. coli from human cases, 610 chicken, 159 dog, 360 pig and 23 cattle isolates collected between 2001 and 2012 in Switzerland. All isolates had been typed with multi locus sequence typing (MLST) and flaB-typing and their genotypic resistance to quinolones was determined. We used complementary approaches by testing for differences between isolates from different hosts with the proportion similarity as well as the fixation index and by attributing the source of the human isolates with Bayesian assignment using the software STRUCTURE. Analyses were done with MLST and flaB data in parallel and both typing methods were tested for associations of genotypes with quinolone resistance. Results obtained with MLST and flaB data corresponded remarkably well, both indicating chickens as the main source for human infection for both Campylobacter species. Based on MLST, 70.9% of the human cases were attributed to chickens, 19.3% to cattle, 8.6% to dogs and 1.2% to pigs. Furthermore we found a host independent association between sequence type (ST) and quinolone resistance. The most notable were ST-45, all isolates of which were susceptible, while for ST-464 all were resistant.  相似文献   

4.
The antimicrobial susceptibilities of 378 Campylobacter isolates were determined. Resistance to tetracycline was the most common (82%), followed by resistance to doxycycline (77%), erythromycin (54%), nalidixic acid (41%), and ciprofloxacin (35%). Campylobacter coli displayed significantly higher rates of resistance to ciprofloxacin and erythromycin than Campylobacter jejuni, and Campylobacter isolates from turkey meat showed a greater resistance than those from chicken meat.  相似文献   

5.
Consumption and handling of chicken meat are well-known risk factors for acquiring campylobacteriosis. This study aimed to describe the Campylobacter jejuni population in Finnish chickens and to investigate the distribution of C. jejuni genotypes on Finnish chicken farms over a period of several years. We included 89.8% of the total C. jejuni population recovered in Finnish poultry during 2004, 2006, 2007, 2008, and 2012 and used multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE) to characterize the 380 isolates. The typing data was combined with isolate information on collection-time and farm of origin. The C. jejuni prevalence in chicken slaughter batches was low (mean 3.0%, CI95% [1.8%, 4.2%]), and approximately a quarter of Finnish chicken farms delivered at least one positive chicken batch yearly. In general, the C. jejuni population was diverse as represented by a total of 63 sequence types (ST), but certain predominant MLST lineages were identified. ST-45 clonal complex (CC) accounted for 53% of the isolates while ST-21 CC and ST-677 CC covered 11% and 9% of the isolates, respectively. Less than half of the Campylobacter positive farms (40.3%) delivered C. jejuni-contaminated batches in multiple years, but the genotypes (ST and PFGE types) generally varied from year to year. Therefore, no evidence for a persistent C. jejuni source for the colonization of Finnish chickens emerged. Finnish chicken farms are infrequently contaminated with C. jejuni compared to other European Union (EU) countries, making Finland a valuable model for further epidemiological studies of the C. jejuni in poultry flocks.  相似文献   

6.
Chicken and human isolates of Campylobacter jejuni were used to provide oral challenge of day-old broiler chicks. The isolation ratio of the competing challenge strains was monitored and varied, depending upon the isolates used. A PCR-restriction fragment length polymorphism assay of the flagellin gene (flaA) was used to discriminate between the chick-colonizing isolates. Our observations indicated that the selected C. jejuni colonizers dominated the niche provided by the chicken ceca. Chicken isolates from the flaA type 7 grouping generally had numerical superiority over the human isolates when they were administered in our 1-day-old chick model. Our results suggest that it is possible to use combinations of C. jejuni chicken isolates as a defined bacterial preparation for the competitive exclusion of human-pathogenic C. jejuni in poultry.  相似文献   

