首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kato Y  Sun X  Zhang L  Sakamoto W 《Plant physiology》2012,159(4):1428-1439
Light energy constantly damages photosynthetic apparatuses, ultimately causing impaired growth. Particularly, the sessile nature of higher plants has allowed chloroplasts to develop unique mechanisms to alleviate the irreversible inactivation of photosynthesis. Photosystem II (PSII) is known as a primary target of photodamage. Photosynthetic organisms have evolved the so-called PSII repair cycle, in which a reaction center protein, D1, is degraded rapidly in a specific manner. Two proteases that perform processive or endopeptidic degradation, FtsH and Deg, respectively, participate in this cycle. To examine the cooperative D1 degradation by these proteases, we engaged Arabidopsis (Arabidopsis thaliana) mutants lacking FtsH2 (yellow variegated2 [var2]) and Deg5/Deg8 (deg5 deg8) in detecting D1 cleaved fragments. We detected several D1 fragments only under the var2 background, using amino-terminal or carboxyl-terminal specific antibodies of D1. The appearance of these D1 fragments was inhibited by a serine protease inhibitor and by deg5 deg8 mutations. Given the localization of Deg5/Deg8 on the luminal side of thylakoid membranes, we inferred that Deg5/Deg8 cleaves D1 at its luminal loop connecting the transmembrane helices C and D and that the cleaved products of D1 are the substrate for FtsH. These D1 fragments detected in var2 were associated with the PSII monomer, dimer, and partial disassembly complex but not with PSII supercomplexes. It is particularly interesting that another processive protease, Clp, was up-regulated and appeared to be recruited from stroma to the thylakoid membrane in var2, suggesting compensation for FtsH deficiency. Together, our data demonstrate in vivo cooperative degradation of D1, in which Deg cleavage assists FtsH processive degradation under photoinhibitory conditions.  相似文献   

2.
Photosystem II (PSII) is a primary target for light‐induced damage in photosynthetic protein complexes. To avoid photoinhibition, chloroplasts have evolved a repair cycle with efficient degradation of the PSII reaction center protein, D1, by the proteases FtsH and Deg. Earlier reports have described that phosphorylated D1 is a poor substrate for proteolysis, suggesting a mechanistic role for protein phosphorylation in PSII quality control, but its precise role remains elusive. STN8, a protein kinase, plays a central role in this phosphorylation process. To elucidate the relationship between phosphorylation of D1 and the protease function we assessed in this study the involvement of STN8, using Arabidopsis thaliana mutants lacking FtsH2 [yellow variegated2 (var2)] and Deg5/Deg8 (deg5 deg8). In support of our presumption we found that phosphorylation of D1 increased more in var2. Furthermore, the coexistence of var2 and stn8 was shown to recover the delay in degradation of D1, resulting in mitigation of the high vulnerability to photoinhibition of var2. Partial D1 cleavage fragments that depended on Deg proteases tended to increase, with concomitant accumulation of reactive oxygen species in the mutants lacking STN8. We inferred that the accelerated degradation of D1 in var2 stn8 presents a tradeoff in that it improved the repair of PSII but simultaneously enhanced oxidative stress. Together, these results suggest that PSII core phosphorylation prevents undesirable cleavage of D1 by Deg proteases, which causes cytotoxicity, thereby balancing efficient linear electron flow and photo‐oxidative damage. We propose that PSII core phosphorylation contributes to fine‐tuned degradation of D1.  相似文献   

