首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bunyavirus ribonucleoprotein (RNP) that is assembled by polymerized nucleoproteins (N) coating a viral RNA and associating with a viral polymerase can be both the RNA synthesis machinery and the structural core of virions. Bunyaviral N and RNP thus could be assailable targets for host antiviral defense; however, it remains unclear which and how host factors target N/RNP to restrict bunyaviral infection. By mass spectrometry and protein-interaction analyses, we here show that host protein MOV10 targets the N proteins encoded by a group of emerging high-pathogenic representatives of bunyaviruses including severe fever with thrombocytopenia syndrome virus (SFTSV), one of the most dangerous pathogens listed by World Health Organization, in RNA-independent manner. MOV10 that was further shown to be induced specifically by SFTSV and related bunyaviruses in turn inhibits the bunyaviral replication in infected cells in series of loss/gain-of-function assays. Moreover, animal infection experiments with MOV10 knockdown corroborated the role of MOV10 in restricting SFTSV infection and pathogenicity in vivo. Minigenome assays and additional functional and mechanistic investigations demonstrate that the anti-bunyavirus activity of MOV10 is likely achieved by direct impact on viral RNP machinery but independent of its helicase activity and the cellular interferon pathway. Indeed, by its N-terminus, MOV10 binds to a protruding N-arm domain of N consisting of only 34 amino acids but proving important for N function and blocks N polymerization, N-RNA binding, and N-polymerase interaction, disabling RNP assembly. This study not only advances the understanding of bunyaviral replication and host restriction mechanisms but also presents novel paradigms for both direct antiviral action of MOV10 and host targeting of viral RNP machinery.  相似文献   

2.
NS5A plays a critical, yet poorly defined, role in hepatitis C virus genome replication. The protein consists of three domains, each of which is able to bind independently to the 3' untranslated region (UTR) of the viral positive strand genomic RNA. The peptidyl-prolyl isomerase cyclophilin A (CypA) binds to domain II, catalyzing cis-trans isomerization. CypA inhibitors such as cyclosporine (CsA) have been shown to inhibit hepatitis C virus (HCV) replication. We show here that CypA stimulated domain II RNA binding activity, and this stimulation was abrogated by CsA. An isomerase mutant of CypA (H126Q) failed to bind to domain II and did not stimulate RNA binding. Finally, we demonstrate that the RNA binding of two domain II mutants, the D316E and D316E/Y317N mutants, previously shown to exhibit CypA independence for RNA replication, was unaffected by CypA. This study provides an insight into the molecular mechanism of CypA activity during HCV replication and further validates the use of CypA inhibitors in HCV therapy.  相似文献   

3.
4.
The structure of the D85S mutant of bacteriorhodopsin with a nitrate anion bound in the Schiff base binding site and the structure of the anion-free protein have been obtained in the same crystal form. Together with the previously solved structures of this anion pump, in both the anion-free state and bromide-bound state, these new structures provide insight into how this mutant of bacteriorhodopsin is able to bind a variety of different anions in the same binding pocket. The structural analysis reveals that the main structural change that accommodates different anions is the repositioning of the polar side chain of S85. On the basis of these X-ray crystal structures, the prediction is then made that the D85S/D212N double mutant might bind similar anions and do so over a broader pH range than does the single mutant. Experimental comparison of the dissociation constants, K(d), for a variety of anions confirms this prediction and demonstrates, in addition, that the binding affinity is dramatically improved by the D212N substitution.  相似文献   

5.
6.
Severe fever with thrombocytopenia syndrome virus (SFTSV), a member of the Phlebovirus genus from the Bunyaviridae family endemic to China, is the causative agent of life-threatening severe fever with thrombocytopenia syndrome (SFTS), which features high fever and hemorrhage. Similar to other negative-sense RNA viruses, SFTSV encodes a nucleocapsid protein (NP) that is essential for viral replication. NP facilitates viral RNA encapsidation and is responsible for the formation of ribonucleoprotein complex. However, recent studies have indicated that NP from Phlebovirus members behaves in inhomogeneous oligomerization states. In the present study, we report the crystal structure of SFTSV NP at 2.8 ? resolution and demonstrate the mechanism by which it processes a ringshaped hexameric form to accomplish RNA encapsidation. Key residues essential for oligomerization are identifi ed through mutational analysis and identifi ed to have a signifi cant impact on RNA binding, which suggests that correct formation of highly ordered oligomers is a critical step in RNA encapsidation. The fi ndings of this work provide new insights into the discovery of new antiviral reagents for Phlebovirus infection.  相似文献   