7.
One hundred forty-one Campylobacter jejuni isolates from humans with diarrhea and 100 isolates from retailed poultry meat were differentiated by flaA typing. The bacteria were isolated in a specific geographical area (Dunedin) in New Zealand over a common time period. Twenty nine flaA types were detected, one of which (flaA restriction fragment length polymorphism type 15 [flaA-15]) predominated among isolates from humans (~30% of isolates). This strain was of low prevalence (5% of isolates) among poultry isolates. flaA-15 strains were five to six times more invasive of HEp2 cells in an in vitro assay than a flaA type (flaA-3) that was commonly encountered on poultry meat (23% of isolates) but was seldom associated with human illness (5%). Competitive-exclusion experiments with chickens, utilizing real-time quantitative PCR to measure the population sizes of specific strains representing flaA-15 (T1016) and flaA-3 (Pstau) in digesta, were carried out. These experiments showed that T1016 always outcompeted Pstau in the chicken intestine. Genomic comparisons of T1016 and Pstau were made using DNA microarrays representing the genome of C. jejuni NCTC 11168. These comparisons revealed differences between the strains in the gene content of the Cj1417c-to-Cj1442c region of the genome, which is associated with the formation of capsular polysaccharide. The strains differed in Penner type (T1016, O42; Pstau, O53). It was concluded that poultry meat was at least one source of human infection with C. jejuni, that some Campylobacter strains detected in poultry meat are of higher virulence for humans than others, and that bacterial attributes affecting strain virulence and commensal colonization ability may be linked.  相似文献   

8.
Thirty-nine human isolates of Campylobacter jejuni obtained from a national university hospital during 2007–2010 and 38 chicken isolates of C. jejuni were collected from poultry farms during 2009–2010 in South Korea were used in this study. Campylobacter genomic species and virulence-associated genes were identified by PCR. Pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) were performed to compare their genetic relationships. All isolates were highly resistant to ciprofloxacin, nalidixic acid, and tetracycline. Of all isolates tested, over 94% contained seven virulence associated genes (flaA, cadF, racR, dnaJ, cdtA, cdtB, and cdtC). All isolates were classified into 39 types by PFGE clustering with 90% similarity. Some chicken isolates were incorporated into some PFGE types of human isolates. MLST analysis for the 39 human isolates and 38 chicken isolates resulted in 14 and 23 sequence types (STs), respectively, of which 10 STs were new. STs overlapped in both chicken and human isolates included ST-21, ST-48, ST-50, ST-51, and ST-354, of which ST-21 was the predominant ST in both human and chicken isolates. Through combined analysis of PFGE types and STs, three chicken isolates were clonally related to the three human isolates associated with food poisoning (VII-ST-48, XXII-ST-354, and XXVIII-ST-51). They were derived from geographically same or distinct districts. Remarkably, clonal spread of food poisoning pathogens between animals and humans was confirmed by population genetic analysis. Consequently, contamination of campylobacters with quinolone resistance and potential virulence genes in poultry production and consumption may increase the risk of infections in humans.  相似文献   

9.
The incidence of human infection with Campylobacter jejuni is increasing in most developed countries and the reason for this is largely unknown. Although poultry meat is considered to be a major source, it is evident that other reservoirs exist, possibly common to humans and poultry. Environmental sources are believed to be important reservoirs of Campylobacter infection in broiler chicken flocks. We investigated the potential importance of wildlife as a source of infection in commercial poultry flocks and in humans by comparing the serotype distributions, fla types, and macrorestriction profiles (MRPs) of C. jejuni isolates from different sources. The serotype distribution in wildlife was significantly different from the known distributions in broilers and humans. Considerable sero- and genotype diversity was found within the wildlife collection, although two major groups of isolates within serotype O:12 and the O:4 complex were found. Common clonal lines among wildlife, chicken, and/or human isolates were identified within serotype O:2 and the O:4 complex. However, MRPs of O:12 and O:38 strains isolated from wildlife and other sources indicated that some clonal lines propagated in a wide selection of animal species but were not detected in humans or broilers in this study. The applied typing methods successfully identified different clonal groups within a strain collection showing large genomic diversity. However, the relatively low number of wildlife strains with an inferred clonal relationship to human and chicken strains suggests that the importance of wildlife as a reservoir of infection is limited.  相似文献   

10.
Campylobacter jejuni is a common cause of the frequently reported food-borne diseases in developed and developing nations. This study describes the development of multiple-locus variable-number tandem-repeat (VNTR) analysis (MLVA) using capillary electrophoresis as a novel typing method for microbial source tracking and epidemiological investigation of C. jejuni. Among 36 tandem repeat loci detected by the Tandem Repeat Finder program, 7 VNTR loci were selected and used for characterizing 60 isolates recovered from chicken meat samples from retail shops, samples from chicken meat processing factory, and stool samples. The discrimination ability of MLVA was compared with that of multilocus sequence typing (MLST). MLVA (diversity index of 0.97 with 31 MLVA types) provided slightly higher discrimination than MLST (diversity index of 0.95 with 25 MLST types). The overall concordance between MLVA and MLST was estimated at 63% by adjusted Rand coefficient. MLVA predicted MLST type better than MLST predicted MLVA type, as reflected by Wallace coefficient (Wallace coefficient for MLVA to MLST versus MLST to MLVA, 86% versus 51%). MLVA is a useful tool and can be used for effective monitoring of C. jejuni and investigation of epidemics caused by C. jejuni.  相似文献   