3.
The photosystem two (PSII) complex found in oxygenic photosynthetic organisms is susceptible to damage by UV-B irradiation and undergoes repair in vivo to maintain activity. Until now there has been little information on the identity of the enzymes involved in repair. In the present study we have investigated the involvement of the FtsH and Deg protease families in the degradation of UV-B-damaged PSII reaction center subunits, D1 and D2, in the cyanobacterium Synechocystis 6803. PSII activity in a ΔFtsH (slr0228) strain, with an inactivated slr0228 gene, showed increased sensitivity to UV-B radiation and impaired recovery of activity in visible light after UV-B exposure. In contrast, in ΔDeg-G cells, in which all the three deg genes were inactivated, the damage and recovery kinetics were the same as in the WT. Immunoblotting showed that the loss of both the D1 and D2 proteins was retarded in ΔFtsH (slr0228) during UV-B exposure, and the extent of their restoration during the recovery period was decreased relative to the WT. However, in the ΔDeg-G cells the damage and recovery kinetics of D1 and D2 were the same as in the WT. These data demonstrate a key role of FtsH (slr0228), but not the Deg proteases, for the repair of PS II during and following UV-B radiation at the step of degrading both of the UV-B damaged D1 and D2 reaction center subunits.  相似文献   

4.
Deg1 is a Ser protease peripherally attached to the lumenal side of the thylakoid membrane. Its physiological function is unknown, but its localization makes it a suitable candidate for participation in photoinhibition repair by degradation of the photosystem II reaction center protein D1. We transformed Arabidopsis thaliana with an RNA interference construct and obtained plants with reduced levels of Deg1. These plants were smaller than wild-type plants, flowered earlier, were more sensitive to photoinhibition, and accumulated more of the D1 protein, probably in an inactive form. Two C-terminal degradation products of the D1 protein, of 16 and 5.2 kD, accumulated at lower levels compared with the wild type. Moreover, addition of recombinant Deg1 to inside-out thylakoid membranes isolated from the mutant could induce the formation of the 5.2-kD D1 C-terminal fragment, whereas the unrelated proteases trypsin and thermolysin could not. Immunoblot analysis revealed that mutants containing less Deg1 also contain less FtsH protease, and FtsH mutants contain less Deg1. These results suggest that Deg1 cooperates with the stroma-exposed proteases FtsH and Deg2 in degrading D1 protein during repair from photoinhibition by cleaving lumen-exposed regions of the protein. In addition, they suggest that accumulation of Deg1 and FtsH proteases may be coordinated.  相似文献   

5.
Plants, algae and cyanobacteria grow because of their ability to use sunlight to extract electrons from water. This vital reaction is catalysed by the Photosystem II (PSII) complex, a large multi-subunit pigment-protein complex embedded in the thylakoid membrane. Recent results show that assembly of PSII occurs in a step-wise fashion in defined regions of the membrane system, involves conserved auxiliary factors and is closely coupled to chlorophyll biosynthesis. PSII is also repaired following damage by light. FtsH proteases play an important role in selectively removing damaged proteins from the complex, both in chloroplasts and cyanobacteria, whilst undamaged subunits and pigments are recycled. The chloroplastic Deg proteases play a supplementary role in PSII repair.  相似文献   

6.
When plants, algae, and cyanobacteria are exposed to excessive light, especially in combination with other environmental stress conditions such as extreme temperatures, their photosynthetic performance declines. A major cause of this photoinhibition is the light-induced irreversible photodamage to the photosystem II (PSII) complex responsible for photosynthetic oxygen evolution. A repair cycle operates to selectively replace a damaged D1 subunit within PSII with a newly synthesized copy followed by the light-driven reactivation of the complex. Net loss of PSII activity occurs (photoinhibition) when the rate of damage exceeds the rate of repair. The identities of the chaperones and proteases involved in the replacement of D1 in vivo remain uncertain. Here, we show that one of the four members of the FtsH family of proteases (cyanobase designation slr0228) found in the cyanobacterium Synechocystis sp PCC 6803 is important for the repair of PSII and is vital for preventing chronic photoinhibition. Therefore, the ftsH gene family is not functionally redundant with respect to the repair of PSII in this organism. Our data also indicate that FtsH binds directly to PSII, is involved in the early steps of D1 degradation, and is not restricted to the removal of D1 fragments. These results, together with the recent analysis of ftsH mutants of Arabidopsis, highlight the critical role played by FtsH proteases in the removal of damaged D1 from the membrane and the maintenance of PSII activity in vivo.  相似文献   

7.

