首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
N6-Threonylcarbamoyl-adenosine (t6A) is a universal modification occurring at position 37 in nearly all tRNAs that decode A-starting codons, including the eukaryotic initiator tRNA (tRNAiMet). Yeast lacking central components of the t6A synthesis machinery, such as Tcs3p (Kae1p) or Tcs5p (Bud32p), show slow-growth phenotypes. In the present work, we show that loss of the Drosophila tcs3 homolog also leads to a severe reduction in size and demonstrate, for the first time in a non-microbe, that Tcs3 is required for t6A synthesis. In Drosophila and in mammals, tRNAiMet is a limiting factor for cell and animal growth. We report that the t6A-modified form of tRNAiMet is the actual limiting factor. We show that changing the proportion of t6A-modified tRNAiMet, by expression of an un-modifiable tRNAiMet or changing the levels of Tcs3, regulate target of rapamycin (TOR) kinase activity and influences cell and animal growth in vivo. These findings reveal an unprecedented relationship between the translation machinery and TOR, where translation efficiency, limited by the availability of t6A-modified tRNA, determines growth potential in eukaryotic cells.  相似文献   

2.
We have noticed that during a long storage and handling, the plant methionine initiator tRNA is spontaneously hydrolyzed within the anticodon loop at the C34-A35 phosphodiester bond. A literature search indicated that there is also the case for human initiator tRNAMet but not for yeast tRNAMet i or E. coli tRNAMet f. All these tRNAs have an identical nucleotide sequence of the anticodon stems and loops with only one difference at position 33 within the loop. It means that cytosine 33 (C33) makes the anticodon loop of plant and human tRNAMet i susceptible to the specific cleavage reaction. Using crystallographic data of tRNAMet f of E. coli with U33, we modeled the anticodon loop of this tRNA with C33. We found that C33 within the anticodon loop creates a pocket that can accomodate a hydrogen bonded water molecule that acts as a general base and catalyzes a hydrolysis of C-A bond. We conclude that a single nucleotide change in the primary structure of tRNAMet i made changes in hydration pattern and readjustment in hydrogen bonding which lead to a cleavage of the phosphodiester bond.  相似文献   

3.
Transfer RNA is an essential molecule for biological system, and each tRNA molecule commonly has a cloverleaf structure. Previously, we experimentally showed that some Drosophila tRNA (tRNAAla, tRNAHis, and tRNAi Met) molecules fit to form another, non-cloverleaf, structure in which the 3'-half of the tRNA molecules forms an alternative hairpin, and that the tRNA molecules are internally cleaved by the catalytic RNA of bacterial ribonuclease P (RNase P). Until now, the hyperprocessing reaction of tRNA has only been reported with Drosophila tRNAs. This time, we applied the hyperprocessing reaction to one of human tRNAs, human tyrosine tRNA, and we showed that this tRNA was also hyperprocessed by E. coli RNase P RNA. This tRNA is the first example for hyperprocessed non-Drosophila tRNAs. The results suggest that the hyperprocessing reaction can be a useful tool to detect destablized tRNA molecules from any species.  相似文献   

4.
A transplantable rat tumor, mammary adenocarcinoma 13762, accumulates tRNA which can be methylated in vitro by mammalian tRNA (adenine-1) methyltransferase. This unusual ability of the tumor RNA to serve as substrate for a homologous tRNA methylating enzyme is correlated with unusually low levels of the A58-specific adenine-1 methyltransferase. The nature of the methyl-accepting RNA has been examined by separating tumor tRNA on two-dimensional polyacrylamide gels. Comparisons of ethidium bromide-stained gels of tumor vs. liver tRNA show no significant quantitative differences and no accumulation of novel tRNAs or precursor tRNAs in adenocarcinoma RNA. Two-dimensional separations of tumor RNA after in vitro [14C]methylation using purified adenine-1 methyltransferase indicate that about 25% of the tRNA species are strongly methyl-accepting RNAs. Identification of six of the tRNAs separated on two-dimensional gels has been carried out by hybridization of cloned tRNA genes to Northern blots. Three of these, tRNALys3, tRNAGln and tRNAMeti, are among the adenocarcinoma methyl-accepting RNAs. The other three RNAs, all of which are leucine-specific tRNAs, show no methyl-accepting properties. Our results suggest that low levels of a tRNA methyltransferase in the adenocarcinoma cause selected species of tRNA to escape the normal A58 methylation, resulting in the appearance of several mature tRNAs which are deficient in 1-methyladenine. The methyl-accepting tRNAs from the tumor appear as ethidium bromide-stained spots of similar intensity to those seen for RNA from rat liver; therefore, methyladenine deficiency does not seem to impair processing of these tRNAs.  相似文献   