11.
Poultry and poultry products are commonly considered as the major vehicle of Campylobacter infection in humans worldwide. To reduce the number of human cases, the epidemiology of Campylobacter in poultry must be better understood. Therefore, the objective of the present study was to determine the distribution and genetic relatedness of Campylobacter in the Thai chicken production industry. During June to October 2012, entire broiler production processes (i.e., breeder flock, hatchery, broiler farm and slaughterhouse) of five broiler production chains were investigated chronologically. Representative isolates of C. jejuni from each production stage were characterized by flaA SVR sequencing and multilocus sequence typing (MLST). Amongst 311 selected isolates, 29 flaA SVR alleles and 17 sequence types (STs) were identified. The common clonal complexes (CCs) found in this study were CC-45, CC-353, CC-354 and CC-574. C. jejuni isolated from breeders were distantly related to those isolated from broilers and chicken carcasses, while C. jejuni isolates from the slaughterhouse environment and meat products were similar to those isolated from broiler flocks. Genotypic identification of C. jejuni in slaughterhouses indicated that broilers were the main source of Campylobacter contamination of chicken meat during processing. To effectively reduce Campylobacter in poultry meat products, control and prevention strategies should be aimed at both farm and slaughterhouse levels.  相似文献   

12.
Genetic attribution of bacterial genotypes has become a major tool in the investigation of the epidemiology of campylobacteriosis and has implicated retail chicken meat as the major source of human infection in several countries. To investigate the robustness of this approach to the provenance of the reference data sets used, a collection of 742 Campylobacter jejuni and 261 Campylobacter coli isolates obtained from United Kingdom-sourced chicken meat was established and typed by multilocus sequence typing. Comparative analyses of the data with those from other isolates sourced from a variety of host animals and countries were undertaken by genetic attribution, genealogical, and population genetic approaches. The genotypes from the United Kingdom data set were highly diverse, yet structured into sequence types, clonal complexes, and genealogical groups very similar to those seen in chicken isolates from the Netherlands, the United States, and Senegal, but more distinct from isolates obtained from ruminant, swine, and wild bird sources. Assignment analyses consistently grouped isolates from different host animal sources regardless of geographical source; these associations were more robust than geographic associations across isolates from three continents. We conclude that, notwithstanding the high diversity of these pathogens, there is a strong signal of association of multilocus genotypes with particular hosts, which is greater than the geographic signal. These findings are consistent with local and international transmission of host-associated lineages among food animal species and provide a foundation for further improvements in genetic attribution.Members of the genus Campylobacter, specifically Campylobacter jejuni and Campylobacter coli, are major causes of human morbidity worldwide and are the most common bacterial cause of gastroenteritis in industrialized countries (4). These bacteria are commonly found as apparently harmless members of the gut microbiota of many farmed and wild mammals and birds. This, together with the sporadic nature of most human disease, has contributed to the remaining uncertainty regarding the relative importance of different potential sources of human infection (34), inhibiting the implementation of effective public health interventions, which may have major economic consequences on intensive food production. Human infection with C. jejuni and C. coli has been epidemiologically linked to contact with pets and farm animals and to consumption of red meat, water, milk, and poultry (17, 20, 34).The advent of multilocus sequence typing (MLST) for both C. jejuni and C. coli and its application to large and diverse isolate collections have enhanced understanding of the ecology (38) and epidemiology (10) of these important pathogens. It has been shown that there is substantial genetic differentiation between farmed ruminants and chickens (29) and even greater differentiation between farmed chickens and wild birds at the same farm site (5). Furthermore, MLST supports the application of population genetic attribution models (29, 44) to attribute human disease to host species of origin, based on reference data sets from a range of animal species and the environment. These studies (33, 37, 44) have confirmed observational studies (6, 18, 34, 42) which implicated the consumption of poultry, or food cross-contaminated from poultry, as an important source of human infection, accounting for 40 to 80% of cases. Although these genetic attribution studies confirm that a substantial proportion of infection comes from chicken, their main limitation was the restricted reference data sets available. The extent to which Campylobacter populations differ among host species and environmental niches and the importance of geographical and temporal effects are incompletely characterized. These are central to the success of genetic attribution studies.The usefulness of the genetic attribution approach therefore motivates the establishment of larger and better-sampled reference data sets and highlights the need to understand the variation within these populations to improve estimates of the relative importance of host association to population structure compared to other effects. As well as supporting human disease attribution, this allows insights into bacterial ecology and evolution. The present study describes the genetic diversity and structure of a large representative collection of C. jejuni and C. coli isolates from retail poultry in the United Kingdom. This collection was analyzed with published collections of isolates from a range of different host species and geographical areas to evaluate the impact of large-scale geographical distance on host-associated genetic differentiation.  相似文献   