Background

Photosystem II (PSII) is the light-driven water:plastoquinone oxidoreductase of oxygenic photosynthesis and is found in the thylakoid membrane of chloroplasts and cyanobacteria. Considerable attention is focused on how PSII is assembled in vivo and how it is repaired following irreversible damage by visible light (so-called photoinhibition). Understanding these processes might lead to the development of plants with improved growth characteristics especially under conditions of abiotic stress.

Scope

Here we summarize recent results on the assembly and repair of PSII in cyanobacteria, which are excellent model organisms to study higher plant photosynthesis.

Conclusions

Assembly of PSII is highly co-ordinated and proceeds through a number of distinct assembly intermediates. Associated with these assembly complexes are proteins that are not found in the final functional PSII complex. Structural information and possible functions are beginning to emerge for several of these ‘assembly’ factors, notably Ycf48/Hcf136, Psb27 and Psb28. A number of other auxiliary proteins have been identified that appear to have evolved since the divergence of chloroplasts and cyanobacteria. The repair of PSII involves partial disassembly of the damaged complex, the selective replacement of the damaged sub-unit (predominantly the D1 sub-unit) by a newly synthesized copy, and reassembly. It is likely that chlorophyll released during the repair process is temporarily stored by small CAB-like proteins (SCPs). A model is proposed in which damaged D1 is removed in Synechocystis sp. PCC 6803 by a hetero-oligomeric complex composed of two different types of FtsH sub-unit (FtsH2 and FtsH3), with degradation proceeding from the N-terminus of D1 in a highly processive reaction. It is postulated that a similar mechanism of D1 degradation also operates in chloroplasts. Deg proteases are not required for D1 degradation in Synechocystis 6803 but members of this protease family might play a supplementary role in D1 degradation in chloroplasts under extreme conditions.  相似文献   

8.
Heat stress is one of the main abiotic stresses that limit plant growth. The effects of high temperature on oxidative damage, PSII activity and D1 protein turnover were studied in three wheat varieties with different heat susceptibility (CS, YN949 and AK58). The results showed that heat stress induced lower lipid peroxidation in AK58 and YN949 than CS, which was related to different changes of SOD, CAT, POD and H2O2. Similarly, AK58 and YN949 performed better PSII photochemical efficiency (Fv/Fm, ΦPSII and ETR) under high temperature, which was attributed to rapid synthesis and degradation of D1 protein. Moreover, higher expression of D1 protein turnover-related genes (PsbA, STN8, PBCP, Deg1, Deg2, Deg5, Deg8, FtsH1/5 and FtsH2/8) and SOD activity in AK58 and YN949 under normal conditions also established a basis for acclimatizing high temperatures, thereby alleviating PSII photoinhibition and reducing oxidative damage when exposed to heat stress.  相似文献   

9.
The photosystem two (PSII) complex found in oxygenic photosynthetic organisms is susceptible to damage by UV-B irradiation and undergoes repair in vivo to maintain activity. Until now there has been little information on the identity of the enzymes involved in repair. In the present study we have investigated the involvement of the FtsH and Deg protease families in the degradation of UV-B-damaged PSII reaction center subunits, D1 and D2, in the cyanobacterium Synechocystis 6803. PSII activity in a DeltaFtsH (slr0228) strain, with an inactivated slr0228 gene, showed increased sensitivity to UV-B radiation and impaired recovery of activity in visible light after UV-B exposure. In contrast, in DeltaDeg-G cells, in which all the three deg genes were inactivated, the damage and recovery kinetics were the same as in the WT. Immunoblotting showed that the loss of both the D1 and D2 proteins was retarded in DeltaFtsH (slr0228) during UV-B exposure, and the extent of their restoration during the recovery period was decreased relative to the WT. However, in the DeltaDeg-G cells the damage and recovery kinetics of D1 and D2 were the same as in the WT. These data demonstrate a key role of FtsH (slr0228), but not the Deg proteases, for the repair of PS II during and following UV-B radiation at the step of degrading both of the UV-B damaged D1 and D2 reaction center subunits.  相似文献   