5.
Crude E. coli tRNA or enriched methionine acceptor tRNA can be separated into three stiecies on a column of arginine-agarose. The first peak eluted is tRNAMet and the latter two peaks are two forms of tRNAMet f. From crude tRNA, tRNAMet m is obtained in approximately 50% purity. Arginine-agarose separates enriched methionine accepting tRNA into three homogeneous fractions.  相似文献   

6.
The Saccharomyces cerevisiae gene RIT1 encodes a phospho-ribosyl transferase that exclusively modifies the initiator tRNA (tRNAMet i) by the addition of a 2′-O-ribosyl phosphate group to Adenosine 64. As a result, tRNAMet i is prevented from participating in the elongation steps of protein synthesis. We previously showed that the modification is not essential for the function of tRNAMet i in the initiation of translation, since rit1 null strains are viable and show no obvious growth defects. Here, we demonstrate that yeast strains in which a rit1 null allele is combined with mutations in any of the genes for the three subunits of eukaryotic initiation factor-2 (eIF-2), or with disruption alleles of two of the four initiator methionine tRNA (IMT) genes, show synergistic growth defects. A multicopy plasmid carrying an IMT gene can alleviate these defects. On the other hand, introduction of a high-copy-number plasmid carrying the TEF2 gene, which encodes the eukaryotic elongation factor 1α (eEF-1α), into rit1 null strains with two intact IMT genes had the opposite effect, indicating that increased levels of eEF-1α are deleterious to these strains, presumably due to sequestration of the unmodified met-tRNAMet i for elongation. Thus, under conditions in which the components of the ternary met-tRNAMet i:GTP:eIF-2 complex become limiting or are functionally impaired, the presence of the 2′-O-ribosyl phosphate modification in tRNAMet i is important for the provision of adequate amounts of tRNAMet i for formation of this ternary complex. Received: 20 November 1998 / Accepted: 7 April 1999  相似文献   

7.
A combination of hydrophobic chromatography on phenyl-Sepharose and reversed phase HPLC was used to purify individual tRNAs with high specific activity. The efficiency of chromatographic separation was enhanced by biochemical manipulations of the tRNA molecule, such as aminoacylation, formylation of the aminoacyl moiety and enzymatic deacylation. Optimal combinations are presented for three different cases. (i) tRNAPhe from Escherichia coli. This species was isolated by a combination of low pressure phenyl-Sepharose hydrophobic chromatography with RP-HPLC. (ii) tRNAIle from E.coli. Aminoacylation increases the retention time for this tRNA in RP-HPLC. The recovered acylated intermediate is deacylated by reversion of the aminoacylation reaction and submitted to a second RP-HPLC run, in which deacylated tRNAIle is recovered with high specific activity. (iii) tRNAiMet from Saccharomyces cerevisiae. The aminoacylated form of this tRNA is unstable. To increase stability, the aminoacylated form was formylated using E.coli enzymes and, after one RP-HPLC step, the formylated derivative was deacylated using peptidyl-tRNA hydrolase from E.coli. The tRNAiMet recovered after a second RP-HPLC run exhibited electrophoretic homogeneity and high specific activity upon aminoacylation. These combinations of chromatographic separation and biochemical modification can be readily adapted to the large-scale isolation of any particular tRNA.  相似文献   