7.
Very-low-density lipoprotein assembly and secretion   总被引:8,自引:0,他引:8  
The assembly of apolipoprotein B (apoB) into VLDL is broadly divided into two steps. The first involves transfer of lipid by the microsomal triglyceride transfer protein (MTP) to apoB during translation. The second involves fusion of apoB-containing precursor particles with triglyceride droplets to form mature VLDL. ApoB and MTP are homologs of the egg yolk storage protein, lipovitellin. Homodimerization surfaces in lipovitellin are reutilized in apoB and MTP to achieve apoB-MTP interactions necessary for first step assembly. Structural modeling predicts a small lipovitellin-like lipid binding cavity in MTP and a transient lipovitellin-like cavity in apoB important for nucleation of lipid sequestration. The formation of triglyceride droplets in the endoplasmic reticulum requires MTP however, their fusion with apoB may be MTP-independent. Second step assembly is modulated by phospholipase D and A2. Phospholipases may prime membrane transport steps required for second step fusion and/or channel phospholipids into a pathway for VLDL triglyceride production. The enzymology of VLDL triglyceride synthesis is still poorly understood; however, it appears that ACAT2 is the sole source of cholesterol esters for VLDL and chylomicron assembly. VLDL production is controlled primarily at the level of presecretory degradation. Recently, it was discovered that the LDL receptor modulates VLDL production through its interactions with nascent VLDL in the secretory pathway.  相似文献   

8.
The bacteriophage T4 gene 59 helicase assembly protein is required for recombination-dependent DNA replication, which is the predominant mode of DNA replication in the late stage of T4 infection. T4 gene 59 helicase assembly protein accelerates the loading of the T4 gene 41 helicase during DNA synthesis by the T4 replication system in vitro. T4 gene 59 helicase assembly protein binds to both T4 gene 41 helicase and T4 gene 32 single-stranded DNA binding protein, and to single and double-stranded DNA. We show here that T4 gene 59 helicase assembly protein binds most tightly to fork DNA substrates, with either single or almost entirely double-stranded arms. Our studies suggest that the helicase assembly protein is responsible for loading T4 gene 41 helicase specifically at replication forks, and that its binding sites for each arm must hold more than six, but not more than 12 nucleotides. The 1.45 A resolution crystal structure of the full-length 217-residue monomeric T4 gene 59 helicase assembly protein reveals a novel alpha-helical bundle fold with two domains of similar size. Surface residues are predominantly basic (pI 9.37) with clusters of acidic residues but exposed hydrophobic residues suggest sites for potential contact with DNA and with other protein molecules. The N-terminal domain has structural similarity to the double-stranded DNA binding domain of rat HMG1A. We propose a speculative model of how the T4 gene 59 helicase assembly protein might bind to fork DNA based on the similarity to HMG1, the location of the basic and hydrophobic regions, and the site size of the fork arms needed for tight fork DNA binding. The fork-binding model suggests putative binding sites for the T4 gene 32 single-stranded DNA binding protein and for the hexameric T4 gene 41 helicase assembly.  相似文献   

9.
Non-structural protein 9 (Nsp9) of coronaviruses is believed to bind single-stranded RNA in the viral replication complex. The crystal structure of Nsp9 of human coronavirus (HCoV) 229E reveals a novel disulfide-linked homodimer, which is very different from the previously reported Nsp9 dimer of SARS coronavirus. In contrast, the structure of the Cys69Ala mutant of HCoV-229E Nsp9 shows the same dimer organization as the SARS-CoV protein. In the crystal, the wild-type HCoV-229E protein forms a trimer of dimers, whereas the mutant and SARS-CoV Nsp9 are organized in rod-like polymers. Chemical cross-linking suggests similar modes of aggregation in solution. In zone-interference gel electrophoresis assays and surface plasmon resonance experiments, the HCoV-229E wild-type protein is found to bind oligonucleotides with relatively high affinity, whereas binding by the Cys69Ala and Cys69Ser mutants is observed only for the longest oligonucleotides. The corresponding mutations in SARS-CoV Nsp9 do not hamper nucleic acid binding. From the crystal structures, a model for single-stranded RNA binding by Nsp9 is deduced. We propose that both forms of the Nsp9 dimer are biologically relevant; the occurrence of the disulfide-bonded form may be correlated with oxidative stress induced in the host cell by the viral infection.  相似文献   