13.
Although Campylobacter is the leading cause of bacterial foodborne gastroenteritis in the world and the importance of poultry as a source of infection is well understood we know relatively little about its infection biology in the broiler chicken. Much of what we know about the biology of Campylobacter jejuni is based on infection of inbred or SPF laboratory lines of chickens with a small number of isolates used in most laboratory studies. Recently we have shown that both the host response and microbial ecology of C. jejuni in the broiler chicken varies with both the host-type and significantly between C. jejuni isolates. Here we describe heterogeneity in infection within a panel of C. jejuni isolates in two broiler chicken breeds, human intestinal epithelial cells and the Galleria insect model of virulence. All C. jejuni isolates colonised the chicken caeca, though colonisation of other parts of the gastrointestinal tract varied between isolates. Extra-intestinal spread to the liver varied between isolates and bird breed but a poultry isolate 13126 (sequence type 21) showed the greatest levels of extra-intestinal spread to the liver in both broiler breeds with over 70% of birds of the fast growing breed and 50% of the slower growing breed having C. jejuni in their livers. Crucially 13126 is significantly more invasive than other isolates in human intestinal epithelial cells and gave the highest mortality in the Galleria infection model. Taken together our findings suggest that not only is there considerable heterogeneity in the infection biology of C. jejuni in avian, mammalian and alternative models, but that some isolates have an invasive and virulent phenotype. Isolates with an invasive phenotype would pose a significant risk and increased difficulty in control in chicken production and coupled with the virulent phenotype seen in 13126 could be an increased risk to public health.  相似文献   