8.
Aminoacyl-tRNA synthetase-interacting multifunctional proteins (AIMPs) are nonenzymatic scaffolding proteins that comprise multisynthetase complex (MSC) with nine aminoacyl-tRNA synthetases in higher eukaryotes. Among the three AIMPs, AIMP3/p18 is strongly anchored to methionyl-tRNA synthetase (MRS) in the MSC. MRS attaches methionine (Met) to initiator tRNA (tRNAiMet) and plays an important role in translation initiation. It is known that AIMP3 is dispatched to nucleus or nuclear membrane to induce DNA damage response or senescence; however, the role of AIMP3 in translation as a component of MSC and the meaning of its interaction with MRS are still unclear. Herein, we observed that AIMP3 specifically interacted with Met-tRNAiMetin vitro, while it showed little or reduced interaction with unacylated or lysine-charged tRNAiMet. In addition, AIMP3 discriminates Met-tRNAiMet from Met-charged elongator tRNA based on filter-binding assay. Pull‐down assay revealed that AIMP3 and MRS had noncompetitive interaction with eukaryotic initiation factor 2 (eIF2) γ subunit (eIF2γ), which is in charge of binding with Met-tRNAiMet for the delivery of Met-tRNAiMet to ribosome. AIMP3 recruited active eIF2γ to the MRS-AIMP3 complex, and the level of Met-tRNAiMet bound to eIF2 complex was reduced by AIMP3 knockdown resulting in reduced protein synthesis. All these results suggested the novel function of AIMP3 as a critical mediator of Met-tRNAiMet transfer from MRS to eIF2 complex for the accurate and efficient translation initiation.  相似文献   

9.
Genomic size of animal mitochondrial DNA is usually minimized over time. Thus, when regional duplications occur, they are followed by a rapid elimination of redundant material. In contrast to this general view, we report here long-sustained tRNA pseudogenes in the mitochondrial genome (mitogenome) of teleost fishes of the family Scaridae (parrotfishes). During the course of a molecular phylogenetic study of the suborder Labroidei, we determined the complete nucleotide sequence of the mitogenome for a parrotfish, Chlorurus sordidus, and found a gene rearrangement accompanied by a tRNA pseudogene. In the typical gene order of vertebrates, a tRNA-gene cluster between ND1 and ND2 genes includes tRNAIle (I), tRNAGln (Q), and tRNAMet (M) genes in this order (IQM). However, in the mitogenome of the parrotfish, the tRNAMet gene was inserted between the tRNAIle and the tRNAGln genes, and the tRNAGln gene was followed by a putative tRNAMet pseudogene (M). Such a tRNA gene rearrangement including a pseudogene (IMQM) was found in all of the 10 examined species, representing 7 of the 10 currently recognized scarid genera. All sister groups examined (20 species of Labridae and a single species of Odacidae) had the typical gene order of vertebrate mitogenomes. Phylogenetic analysis of the tRNAMet genes and the resulting pseudogenes demonstrated that the ancestral tRNAMet gene was duplicated in a common ancestor of the parrotfish. Based on the fossil record, these results indicate that the pseudogenes have survived at least 14 million years. Most of the vertebrate mitochondrial gene rearrangements involving the IQM region have held the tRNAMet gene just upstream of the ND2 gene, and even in a few exceptional cases, including the present ones, the tRNA pseudogenes have been found in that position. In addition, most of these tRNAMet pseudogenes maintained clover-leaf secondary structures, with the remainder sustaining the clover-leaf structure in the top half (TC and acceptor arms). Considering their potential secondary structures (holding top halves of the clover-leaf structures), locations within mitogenomes (flanking the 5 ends of the ND2 genes) and stabilities over time (survived at least 14 Myr), it is likely that the tRNA pseudogenes retain function as punctuation marks for mitochondrial ND2 mRNA processing.This article contains online supplementary material.Reviewing Editor: Dr. Axel Meyer  相似文献   

10.
In the bacterial decoding system, the AUA codon is deciphered as isoleucine by tRNAIle bearing lysidine (L, 2-lysyl-cytidine) at the wobble position. Lysidine is an essential modification that determines both the codon and amino acid specificities of tRNAIle. We identified an enzyme named tRNAIle lysidine synthetase (TilS) that catalyzes lysidine formation by using lysine and ATP as substrates. Biochemical studies revealed a molecular mechanism of lysidine formation that consists of two consecutive reactions involving the adenylated tRNA intermediate. In addition, we deciphered how Escherichia coli TilS specifically discriminates between tRNAIle and the structurally similar tRNAMet, which bears the same anticodon loop. Recent structural studies unveiled tRNA recognition by TilS, and a molecular basis of lysidine formation at atomic resolution.  相似文献   