10.
Poliovirus VPg is a 22 amino acid residue peptide that serves as the protein primer for replication of the viral RNA genome. VPg is known to bind directly to the viral RNA-dependent RNA polymerase, 3D, for covalent uridylylation, yielding mono and di-uridylylated products, VPg-pU and VPg-pUpU, which are subsequently elongated. To model the docking of the VPg substrate to a putative VPg-binding site on the 3D polymerase molecule, we performed a variety of structure-based computations followed by experimental verification. First, potential VPg folded structures were identified, yielding a suite of predicted beta-hairpin structures. These putative VPg structures were then docked to the region of the polymerase implicated by genetic experiments to bind VPg, using grid-based and fragment-based methods. Residues in VPg predicted to affect binding were identified through molecular dynamics simulations, and their effects on the 3D-VPg interaction were tested computationally and biochemically. Experiments with mutant VPg and mutant polymerase molecules confirmed the predicted binding site for VPg on the back side of the polymerase molecule during the uridylylation reaction, opposite to that predicted to bind elongating RNA primers.  相似文献   

11.
A hierarchical computational approach is used to identify the engineered binding-site cavity at the remodeled intermolecular interface between the mutants of human growth hormone (hGH) and the extracellular domain of its receptor (hGHbp). Multiple docking simulations are conducted with the remodeled hGH-hGHbp complex for a panel of potent benzimidazole-containing inhibitors that can restore the binding affinity of the wild-type complex, and for a set of known nonactive small molecules that contain different heterocyclic motifs. Structural clustering of ligand-bound conformations and binding free-energy calculations, using the AMBER force field and a continuum solvation model, can rapidly locate and screen numerous ligand-binding modes on the protein surface and detect the binding-site hot spot at the intermolecular interface. Structural orientation of the benzimidazole motif in the binding-site cavity closely mimics the position of the hot spot residue W104 in the crystal structure of the wild-type complex, which is recognized as an important structural requirement for restoring binding affinity. Despite numerous pockets on the protein surface of the mutant hGH-hGHbp complex, the binding-site cavity presents the energetically favorable hot spot for the benzimidazole-containing inhibitors, whereas for a set of nonactive molecules, the lowest energy ligand conformations do not necessarily bind in the engineered cavity. The results reveal a dominant role of the intermolecular van der Waals interactions in providing favorable ligand-protein energetics in the redesigned interface, in agreement with the experimental and computational alanine scanning of the hGH-hGHbp complex.  相似文献   

12.
13.
Lai B  Li Y  Cao A  Lai L 《Biochemistry》2003,42(3):785-791
RNase H degrades the RNA moiety in DNA:RNA hybrid in a divalent metal ion dependent manner. It is essential to understand the role of metal ion in enzymatic mechanism. One of the key points in this study is how many metal ions are involved in the enzyme catalysis. Accordingly, either one-metal binding mechanism or two-metal binding mechanism is proposed. We have studied the thermodynamic properties of four metal ions (Mg(2+), Mn(2+), Ca(2+), and Ba(2+)) binding to Methanococcus jannaschii RNase HII using isothermal titration calorimetry. All of the four metal ions were found to bind Mj RNase HII with 1:1 stoichiometry in the absence of substrate. Together with enzymatic activity assay data, we propose that only one metal ion binding to the enzyme in catalytic process. We also studied the pH dependence of metal binding and enzyme activity and found that at pH 6.5, Mg(2+) did not bind to the enzyme without the substrate but still activated the enzyme to about 2% of its maximum activity (in 10 mM Mn(2+) at pH 8). This implies that the substrate may also be incorporated in metal ion binding and help to position the metal ion. To find which acidic residues correspond to metal ion binding, we also studied the binding thermodynamics and enzymatic activity assay of four mutants: D7N, E8Q, D112N, and D149N in the presence of Mn(2+). The thermodynamic parameters are least affected for the D149N mutant, which has a very low enzymatic activity. This indicates that Asp149 is essential for the enzymatic activity. On the basis of all these observations, we suggest a metal binding model in which D7, E8, and D112 bind the metal ion and D149 activates a water molecule to attack the P-O bond in the RNA chain of the substrate.  相似文献   

14.
In the sperm whale myoglobin mutant H93G, the proximal histidine is replaced by glycine, leaving a cavity in which exogenous imidazole can bind and ligate the heme iron (Barrick, D. (1994) Biochemistry 33, 6545-6554). Structural studies of this mutant suggest that serine 92 may play an important role in imidazole binding by serving as a hydrogen bond acceptor. Serine 92 is highly conserved in myoglobins, forming a well-characterized weak hydrogen bond with the proximal histidine in the native protein. We have probed the importance of this hydrogen bond through studies of the double mutants S92A/H93G and S92T/H93G incorporating exogenous imidazole and methylimidazoles. (1)H NMR spectra reveal that loss of the hydrogen bond in S92A/H93G does not affect the conformation of the bound imidazole. However, the binding constants for imidazoles to the ferrous nitrosyl complex of S92A/H93G are much weaker than in H93G. These results are discussed in terms of hydrogen bonding and steric packing within the proximal cavity. The results also highlight the importance of the trans diatomic ligand in altering the binding and sensitivity to perturbation of the ligand in the proximal cavity.  相似文献   