10.
A common feature of light stress in plants, algae, and cyanobacteria is the light-induced damage to the photosystem II complex (PSII), which catalyses the photosynthetic oxidation of water to molecular oxygen. A repair cycle operates to replace damaged subunits within PSII, in particular, the D1 reaction centre polypeptide, by newly synthesized copies. As yet the molecular details of this physiologically important process remain obscure. A key aspect of the process that has attracted much attention is the identity of the protease or proteases involved in D1 degradation. The results are summarized here of recent mutagenesis experiments that were designed to assess the functional importance of the DegP/HtrA and FtsH protease families in the cyanobacterium Synechocystis sp. PCC 6803. Based on these results and the analysis of Arabidopsis mutants, a general model for PSII repair is suggested in which FtsH complexes alone are able to degrade damaged D1.  相似文献   

11.
Members of the DegP/HtrA (or Deg) family of proteases are found widely in nature and play an important role in the proteolysis of misfolded and damaged proteins. As yet, their physiological role in oxygenic photosynthetic organisms is unclear, although it has been widely speculated that they participate in the degradation of the photodamaged D1 subunit in the photosystem two complex (PSII) repair cycle, which is needed to maintain PSII activity in both cyanobacteria and chloroplasts. We have examined the role of the three Deg proteases found in the cyanobacterium Synechocystis sp. PCC 6803 through analysis of double and triple insertion mutants. We have discovered that these proteases show overlap in function and are involved in a number of key physiological responses ranging from protection against light and heat stresses to phototaxis. In previous work, we concluded that the Deg proteases played either a direct or an indirect role in PSII repair in a glucose-tolerant version of Synechocystis 6803 (Silva, P., Choi, Y. J., Hassan, H. A., and Nixon, P. J. (2002) Philos. Trans. R. Soc. Lond. B Biol. Sci. 357, 1461-1467). In this work, we have now been able to demonstrate unambiguously, using a triple deg mutant created in the wild type strain of Synechocystis 6803, that the Deg proteases are not obligatory for PSII repair and D1 degradation. We therefore conclude that although the Deg proteases are needed for photoprotection of Synechocystis sp. PCC 6803, they do not play an essential role in D1 turnover and PSII repair in vivo.  相似文献   

12.
Efficient degradation of damaged D1 during the repair of PSII is carried out by a set of dedicated FtsH proteases in the thylakoid membrane. Here we investigated whether the evolution of FtsH could hold clues to the origin of oxygenic photosynthesis. A phylogenetic analysis of over 6000 FtsH protease sequences revealed that there are three major groups of FtsH proteases originating from gene duplication events in the last common ancestor of bacteria, and that the FtsH proteases involved in PSII repair form a distinct clade branching out before the divergence of FtsH proteases found in all groups of anoxygenic phototrophic bacteria. Furthermore, we showed that the phylogenetic tree of FtsH proteases in phototrophic bacteria is similar to that for Type I and Type II reaction centre proteins. We conclude that the phylogeny of FtsH proteases is consistent with an early origin of photosynthetic water oxidation chemistry.  相似文献   