11.
The Saccharomyces cerevisiae gene RIT1 encodes a phospho-ribosyl transferase that exclusively modifies the initiator tRNA (tRNAMet i) by the addition of a 2′-O-ribosyl phosphate group to Adenosine 64. As a result, tRNAMet i is prevented from participating in the elongation steps of protein synthesis. We previously showed that the modification is not essential for the function of tRNAMet i in the initiation of translation, since rit1 null strains are viable and show no obvious growth defects. Here, we demonstrate that yeast strains in which a rit1 null allele is combined with mutations in any of the genes for the three subunits of eukaryotic initiation factor-2 (eIF-2), or with disruption alleles of two of the four initiator methionine tRNA (IMT) genes, show synergistic growth defects. A multicopy plasmid carrying an IMT gene can alleviate these defects. On the other hand, introduction of a high-copy-number plasmid carrying the TEF2 gene, which encodes the eukaryotic elongation factor 1α (eEF-1α), into rit1 null strains with two intact IMT genes had the opposite effect, indicating that increased levels of eEF-1α are deleterious to these strains, presumably due to sequestration of the unmodified met-tRNAMet i for elongation. Thus, under conditions in which the components of the ternary met-tRNAMet i:GTP:eIF-2 complex become limiting or are functionally impaired, the presence of the 2′-O-ribosyl phosphate modification in tRNAMet i is important for the provision of adequate amounts of tRNAMet i for formation of this ternary complex.  相似文献   

12.
In human cell, a subset of small non-coding RNAs is imported into mitochondria from the cytosol. Analysis of the tRNA import pathway allowing targeting of the yeast tRNALys CUU into human mitochondria demonstrates a similarity between the RNA import mechanisms in yeast and human cells. We show that the cytosolic precursor of human mitochondrial lysyl-tRNA synthetase (preKARS2) interacts with the yeast tRNALys CUU and small artificial RNAs which contain the structural elements determining the tRNA mitochondrial import, and facilitates their internalization by isolated human mitochondria. The tRNA import efficiency increased upon addition of the glycolytic enzyme enolase, previously found to be an actor of the yeast RNA import machinery. Finally, the role of preKARS2 in the RNA mitochondrial import has been directly demonstrated in vivo, in cultured human cells transfected with the yeast tRNA and artificial importable RNA molecules, in combination with preKARS2 overexpression or downregulation by RNA interference. These findings suggest that the requirement of protein factors for the RNA mitochondrial targeting might be a conserved feature of the RNA import pathway in different organisms.  相似文献   

13.
14.
Transfer RNA with methionine acceptor activity isolated from two distinct physiological stages of the developing posterior silkgland of the silkworm, Bombyx mori, was examined. The tRNA from both stages could be fractionated on benzoylated DEAE-cellulose colum into two iso-accepting species, tRNA1Met and tRNA2Met. The molar quantity per gland of tRNA1Met species, which was also formylatable with the E. coli enzymes, increased twelve-fold as the gland differentiates to produce a large amount of a single protein, silk-fibroin. Since methionine is not a part of silk-fibroin, the preferential increase in tRNA1Met content would reflect the increased biological activity and the rapid rate of protein synthesis during the terminal differentiation of posterior silkgland.  相似文献   

15.
Bacteria and archaea have 2-lysylcytidine (L or lysidine) and 2-agmatinylcytidine (agm2C or agmatidine), respectively, at the first (wobble) position of the anticodon of the AUA codon-specific tRNAIle. These lysine- or agmatine-conjugated cytidine derivatives are crucial for the precise decoding of the genetic code. L is synthesized by tRNAIle-lysidine synthetase (TilS), which uses l-lysine and ATP as substrates. Agm2C formation is catalyzed by tRNAIle-agm2C synthetase (TiaS), which uses agmatine and ATP for the reaction. Despite the fact that TilS and TiaS synthesize structurally similar cytidine derivatives, these enzymes belong to non-related protein families. Therefore, these enzymes modify the wobble cytidine by distinct catalytic mechanisms, in which TilS activates the C2 carbon of the wobble cytidine by adenylation, while TiaS activates it by phosphorylation. In contrast, TilS and TiaS share similar tRNA recognition mechanisms, in which the enzymes recognize the tRNA acceptor stem to discriminate tRNAIle and tRNAMet.  相似文献   