14.
Campylobacter jejuni is one of the most important causes of human diarrhea worldwide. In the present work, multilocus sequence typing was used to study the genotypic diversity of 145 C. jejuni isolates from 135 chicken meat preparations sampled across Belgium. Isolates were further typed by pulsed-field gel electrophoresis, and their susceptibilities to six antimicrobials were determined. Fifty-seven sequence types (STs) were identified; 26.8% of the total typed isolates were ST-50, ST-45, or ST-257, belonging to clonal complex CC-21, CC-45, or CC-257, respectively. One clonal group comprised 22% (32/145) of all isolates, originating from five different companies and isolated over seven sampling months. Additionally, 53.1% of C. jejuni isolates were resistant to ciprofloxacin, and 48.2% were resistant to tetracycline; 28.9% (42/145) of all isolates were resistant to both ciprofloxacin and tetracycline. The correlation between certain C. jejuni clonal groups and resistance to ciprofloxacin and tetracycline was notable. C. jejuni isolates assigned to CC-21 (n = 35) were frequently resistant to ciprofloxacin (65.7%) and tetracycline (40%); however, 90% (18/20) of the isolates assigned to CC-45 were pansusceptible. The present study demonstrates that certain C. jejuni genotypes recur frequently in the chicken meat supply. The results of molecular typing, combined with data on sample sources, indicate a possible dissemination of C. jejuni clones with high resistance to ciprofloxacin and/or tetracycline. Whether certain clonal groups are common in the environment and repeatedly infect Belgian broiler flocks or whether they have the potential to persist on farms or in slaughterhouses needs further investigation.Campylobacter jejuni is among the most common bacterial causes of human gastroenteritis worldwide (4, 23). Infected humans exhibit a range of clinical symptoms from mild, watery diarrhea to severe inflammatory diarrhea (14). In addition, C. jejuni has been identified as an important infectious trigger for Guillain-Barré syndrome, the most common cause of acute flaccid paralysis in polio-free regions (16). Another issue of concern regarding Campylobacter is the increase in antimicrobial resistance appearing in various regions around the world (1). Infection with an antimicrobial-resistant Campylobacter strain may lead to a suboptimal outcome of antimicrobial treatment or even to treatment failure (11).Consumption of contaminated water and raw milk has been implicated in campylobacteriosis outbreaks (23). However, the majority of human cases are sporadic, and consumption or mishandling of contaminated raw or undercooked poultry meat is believed to be an important source of infection. Risk assessment studies, outbreak investigations, and case-control reports all incriminate chicken meat as a major source, perhaps the major source, of food-borne transmission (14, 17, 32, 48). In Belgium in 1999, a controlled withdrawal of poultry products from sale due to alleged dioxin contamination resulted in a 40% reduction in the frequency of human campylobacteriosis (44). Thereafter and since the year 2000, the Campylobacter contamination of Belgian poultry carcasses and meat has been monitored by the Federal Agency for the Safety of the Food Chain, and the rate of positive samples is regarded as high. In 2006, 55.5% of cecal samples (n = 6,443) from Belgian broilers at slaughter tested positive for Campylobacter (3). In 2007, an industry-focused survey reported that 48% of Belgian chicken meat preparations (n = 656) were contaminated with Campylobacter (19).Molecular typing is an important tool in elucidating the diversity and transmission routes of Campylobacter isolates contaminating the food chain. In the United States, molecular analysis of Campylobacter spp. from poultry production and processing environments showed that many of the clones found within a flock are present in the final products, although the diversity of Campylobacter isolates in the final product was lower than that observed in the flock (22). Furthermore, numerous molecular epidemiological studies indicate that the genotypes of C. jejuni isolated from human cases overlap those of poultry origin (17, 47). Various molecular typing methods for the study of the population structure of Campylobacter are currently available (46). Among these, the multilocus sequence typing (MLST) approach is an emerging tool for research on the population structure and molecular epidemiology of Campylobacter. The technique is highly reproducible, portable, and easy to interpret, and results can be shared through a publicly accessible online database (31, 34). As such, MLST is becoming an important tool for studying the molecular epidemiology of Campylobacter in a global context. The accumulation of sequence typing data generated from different countries and settings could allow the creation of more-sophisticated models of the epidemiology and evolution of bacterial pathogens and the development of improved approaches for combating their spread (41).In Belgium, there is a paucity of information regarding the population structure of Campylobacter in the chicken meat supply. No population-based surveys have been conducted to investigate the molecular epidemiology of C. jejuni in chicken meat at points close to human consumption. In this study, MLST and pulsed-field gel electrophoresis (PFGE) were used to characterize the diversity of, and clonal relationships among, 145 C. jejuni isolates from Belgian chicken meat preparations. In addition, we characterized the antimicrobial resistance in this collection and correlated it with C. jejuni genotypes.  相似文献   

15.
This study was designed to determine whether isolates from chicken carcasses, the primary source of Campylobacter jejuni and Campylobacter coli in human infections, commonly carry the cdt genes and also whether active cytolethal distending toxin (CDT) is produced by these isolates. Campylobacter spp. were isolated from all 91 fresh chicken carcasses purchased from local supermarkets. Campylobacter spp. were identified on the basis of both biochemical and PCR tests. Of the 105 isolates, 70 (67%) were identified as C. jejuni, and 35 (33%) were identified as C. coli. PCR tests amplified portions of the cdt genes from all 105 isolates. Restriction analysis of PCR products indicated that there appeared to be species-specific differences between the C. jejuni and C. coli cdt genes, but that the restriction patterns of the cdt genes within strains of the same species were almost invariant. Quantitation of active CDT levels produced by the isolates indicated that all C. jejuni strains except four (94%) had mean CDT titers greater than 100. Only one C. jejuni strain appeared to produce no active CDT. C. coli isolates produced little or no toxin. These results confirm the high rate of Campylobacter sp. contamination of fresh chicken carcasses and indicate that cdt genes may be universally present in C. jejuni and C. coli isolates from chicken carcasses.  相似文献   

16.
Campylobacter jejuni is the most common cause of bacterial gastroenteritis worldwide, with contaminated chicken meat considered to represent a major source of human infection. Biosecurity measures can reduce C. jejuni shedding rates of housed chickens, but the increasing popularity of free-range and organic meat raises the question of whether the welfare benefits of extensive production are compatible with food safety. The widespread assumption that the free-range environment contaminates extensively reared chickens has not been rigorously tested. A year-long survey of 64 free-range broiler flocks reared on two sites in Oxfordshire, UK, combining high-resolution genotyping with behavioural and environmental observations revealed: (i) no evidence of colonization of succeeding flocks by the C. jejuni genotypes shed by preceding flocks, (ii) a high degree of similarity between C. jejuni genotypes from both farm sites, (iii) no association of ranging behaviour with likelihood of Campylobacter shedding, and (iv) higher genetic differentiation between C. jejuni populations from chickens and wild birds on the same farm than between the chicken samples, human disease isolates from the same region and national samples of C. jejuni from chicken meat.  相似文献   

