首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent metagenomic studies have provided an unprecedented wealth of data, which are revolutionizing our understanding of virus diversity. A redrawn landscape highlights viruses as active players in the phytobiome, and surveys have uncovered their positive roles in environmental stress tolerance of plants. Viral infectious clones are key tools for functional characterization of known and newly identified viruses. Knowledge of viruses and their components has been instrumental for the development of modern plant molecular biology and biotechnology. In this review, we provide extensive guidelines built on current synthetic biology advances that streamline infectious clone assembly, thus lessening a major technical constraint of plant virology. The focus is on generation of infectious clones in binary T‐DNA vectors, which are delivered efficiently to plants by Agrobacterium. We then summarize recent applications of plant viruses and explore emerging trends in microbiology, bacterial and human virology that, once translated to plant virology, could lead to the development of virus‐based gene therapies for ad hoc engineering of plant traits. The systematic characterization of plant virus roles in the phytobiome and next‐generation virus‐based tools will be indispensable landmarks in the synthetic biology roadmap to better crops.  相似文献   

2.
Plant virus infectious clones are important tools with wide‐ranging applications in different areas of biology and medicine. Their uses in plant pathology include the study of plant–virus interactions, and screening of germplasm as part of prebreeding programmes for virus resistance. They can also be modified to induce transient plant gene silencing (Virus Induced Gene Silencing – VIGS) and as expression vectors for plant or exogenous proteins, with applications in both plant pathology and more generally for the study of plant gene function. Plant viruses are also increasingly being investigated as expression vectors for in planta production of pharmaceutical products, known as molecular farming. However, plant virus infectious clones may pose a risk to the environment due to their ability to reconstitute fully functional, transmissible viruses. These risks arise from both their inherent pathogenicity and the effect of any introduced genetic modifications. Effective containment measures are therefore required. There has been no single comprehensive review of the biosafety considerations for the contained use of genetically modified plant viruses, despite their increasing importance across many biological fields. This review therefore explores the biosafety considerations for working with genetically modified plant viruses in contained environments, with focus on plant growth facilities. It includes regulatory frameworks, risk assessment, assignment of biosafety levels, facility features and working practices. The review is based on international guidance together with information provided by plant virus researchers.  相似文献   

3.
Hepatitis C virus is a human pathogen responsible for liver diseases including acute and chronic hepatitis, cirrhosis and hepatocellular carcinoma. Its high prevalence, the absence of a prophylactic vaccine and the poor efficiency of current therapies are huge medical problems. Since the discovery of the hepatitis C virus, our knowledge of its biology has been largely punctuated by the development of original models of research. At the end of the 1980s, the chimpanzee model led to cloning of the viral genome and the definition of infectious molecular clones. In 1999, a breakthrough was achieved with the development of a robust in vitro replication model named 'replicon'. This system allowed intensive research into replication mechanisms and drug discovery. Later, in 2003, pseudotyped retroviruses harbouring surface proteins of hepatitis C virus were produced to specifically investigate the viral entry process. It was only in 2005 that infectious viruses were produced in vitro, enabling intensive investigations into the entire life cycle of the hepatitis C virus. This review describes the different in vitro models developed to study hepatitis C virus, their contribution to current knowledge of the virus biology and their future research applications.  相似文献   

4.
王端  叶健 《生物资源》2020,42(1):1-8
病毒作为地球上最简单的生命形式,通过感染人、动物和植物等寄主产生传染性疾病。与其他微生物相比,病毒具有基因组小、复制量大、遗传操作简单等特点,具有很强的生物资源属性。过去几十年,对植物病毒的研究主要集中于解析其致病机制、植物的抗性机制及如何防控植物病害。但是随着研究的深入及概念的革新,人们发现植物病毒还具有很强的生物资源属性。随着分子生物学以及基因组、转录组、蛋白组学等技术的发展,越来越多的植物病毒被发现、改造和利用。本综述着重围绕植物病毒的资源属性与病毒载体的改造利用及其在生物工程方面的应用等最新研究进展,讨论其广泛的应用前景,挖掘其资源化的潜力。  相似文献   

5.
Viral discovery and sequence recovery using DNA microarrays   总被引:12,自引:1,他引:11       下载免费PDF全文
Because of the constant threat posed by emerging infectious diseases and the limitations of existing approaches used to identify new pathogens, there is a great demand for new technological methods for viral discovery. We describe herein a DNA microarray-based platform for novel virus identification and characterization. Central to this approach was a DNA microarray designed to detect a wide range of known viruses as well as novel members of existing viral families; this microarray contained the most highly conserved 70mer sequences from every fully sequenced reference viral genome in GenBank. During an outbreak of severe acute respiratory syndrome (SARS) in March 2003, hybridization to this microarray revealed the presence of a previously uncharacterized coronavirus in a viral isolate cultivated from a SARS patient. To further characterize this new virus, approximately 1 kb of the unknown virus genome was cloned by physically recovering viral sequences hybridized to individual array elements. Sequencing of these fragments confirmed that the virus was indeed a new member of the coronavirus family. This combination of array hybridization followed by direct viral sequence recovery should prove to be a general strategy for the rapid identification and characterization of novel viruses and emerging infectious disease.  相似文献   