15.
We have determined and refined a crystal structure of the initial assembly complex of archaeal box C/D sRNPs comprising the Archaeoglobus fulgidus (AF) L7Ae protein and a box C/D RNA. The box C/D RNA forms a classical kink-turn (K-turn) structure and the resulting protein-RNA complex serves as a distinct platform for recruitment of the fibrillarin-Nop5p complex. The cocrystal structure confirms previously proposed secondary structure of the box C/D RNA that includes a protruded U, a UU mismatch, and two sheared tandem GA base pairs. Detailed structural comparisons of the AF L7Ae-box C/D RNA complex with previously determined crystal structures of L7Ae homologs in complex with functionally distinct K-turn RNAs revealed a set of remarkably conserved principles in protein-RNA interactions. These analyses provide a structural basis for interpreting the functional roles of the box C/D sequences in directing specific assembly of box C/D sRNPs.  相似文献   

16.
17.
Maintenance of genome stability following DNA damage requires origin-independent reinitiation of DNA replication at repaired replication forks. In E. coli, PriA, PriB, PriC, and DnaT play critical roles in recognizing repaired replication forks and reloading the replisome onto the template to reinitiate DNA replication. Here, we report the 2.0 A resolution crystal structure of E. coli PriB, revealing a dimer that consists of a single structural domain formed by two oligonucleotide/oligosaccharide binding (OB) folds. Structural similarity of PriB to single-stranded DNA binding proteins reveals insights into its mechanisms of DNA binding. The structure further establishes a putative protein interaction surface that may contribute to the role of PriB in primosome assembly by facilitating interactions with PriA and DnaT. This is the first high-resolution structure of a protein involved in oriC-independent replisome loading and provides unique insight into mechanisms of replication restart in E. coli.  相似文献   

18.
19.
To define catalytically essential residues of bacteriophage T7 RNA polymerase, we have generated five mutants of the polymerase, D537N, K631M, Y639F, H811Q and D812N, by site-directed mutagenesis and purified them to homogeneity. The choice of specific amino acids for mutagenesis was based upon photoaffinity-labeling studies with 8-azido-ATP and homology comparisons with the Klenow fragment and other DNA/RNA polymerases. Secondary structural analysis by circular dichroism indicates that the protein folding is intact in these mutants. The mutants D537N and D812N are totally inactive. The mutant K631M has 1% activity, confined to short oligonucleotide synthesis. The mutant H811Q has 25% activity for synthesis of both short and long oligonucleotides. The mutant Y639F retains full enzymatic activity although individual kinetic parameters are somewhat different. Kinetic parameters, (kcat)app and (Km)app for the nucleotides, reveal that the mutation of Lys to Met has a much more drastic effect on (kcat)app than on (Km)app, indicating the involvement of K631 primarily in phosphodiester bond formation. The mutation of His to Gln has effects on both (kcat)app and (Km)app; namely, three- to fivefold reduction in (kcat)app and two- to threefold increase in (Km)app, implying that His811 may be involved in both nucleotide binding and phosphodiester bond formation. The ability of the mutant T7 RNA polymerases to bind template has not been greatly impaired. We have shown that amino acids D537 and D812 are essential, that amino acids K631 and H811 play significant roles in catalysis, and that the active site of T7 RNA polymerase is composed of different regions of the polypeptide chain. Possible roles for these catalytically significant residues in the polymerase mechanism are discussed.  相似文献   

20.
Snu13p is a Saccharomyces cerevisiae protein essential for pre-messenger RNA splicing and pre-ribosomal RNA processing. Snu13p binds U4 snRNA of the spliceosome and box C/D snoRNAs of the pre-ribosomal RNA processing machinery to induce assembly of each ribonucleoprotein complex. Here, we present structural and biochemical analysis of Snu13p. The crystal structure of Snu13p reveals a region of the protein which could be important for protein interaction during ribonucleoprotein assembly. Using the structure of Snu13p we have designed the first temperature-sensitive mutants in Snu13p, L67W and I102A. Wild-type and mutant Snu13p proteins were assayed for binding to U4 snRNA and U3 snoRNA. Both temperature-sensitive mutants displayed significantly reduced RNA binding compared to wild-type protein. As the temperature-sensitive mutations are not in the known RNA binding region of Snu13p this indicates that these mutants indirectly influence the RNA binding properties of Snu13p. This work provides insight into Snu13p function during ribonucleoprotein assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号