17.
The genetic diversity of Campylobacter jejuni isolates from farm animals and their environment was investigated by multilocus sequence typing (MLST). A total of 30 genotypes, defined by allelic profiles (assigned to sequence types [STs]), were found in 112 C. jejuni isolates originating in poultry, cattle, sheep, starlings, and slurry. All but two of these genotypes belonged to one of nine C. jejuni clonal complexes previously identified in isolates from human disease and retail food samples and one clonal complex previously associated with an environmental source. There was some evidence for the association of certain clonal complexes with particular farm animals: isolates belonging to the ST-45 complex predominated among poultry isolates but were absent among sheep isolates, while isolates belonging to the ST-61 and ST-42 complexes were predominant among sheep isolates but were absent from the poultry isolates. In contrast, ST-21 complex isolates were distributed among the different isolation sources. Comparison with MLST data from 91 human disease isolates showed small but significant genetic differentiation between the farm and human isolates; however, representatives of six clonal complexes were found in both samples. These data demonstrate that MLST and the clonal complex model can be used to identify and compare the genotypes of C. jejuni isolates from farm animals and the environment with those from retail food and human disease.  相似文献   

18.
The characterization of Campylobacter jejuni has been significantly improved by the use of multilocus sequence typing (MLST), which allows the relationship between isolates to be determined. The sequence types (STs) of 261 isolates of C. jejuni from New Zealand were determined. Isolates were obtained from a range of sources including chicken meat, cattle, pigs, duck, sheep, water and human infections. Thirty-two new alleles and 44 new STs were identified. Comparison of the MLST data and pulsed-field gel electrophoresis macrorestriction profiles showed that the macrorestriction profiles were good predictors of the clonal complex (CC) but not ST. All the major CCs identified elsewhere in the world were found in New Zealand as well as the association of certain CCs with particular animal niches. The majority of new STs identified were from river water isolates.  相似文献   

19.
Campylobacter coli is an infrequently studied but important food-borne pathogen with a wide natural distribution. We investigated its molecular epidemiology by use of amplified fragment length polymorphism (AFLP)-based genotyping and Penner serotyping. Serotype reference strains and 177 Danish isolates of diverse origin identified by routine phenotyping as C. coli were examined. Molecular tools identified some 12% of field isolates as Campylobacter jejuni, emphasizing the need for improved identification methods in routine laboratories. Cluster analysis of AFLP profiles of 174 confirmed C. coli isolates revealed a difference in the distribution of isolates from pig and poultry (chicken, duck, turkey, and ostrich) species and indicated the various poultry species, but not pigs, to be likely sources of human C. coli infection. A poor correlation was observed between serotyping and AFLP profiling, suggesting that the former method has limited value in epidemiological studies of this species.  相似文献   

20.
Aims: To get an overview of genotypes and antibiotic resistances in Swiss Campylobacter jejuni implicated in human gastroenteritis and to examine the association with isolates from chickens. Methods and Results: Multilocus sequence typing (MLST) and flaB typing were applied to 136 human clinical isolates. Phenotypic resistance to 12 antimicrobials and genotypic resistance to macrolides and quinolones were determined. MLST resulted in 35 known and six new sequence types (ST). The flaB analysis revealed 35 different types, which – in combination with MLST – increased the resolution of the typing approach. Resistance to quinolones, tetracycline and ampicillin was found in 37·5, 33·1 and 8·1% of the isolates, respectively, whereas macrolide resistance was found only once. Genotypic and phenotypic resistance correlated in all cases. A comparison to Camp. jejuni isolated from slaughtered chickens was performed. While 86% of the quinolone‐sensitive human isolates showed overlapping MLST‐flaB types with those of chicken origin, resistant strains showed only 39% of matching types. Conclusion: Mainly quinolone‐sensitive Camp. jejuni strains implicated in human campylobacteriosis showed matching genotypes with isolates originating from chickens. Significance and Impact of the Study: A large proportion of human cases in Switzerland are likely to originate from domestic chickens, confirming that prevention measures in the poultry production are important.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号