16.
The A3243G mutation in the human mitochondrial tRNALeu(UUR) gene causes a number of human diseases. This mutation reduces the level and fraction of aminoacylated tRNALeu(UUR) and eliminates nucleotide modification at the wobble position of the anticodon. These deficiencies are associated with mitochondrial translation defects that result in decreased levels of mitochondrial translation products and respiratory chain enzyme activities. We have suppressed the respiratory chain defects in A3243G mutant cells by overexpressing human mitochondrial leucyl-tRNA synthetase. The rates of oxygen consumption in suppressed cells were directly proportional to the levels of leucyl-tRNA synthetase. Fifteenfold higher levels of leucyl-tRNA synthetase resulted in wild-type respiratory chain function. The suppressed cells had increased steady-state levels of tRNALeu(UUR) and up to threefold higher steady-state levels of mitochondrial translation products, but did not have rates of protein synthesis above those in parental mutant cells. These data suggest that suppression of the A3243G mutation occurred by increasing protein stability. This suppression of a tRNA gene mutation by increasing the steady-state levels of its cognate aminoacyl-tRNA synthetase is a model for potential therapies for human pathogenic tRNA mutations.  相似文献   

17.
The initiator methionine transfer RNA (tRNAf Met) gene was identified on a 347 bpEco RI-Hind III DNA fragment of the potato mitochondrial (mt) genome. The sequence of this gene shows 1 to 7 nucleotide differences with the other plant mt tRNAsf Met or tRNAf Met genes studied so far. Whereas the tRNAf Met gene is present as a single copy in the potato mt genome, a tRNA pseudogene corresponding to 60% of a complete tRNA (from the 5 end to the variable region) and located at 105 nucleotides upstream of the tRNAf Met gene on the opposite strand was shown to be repeated at least three times. Furthermore, the physical environment of the tRNAf Met gene in the mt genome is very different among plants, which suggests that the tRNAf Met gene region has often been implicated in recombination events of plant mt genomes leading to important rearrangements in gene order.  相似文献   

18.
Lacunae of understanding exist concerning the active site organization during the charging step of the aminoacylation reaction. We present here a molecular dynamics simulation study of the dynamics of the active site organization during charging step of subclass IIa dimeric SerRS from Thermus thermophilus (ttSerRS) bound with tttRNASer and dimeric ThrRS from Escherichia coli (ecThrRS) bound with ectRNAThr. The interactions between the catalytically important loops and tRNA contribute to the change in dynamics of tRNA in free and bound states, respectively. These interactions help in the development of catalytically effective organization of the active site. The A76 end of the tttRNASer exhibits fast dynamics in free State, which is significantly slowed down within the active site bound with adenylate. The loops change their conformation via multimodal dynamics (a slow diffusive mode of nanosecond time scale and fast librational mode of dynamics in picosecond time scale). The active site residues of the motif 2 loop approach the proximal bases of tRNA and adenylate by slow diffusive motion (in nanosecond time scale) and make conformational changes of the respective side chains via ultrafast librational motion to develop precise hydrogen bond geometry. Presence of bound Mg2+ ions around tRNA and dynamically slow bound water are other common features of both aaRSs. The presence of dynamically rigid Zinc ion coordination sphere and bipartite mode of recognition of ectRNAThr are observed.  相似文献   

19.
Recognition strategies for tRNA aminoacylation are ancient and highly conserved, having been selected very early in the evolution of the genetic code. In most cases, the trinucleotide anticodons of tRNA are important identity determinants for aminoacylation by cognate aminoacyl-tRNA synthetases. However, a degree of ambiguity exists in the recognition of certain tRNAIle isoacceptors that are initially transcribed with the methionine-specifying CAU anticodon. In most organisms, the C34 wobble position in these tRNAIle precursors is rapidly modified to lysidine to prevent recognition by methionyl-tRNA synthetase (MRS) and production of a chimeric Met-tRNAIle that would compromise translational fidelity. In certain bacteria, however, lysidine modification is not required for MRS rejection, indicating that this recognition strategy is not universally conserved and may be relatively recent. To explore the actual distribution of lysidine-dependent tRNAIle rejection by MRS, we have investigated the ability of bacterial MRSs from different clades to differentiate cognate tRNACAUMet from near-cognate tRNACAUIle. Discrimination abilities vary greatly and appear unrelated to phylogenetic or structural features of the enzymes or sequence determinants of the tRNA. Our data indicate that tRNAIle identity elements were established late and independently in different bacterial groups. We propose that the observed variation in MRS discrimination ability reflects differences in the evolution of genetic code machineries of emerging bacterial clades.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号