6.
The report in 1971 by Comuet and Astier‐Manifacier that Chinese cabbage contains an active RNA‐dependent RNA polymerase has been extended to all plants studied. This has met with much opposition because the central dogma of molecular biology requires no replication mechanism for RNA. Only upon RNA virus infection are such enzymes needed, and it was generally believed that these were always and only virus‐coded. The purification and characterization of several of these plant viruses will be reviewed, with particular reference to the fact that while their amount in plant tissue is variably increased by various RNA virus infections their nature is unaffected by the viral genome and is strictly host‐specific. It will be noted, however, that in a specific instance viral infection has been shown to affect an important property of the enzyme. Also, it has become evident that certain plant viruses resemble animal picorna viruses (e.g., polio virus) and that these viruses carry an RNA polymerase gene. The same may be true, but has not been proven, for a small group of plant viruses that shows resemblances to the prokaryotic RNA phages in which a viral gene product together with host proteins form the RNA polymerase. An important question that remains to be solved in future work is the role of RNA polymerases in normal plant cell biology. Also, the mechanism by which viral infection causes the enzyme to become largely membrane or organelle bound and possibly conformationally changed in the process remains to be elucidated.  相似文献   

7.
One of the challenges facing researchers working with viruses and gene therapy vectors is the need to rapidly assay for infectious virus. Current methods used to titer many viruses are cumbersome and are not amenable to handling large numbers of samples. Here we describe the development of an assay that can rapidly quantify infectious viruses and gene therapy vectors. The assay relies on biological amplification of viral sequences and hybridization of labeled probes to immobilized nucleic acid from infected cells. The amplification of the viral genome makes this a highly sensitive method. The assay is configured in a high-throughput format that has been used to detect recombinant adeno-associated virus (AAV), wild-type AAV and infectious adenovirus. The assay is quantitative, and can be used to titer virus preparations with or without a known standard.  相似文献   

8.
Poxviruses are a family of double stranded DNA viruses that include active human pathogens such as monkeypox, molluscum contagiousum, and Contagalo virus. The family also includes the smallpox virus, Variola. Due to the complexity of poxvirus replication, many questions still remain regarding their gene expression strategy. In this article we describe the conceptualization and usage of recombinant vaccinia viruses that enable real-time measurement of single and multiple stages of viral gene expression in a high-throughput format. This is enabled through the use of spectrally distinct fluorescent proteins as reporters for each of three stages of viral replication. These viruses provide a high signal-to-noise ratio while retaining stage specific expression patterns, enabling plate-based assays and microscopic observations of virus propagation and replication. These tools have uses for antiviral discovery, studies of the virus-host interaction, and evolutionary biology.  相似文献   

9.
The movement of pollen grains from anthers to stigmas, often by insect pollinator vectors, is essential for plant reproduction. However, pollen is also a unique vehicle for viral spread. Pollen-associated plant viruses reside on the outside or inside of pollen grains, infect susceptible individuals through vertical or horizontal infection pathways, and can decrease plant fitness. These viruses are transferred with pollen between plants by pollinator vectors as they forage for floral resources; thus, pollen-associated viral spread is mediated by floral and pollen grain phenotypes and pollinator traits, much like pollination. Most of what is currently known about pollen-associated viruses was discovered through infection and transmission experiments in controlled settings, usually involving one virus and one plant species of agricultural or horticultural interest. In this review, we first provide an updated, comprehensive list of the recognized pollen-associated viruses. Then, we summarize virus, plant, pollinator vector, and landscape traits that can affect pollen-associated virus transmission, infection, and distribution. Next, we highlight the consequences of plant–pollinator–virus interactions that emerge in complex communities of co-flowering plants and pollinator vectors, such as pollen-associated virus spread between plant species and viral jumps from plant to pollinator hosts. We conclude by emphasizing the need for collaborative research that bridges pollen biology, virology, and pollination biology.  相似文献   