13.
The FtsH2 protease, encoded by the slr0228 gene, plays a key role in the selective degradation of photodamaged D1 protein during the repair of Photosystem II (PSII) in the cyanobacterium Synechocystis sp. PCC 6803. To test whether additional proteases might be involved in D1 degradation during high rates of photodamage, we have studied the synthesis and degradation of the D1 protein in ΔPsbO and ΔPsbV mutants, in which the CaMn4 cluster catalyzing oxygen evolution is less stable, and in the D1 processing mutants, D1-S345P and ΔCtpA, which are unable to assemble a functional cluster. All four mutants exhibited a dramatically increased rate of D1 degradation in high light compared to the wild-type. Additional inactivation of the ftsH2 gene slowed the rate of D1 degradation dramatically and increased the level of PSII complexes. We conclude that FtsH2 plays a major role in the degradation of both precursor and mature forms of D1 following donor-side photoinhibition. However, this conclusion concerned only D1 assembled into larger complexes containing at least D2 and CP47. In the ΔpsbEFLJ deletion mutant blocked at an early stage in PSII assembly, unassembled D1 protein was efficiently degraded in the absence of FtsH2 pointing to the involvement of other protease(s). Significantly, the ΔPsbO mutant displayed unusually low levels of cellular chlorophyll at extremely low-light intensities. The possibilities that PSII repair may limit the availability of chlorophyll for the biogenesis of other chlorophyll-binding proteins and that PsbO might have a regulatory role in PSII repair are discussed.  相似文献   

14.
DegP proteases have been shown to possess both chaperone and protease activities. The proteolytic activities of chloroplast DegP‐like proteases have been well documented. However, whether chloroplast Deg proteases also have chaperone activities has remained unknown. Here we show that chloroplast Deg1 also has chaperone activities, like its Escherichia coli ortholog DegP. Transgenic plants with reduced levels of Deg1 accumulated normal levels of different subunits of the major photosynthetic protein complexes, but their levels of photosystem‐II (PSII) dimers and supercomplexes were reduced. In vivo pulse‐chase protein labeling experiments showed that the assembly of newly synthesized proteins into PSII dimers and supercomplexes was impaired, although the synthesis rate of chloroplast proteins was unaffected in the transgenic lines. Protein overlay assays provided direct evidence that Deg1 interacts with the PSII reaction center protein D2. These results suggest that Deg1 assists the assembly of the PSII complex, probably through interaction with the PSII reaction center D2 protein.  相似文献   