10.
Dengue is one of the most important mosquito-borne infections accounting for severe morbidity and mortality worldwide. Recently, the tetravalent chimeric live attenuated Dengue vaccine Dengvaxia® was approved for use in several dengue endemic countries. In general, live attenuated vaccines (LAV) are very efficacious and offer long-lasting immunity against virus-induced disease. Rationally designed LAVs can be generated through reverse genetics technology, a method of generating infectious recombinant viruses from full length cDNA contained in bacterial plasmids. In vitro transcribed (IVT) viral RNA from these infectious clones is transfected into susceptible cells to generate recombinant virus. However, the generation of full-length dengue virus cDNA clones can be difficult due to the genetic instability of viral sequences in bacterial plasmids. To circumvent the need for a single plasmid containing a full length cDNA, in vitro ligation of two or three cDNA fragments contained in separate plasmids can be used to generate a full-length dengue viral cDNA template. However, in vitro ligation of multiple fragments often yields low quality template for IVT reactions, resulting in inconsistent low yield RNA. These technical difficulties make recombinant virus recovery less efficient. In this study, we describe a simple, rapid and efficient method of using LONG-PCR to recover recombinant chimeric Yellow fever dengue (CYD) viruses as potential dengue vaccine candidates. Using this method, we were able to efficiently generate several viable recombinant viruses without introducing any artificial mutations into the viral genomes. We believe that the techniques reported here will enable rapid and efficient recovery of recombinant flaviviruses for evaluation as vaccine candidates and, be applicable to the recovery of other RNA viruses.  相似文献   

11.
王文静  李素  肖书奇  仇华吉 《微生物学报》2018,58(11):1897-1907
病毒作为严格的细胞内寄生生物,需要多种宿主蛋白辅助其完成生命周期。寻找与病毒复制相关的宿主因子并揭示其作用机制,将有助于阐明病毒的感染机制,为疫病的防治提供新靶标。与RNA干扰技术相比,近年来兴起的CRISPR/Cas9技术能更特异、高效、准确地实现基因组编辑,因而在功能基因研究中得到更广泛应用。而基于CRISPR/Cas9系统的宿主全基因组sgRNA文库高通量筛选技术平台,可快速发现参与病毒侵入、复制等生物学过程的关键宿主因子,通过明确病毒-宿主分子相互作用进而揭示病毒的生命周期,为分子病毒学和免疫学提供了强大的研究工具。本文主要总结了基于CRISPR/Cas9技术的高通量筛选平台的具体筛选流程,归纳和讨论了该平台在筛选调控病毒复制相关宿主因子中的应用现状和发展前景。  相似文献   

12.
The Thirties testified on the outstanding development of plant virology: the new discoveries formalized the concept of virus on a physicochemical background. Plant viruses, which had received their own taxonomical position at the end of the Twenties, were no longer considered as simple "infective pathogens" as their size, shape and chemical nature were determined, particularly for one of them--tobacco mosaic virus (TMV). This paramount contribution was achieved as a consequence of a functional interaction between biology on one side, and chemistry and physics on the other side, from the development of which molecular biology was born. The chemical characterization of TMV developed from the first determination of nitrogen presence in purified virus, performed by Carl Vinson, through the identification of TMV as Wendell Stanley's infective, autoreplicative protein macromolecule, to the final discovery of its nucleoprotein nature by the British group of Frederick Bawden. Thorough analytical techniques--in particular electron microscopy--led to disclose the exact shape and size of TMV particle. These discoveries, that opened a new era of virology, were corroborated by new knowledge that, although less explosive, can be considered of great importance for the development of plant virology. The methodologies to estimate viral activity; the study of the relationships between viruses and insect vectors; the studies on virus spread within plants; the identification of non-sterile type of resistance and of correlation between single plant genes and viral pathogenesis benefited plant virology of a set of knowledge that, together with the discoveries on the physico-chemical properties of TMV, raised plant virology from a secondary branch of plant pathology to a new independent science by itself.  相似文献   

13.
14.
Many plant viruses have been engineered into vectors for use in functional genomics studies, expression of heterologous proteins, and, most recently, gene editing applications. The use of viral vectors overcomes bottlenecks associated with mutagenesis and transgenesis approaches often implemented for analysis of gene function. There are several engineered viruses that are demonstrated or suggested to be useful in maize through proof-of-concept studies. However, foxtail mosaic virus (FoMV), which has a relatively broad host range, is emerging as a particularly useful virus for gene function studies in maize and other monocot crop or weed species. A few clones of FoMV have been independently engineered, and they have different features and capabilities for virus-induced gene silencing (VIGS) and virus-mediated overexpression (VOX) of proteins. In addition, FoMV can be used to deliver functional guide RNAs in maize and other plants expressing the Cas9 protein, demonstrating its potential utility in virus-induced gene editing applications. There is a growing number of studies in which FoMV vectors are being applied for VIGS or VOX in maize and the vast majority of these are related to maize–microbe interactions. In this review, we highlight the biology and engineering of FoMV as well as its applications in maize–microbe interactions and more broadly in the context of the monocot functional genomics toolbox.  相似文献   