15.
In the photosynthetic apparatus, a major target of photodamage is the D1 reaction center protein of photosystem II (PSII). Photosynthetic organisms have developed a PSII repair cycle in which photodamaged D1 is selectively degraded. A thylakoid membrane-bound metalloprotease, FtsH, was shown to play a critical role in this process. Here, the effect of FtsHs in D1 degradation was investigated in Arabidopsis (Arabidopsis thaliana) mutants lacking FtsH2 (yellow variegated2 [var2]) or FtsH5 (var1). Because these mutants are characterized by variegated leaves that sometimes complicate biochemical studies, we employed another mutation, fu-gaeri1 (fug1), that suppresses leaf variegation in var1 and var2 to examine D1 degradation. Two-dimensional blue native PAGE showed that var2 has less PSII supercomplex and more PSII intermediate lacking CP43, termed RC47, than the wild type under normal growth light. Moreover, our histochemical and quantitative analyses revealed that chloroplasts in var2 accumulate significant levels of reactive oxygen species, such as superoxide radical and hydrogen peroxide. These results indicate that the lack of FtsH2 leads to impaired D1 degradation at the step of RC47 formation in PSII repair and to photooxidative stress even under nonphotoinhibitory conditions. Our in vivo D1 degradation assays, carried out by nonvariegated var2 fug1 and var1 fug1 leaves, demonstrated that D1 degradation was impaired in different light conditions. Taken together, our results suggest the important role of chloroplastic FtsHs, which was not precisely examined in vivo. Attenuated D1 degradation in the nonvariegated mutants also suggests that leaf variegation seems to be independent of the PSII repair.Excessive light often limits the growth of photosynthetic organisms by irreversibly inactivating the photosynthetic apparatus, a process called photoinhibition (for review, see Barber and Andersson, 1992; Aro et al., 1993). A major target of photodamage is PSII (for review, see Barber and Andersson, 1992; Aro et al., 1993; Murata et al., 2007), a large pigment-protein complex in the thylakoid membrane. In particular, the reaction center D1 protein, which binds cooperatively to D2 and carries cofactors required for electron flow from the manganese cluster of the water-oxidizing complex to the plastoquinone pool (Zouni et al., 2001; Loll et al., 2005), is the primary target of light-induced irreversible oxidative damage (Mattoo et al., 1981; Ohad et al., 1990). Because D1 can be damaged by even low light intensities, photosynthetic organisms cannot avoid photodamage (Tyystjärvi and Aro, 1996; for review, see Barber and Andersson, 1992). To overcome this, photosynthetic organisms have evolved an efficient PSII repair cycle, which involves disassembling PSII, degrading photodamaged D1, and replacing newly synthesized D1 (for review, see Baena-Gonzalez and Aro, 2002). The rate of photodamage is proportional to light energy. When the light intensity exceeds the repair capacity, damaged D1 accumulates, resulting in photoinhibition.In the PSII repair, recent studies in Synechocystis species PCC 6803 and Arabidopsis (Arabidopsis thaliana) suggest important roles of prokaryotic proteases (Lindahl et al., 1996, 2000; Bailey et al., 2002; Sakamoto et al., 2003; Silva et al., 2003; Komenda et al., 2006; Sun et al., 2007; Kapri-Pardes et al., 2007). Among them, FtsH appears to be a major protease. It is a membrane-anchored ATP-dependent zinc metalloprotease that belongs to the ATPases associated with a variety of cellular activities (AAA)+ protein family (for review, see Patel and Latterich, 1998; Ogura and Wilkinson, 2001). The ATPase and protease domain of FtsH was shown to form a hexameric-ring structure (Suno et al., 2006). In Synechocystis species PCC 6803, deletion of one of the thylakoidal FtsHs, slr0228, results in light-sensitive growth, impairment of the PSII repair cycle, and slower D1 degradation under high-light conditions (Silva et al., 2003). In Arabidopsis, 12 FtsH homologues were identified, nine of which are targeted to chloroplasts (Sakamoto et al., 2003). FtsH2 and FtsH5 are the most abundant among all chloroplastic FtsHs and are located in thylakoid membranes (Sakamoto et al., 2003; Yu et al., 2004, 2005). Chloroplastic FtsHs predominantly exist as a heterocomplex consisting of at least two types of isomers, A and B, represented by FtsH1/5 and FtsH2/8, respectively. These two types are functionally distinguishable from each other (Sakamoto et al., 2003; Yu et al., 2004, 2005; Zaltsman et al., 2005b).We have extensively studied Arabidopsis mutants lacking chloroplast FtsHs. A mutant lacking FtsH5 (called yellow variegated1 [var1]) or lacking FtsH2 (var2) is highly vulnerable to PSII photodamage under high light (Chen et al., 2000; Lindahl et al., 2000; Takechi et al., 2000; Sakamoto et al., 2002, 2004). One notable feature in these mutants, in addition to the defective PSII repair, is the leaf-variegated phenotype that displays two sectors in the same leaf (green sectors containing normal chloroplasts and white sectors containing abnormal plastids lacking thylakoid membranes; Supplemental Fig. S1). White sectors are made by living cells and appear to be comparable with green sectors, except for lacking photosynthetic proteins (Kato et al., 2007). These results demonstrated that white sectors in var2 are arrested in chloroplast development. It is thus proposed that FtsH is not only involved in PSII repair but also in the formation of thylakoid membranes. Moreover, a series of genetic studies enabled us to identify trans-acting mutations that suppressed leaf variegation in var2 (Park and Rodermel, 2004; Miura et al., 2007; Yu et al., 2008). Many suppressors appeared to be associated with chloroplast translation, suggesting that the formation of variegated sectors is not simply governed by a specific factor but rather by factors related to chloroplast development (Miura et al., 2007; Yu et al., 2008). Since the variegated phenotype complicates our biochemical study in Arabidopsis, unlike cyanobacteria, a combined usage of var and its suppressors is necessary to further investigate the role of FtsH in the PSII repair cycle.In this study, we show that chloroplasts in green sectors accumulate less PSII supercomplex and more PSII partial complexes than wild-type chloroplasts, likely due to the compromised PSII repair. Interestingly, we found that chloroplasts in green sectors accumulated significantly high levels of reactive oxygen species (ROS), suggesting that var2 indeed suffers from photooxidative stress. Given the essential role of FtsH, we evaluated impaired D1 degradation by the lack of FtsH2 and FtsH5 under different light conditions. Although a defect in degrading PSII reaction center proteins in var2 has been reported to occur under a photoinhibitory light condition (Bailey et al., 2002), D1 degradation examined in this study was very limited. This is because in vivo degradation of D1 is very difficult to measure in variegated leaf tissues (e.g. the presence of green and white leaf sectors interferes with protein normalization). To overcome the difficulty of handling variegated sectors, nonvariegated suppressor lines were subjected to these experiments. Our D1 degradation assays demonstrated that the lack of FtsH2 or FtsH5 significantly impairs D1 degradation. Collectively, our data corroborate important roles of FtsH2 and FtsH5 in avoiding photooxidative stress in chloroplasts.  相似文献   

16.
In cyanobacteria and chloroplasts, exposure to HL damages the photosynthetic apparatus, especially the D1 subunit of Photosystem II. To avoid chronic photoinhibition, a PSII repair cycle operates to replace damaged PSII subunits with newly synthesised versions. To determine the sub‐cellular location of this process, we examined the localisation of FtsH metalloproteases, some of which are directly involved in degrading damaged D1. We generated transformants of the cyanobacterium Synechocystis sp. PCC6803 expressing GFP‐tagged versions of its four FtsH proteases. The ftsH2–gfp strain was functional for PSII repair under our conditions. Confocal microscopy shows that FtsH1 is mainly in the cytoplasmic membrane, while the remaining FtsH proteins are in patches either in the thylakoid or at the interface between the thylakoid and cytoplasmic membranes. HL exposure which increases the activity of the Photosystem II repair cycle led to no detectable changes in FtsH distribution, with the FtsH2 protease involved in D1 degradation retaining its patchy distribution in the thylakoid membrane. We discuss the possibility that the FtsH2–GFP patches represent Photosystem II ‘repair zones’ within the thylakoid membranes, and the possible advantages of such functionally specialised membrane zones. Anti‐GFP affinity pull‐downs provide the first indication of the composition of the putative repair zones.  相似文献   

17.
The family of Deg proteases in cyanobacteria and chloroplasts of higher plants   总被引:10,自引:1,他引:10  
The family of Deg proteases is present in nearly all organisms from bacteria to higher plants. This family consists of ATP-independent serine endopeptidases with a catalytic domain of trypsin type and up to three PDZ domains, involved in protein–protein interactions. Sixteen deg genes (originally named deg P1–16) were found in Arabidopsis thaliana , and the chloroplast location was predicted or experimentally proven for seven proteins. The cyanobacterium Synechocystis sp. PCC6803 contains three Deg homologues, HtrA (DegP), HhoA (DegQ) and HhoB (DegS), but their number can vary between one and six in other photosynthetic Prokaryota. Interestingly, all of these proteases are evolutionarily more closely related within one species than proteases with the same names present in other organisms. This means that Deg proteases from A. thaliana are not necessarily the closest relatives of cyanobacterial DegP. Therefore, we propose to change the misleading original name 'DegP' to 'Deg' for A. thaliana enzymes. Here, we summarize the expression, location and functions of Deg proteases from cyanobacteria and chloroplasts of higher plants, with special emphasis on their role in the photosystem II (PSII) repair cycle under light stress conditions.  相似文献   