15.
16.
Genome sequences of transmitted/founder (T/F) HIV-1 have been inferred by analyzing single genome amplicons of acute infection plasma viral RNA in the context of a mathematical model of random virus evolution; however, few of these T/F sequences have been molecularly cloned and biologically characterized. Here, we describe the derivation and biological analysis of ten infectious molecular clones, each representing a T/F genome responsible for productive HIV-1 clade B clinical infection. Each of the T/F viruses primarily utilized the CCR5 coreceptor for entry and replicated efficiently in primary human CD4(+) T lymphocytes. This result supports the conclusion that single genome amplification-derived sequences from acute infection allow for the inference of T/F viral genomes that are consistently replication competent. Studies with monocyte-derived macrophages (MDM) demonstrated various levels of replication among the T/F viruses. Although all T/F viruses replicated in MDM, the overall replication efficiency was significantly lower compared to prototypic "highly macrophage-tropic" virus strains. This phenotype was transferable by expressing the env genes in an isogenic proviral DNA backbone, indicating that T/F virus macrophage tropism mapped to Env. Furthermore, significantly higher concentrations of soluble CD4 were required to inhibit T/F virus infection compared to prototypic macrophage-tropic virus strains. Our findings suggest that the acquisition of clinical HIV-1 subtype B infection occurs by mucosal exposure to virus that is not highly macrophage tropic and that the generation and initial biological characterization of 10 clade B T/F infectious molecular clones provides new opportunities to probe virus-host interactions involved in HIV-1 transmission.  相似文献   

17.
Summary The study of plant viruses and their interaction with the plant host has contributed greatly to our understanding of plant biology. The recent development of plant viruses as transient expression vectors has not only enhanced our understanding of virus biology and antiviral defense mechanisms in plants, but has also led to the use of plant viral-based vectors as tools for gene discovery and production of recombinant proteins in plants for control of human and animal diseases. An overview of the state-of-the-art of viral expression systems, is presented, as well as examples from our laboratory on their use in identifying nuclear targeting motifs on viroid molecules and development of therapeutic proteins for control of animal diseases.  相似文献   

18.
Adeno-associated virus (AAV) replication and biology have been extensively studied using cell culture systems, but there is precious little known about AAV biology in natural hosts. As part of our ongoing interest in the in vivo biology of AAV, we previously described the existence of extrachromosomal proviral AAV genomes in human tissues. In the current work, we describe the molecular structure of infectious DNA clones derived directly from these tissues. Sequence-specific linear rolling-circle amplification was utilized to isolate clones of native circular AAV DNA. Several molecular clones containing unit-length viral genomes directed the production of infectious wild-type AAV upon DNA transfection in the presence of adenovirus help. DNA sequence analysis of the molecular clones revealed the ubiquitous presence of a double-D inverted terminal repeat (ITR) structure, which implied a mechanism by which the virus is able to maintain ITR sequence continuity and persist in the absence of host chromosome integration. These data suggest that the natural life cycle of AAV, unlike that of retroviruses, might not have genome integration as an obligatory component.  相似文献   

19.
Labeling of virus opens new pathways for the understanding of viruses themselves and facilitates the utilization of viruses in modern biology, medicine, and materials. Based on the characteristic that viruses hijack their host cellular machineries to survive and reproduce themselves, a host-cell-assisted strategy is proposed to label enveloped viruses. By simply feeding Vero cells with commercial 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(cap biotinyl) (sodium salt) (Biotin-Cap-PE), we obtained biotinylated Vero cells whose membrane systems were modified with biotin. Subsequently, pseudorabies viruses (PrV) were cultivated in the biotinylated Vero cells, and the PrV progenies were spontaneously labeled with Biotin-Cap-PE during viral natural assembly process. Since the viral natural assembly process was employed for the labeling, potential threats of genetic engineering and difficulties in keeping viral natural bioactivity were avoided. Importantly, this labeling strategy for enveloped virus greatly reduces the technical complexity and allows researchers from different backgrounds to apply it for their specified demands.  相似文献   

20.
Among all retroviruses, foamy viruses (FVs) are unique in that they regularly mature at intracytoplasmic membranes. The envelope glycoprotein of FV encodes an endoplasmic reticulum (ER) retrieval signal, the dilysine motif (KKXX), that functions to localize the human FV (HFV) glycoprotein to the ER. This study analyzed the function of the dilysine motif in the context of infectious molecular clones of HFV that encoded mutations in the dilysine motif. Electron microscopy (EM) demonstrated virion budding both intracytoplasmically and at the plasma membrane for the wild-type and mutant viruses. Additionally, mutant viruses retained their infectivity, but viruses lacking the dilysine signal budded at the plasma membrane to a greater extent than did wild-type viruses. Interestingly, this relative increase in budding across the plasma membrane did not increase the overall release of viral particles into cell culture media as measured by protein levels in viral pellets or infectious virus titers. We conclude that the dilysine motif of HFV imposes a partial restriction on the site of viral maturation but is not necessary for viral infectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号