18.
Although light is the ultimate substrate in photosynthesis, it can also be harmful and lead to oxidative damage of the photosynthetic apparatus. The main target for light stress is the central oxygen-evolving photosystem II (PSII) and its D1 reaction centre protein. Degradation of the damaged D1 protein and its rapid replacement by a de novo synthesized copy represent the important repair mechanism of PSII crucial for plant survival under light stress conditions. Here we report the isolation of a single-copy nuclear gene from Arabidopsis thaliana, encoding a protease that performs GTP-dependent primary cleavage of the photodamaged D1 protein and hence catalysing the key step in the repair cycle in plants. This protease, designated DegP2, is a homologue of the prokaryotic Deg/Htr family of serine endopeptidases and is associated with the stromal side of the non-appressed region of the thylakoid membranes. Increased expression of DegP2 under high salt, desiccation and light stress conditions was measured at the protein level.  相似文献   

19.
Mutants lacking a thylakoid membrane-bound metalloprotease, FtsH, are known to cause leaf variegation in Arabidopsis. However, the effect of reduced FtsH levels on leaf variegation has scarcely been examined in other plants. In this study, we performed RNA interference (RNAi) by which FtsH expression was suppressed in tobacco. The resulting FtsH knock-down tobacco plants showed variegation in their leaves, and a negative correlation between the degree of variegation and the level of FtsH, which supported earlier observations in Arabidopsis. A decrease of NtFtsH2 as well as NtFtsH1 suggested that these are the two major isoforms comprising the FtsH complex in tobacco chloroplasts. The RNAi tobacco lines also showed photoinhibition-vulnerable phenotypes, as evidenced by high-light-sensitive PSII activity and retarded degradation of D1 protein. Interestingly, the formation of variegated sectors during leaf development appeared to differ between Arabidopsis and tobacco. In contrast to the formation of variegation in Arabidopsis, the yellow sectors in FtsH RNAi tobacco emerged from green leaves at a late stage of leaf development. A series of cytological observations implied that thylakoid membranes were dismantled after development had already occurred. Late formation of variegation in FtsH RNAi tobacco suggested that the heteromeric FtsH complex is important for maintaining thylakoid membranes.  相似文献   

20.
Degradation of periplasmic proteins (Deg)/high temperature requirement A (HtrA) proteases are ATP-independent serine endopeptidases found in almost every organism. Database searches revealed that 16 Deg paralogues are encoded by the genome of Arabidopsis thaliana, six of which were experimentally shown to be located in chloroplasts, one in peroxisomes, one in mitochondria and one in the nucleus. Two more Deg proteases are predicted to reside in chloroplasts, five in mitochondria (one of them with a dual chloroplastidial/mitochondrial localization) and the subcellular location of one protein is uncertain. This review summarizes the current knowledge on the role of Deg proteases in maintaining protein homeostasis and protein processing in various subcompartments of the plant cell. The chloroplast Deg proteases are the best examined so far, especially with respect to their role in the degradation of photodamaged photosynthetic proteins and in biogenesis of photosystem II (PSII). A combined action of thylakoid lumen and stroma Deg proteases in the primary cleavage of photodamaged D1 protein from PSII reaction centre is discussed on the basis of a recently resolved crystal structure of plant Deg1. The peroxisomal Deg protease is a processing enzyme responsible for the cleavage of N-terminal peroxisomal targeting signals (PTSs). A. thaliana mutants lacking this enzyme show reduced peroxisomal β-oxidation, indicating for the first time the impact of protein processing on peroxisomal functions in plants. Much less data is available for mitochondrial and nuclear Deg proteases. Based on the available expression data we hypothesize a role in general protein quality control and during acquired heat resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号