首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Elephant populations are under intense pressure internationally from habitat destruction and poaching for ivory and meat. They also face pressure from infectious agents, including elephant endotheliotropic herpesvirus 1 (EEHV1), which kills ∼20% of Asian elephants (Elephas maximus) born in zoos and causes disease in the wild. EEHV1 is one of at least six distinct EEHV in a phylogenetic lineage that appears to represent an ancient but newly recognized subfamily (the Deltaherpesvirinae) in the family Herpesviridae.  相似文献   

2.
Asian elephant (Elephas maximus) immunity is poorly characterized and understood. This gap in knowledge is particularly concerning as Asian elephants are an endangered species threatened by a newly discovered herpesvirus known as elephant endotheliotropic herpesvirus (EEHV), which is the leading cause of death for captive Asian elephants born after 1980 in North America. While reliable diagnostic assays have been developed to detect EEHV DNA, serological assays to evaluate elephant anti-EEHV antibody responses are lacking and will be needed for surveillance and epidemiological studies and also for evaluating potential treatments or vaccines against lethal EEHV infection. Previous studies have shown that Asian elephants produce IgG in serum, but they failed to detect IgM and IgA, further hampering development of informative serological assays for this species. To begin to address this issue, we determined the constant region genomic sequence of Asian elephant IgM and obtained some limited protein sequence information for putative serum IgA. The information was used to generate or identify specific commercial antisera reactive against IgM and IgA isotypes. In addition, we generated a monoclonal antibody against Asian elephant IgG. These three reagents were used to demonstrate that all three immunoglobulin isotypes are found in Asian elephant serum and milk and to detect antibody responses following tetanus toxoid booster vaccination or antibodies against a putative EEHV structural protein. The results indicate that these new reagents will be useful for developing sensitive and specific assays to detect and characterize elephant antibody responses for any pathogen or vaccine, including EEHV.  相似文献   

3.
Disease susceptibility and resistance are important factors for the conservation of endangered species, including elephants. We analyzed pathology data from 26 zoos and report that Asian elephants have increased neoplasia and malignancy prevalence compared with African bush elephants. This is consistent with observed higher susceptibility to tuberculosis and elephant endotheliotropic herpesvirus (EEHV) in Asian elephants. To investigate genetic mechanisms underlying disease resistance, including differential responses between species, among other elephant traits, we sequenced multiple elephant genomes. We report a draft assembly for an Asian elephant, and defined 862 and 1,017 conserved potential regulatory elements in Asian and African bush elephants, respectively. In the genomes of both elephant species, conserved elements were significantly enriched with genes differentially expressed between the species. In Asian elephants, these putative regulatory regions were involved in immunity pathways including tumor-necrosis factor, which plays an important role in EEHV response. Genomic sequences of African bush, forest, and Asian elephant genomes revealed extensive sequence conservation at TP53 retrogene loci across three species, which may be related to TP53 functionality in elephant cancer resistance. Positive selection scans revealed outlier genes related to additional elephant traits. Our study suggests that gene regulation plays an important role in the differential inflammatory response of Asian and African elephants, leading to increased infectious disease and cancer susceptibility in Asian elephants. These genomic discoveries can inform future functional and translational studies aimed at identifying effective treatment approaches for ill elephants, which may improve conservation.  相似文献   

4.
Results of genome analysis of a member of the family Ferroplasmaceae, Acidiplasma sp. strain MBA-1, an extremely acidophilic, moderately thermophilic archaeon oxidizing ferrous iron under oxic conditions and utilizing organic compounds. This strain was previously shown to predominate in the community carrying out biooxidation of pyrite-arsenopyrite gold-bearing concentrate. The genome was sequenced using the Illumina HiSeq 2000 platform. A total of 2306800 pairwise reads were obtained, corresponding to 300-fold coverage. Assembly was carried out by three programs in parallel. The optimal assembly contained nine contigs, the genome size was 1747364 bp, and N50 was 446845 bp. Annotation of the genome revealed 1749 protein-encoding sequences, as well as 46 tRNA genes and one rRNA gene copy. The results of genome analysis confirmed the previous data on the physiology of this organism. The gene of sulfocyanin (TZ01_06185), a blue copper-containing protein playing the key role in the iron-oxidizing electron transport chain, was identified in the genome. The genes encoding sulfur oxidoreductase (TZ01_04750) and sulfateadenilyl transferase (TZ01_04545), the enzymes of sulfur oxidation, were also identified. The genes involved in the transport and catabolism of organic compounds and the genes of the 3-hydroxypropionate/4-hydroxybutyrate cycle were revealed. The genome of Acidiplasma sp. MBA-1 is the first genome of this genus deposited to a public database DDBJ/EMBL/GenBank (accession no. JYHS00000000) and is of interest for further investigation of Acidiplasma archaea.  相似文献   

5.
Blumea balsamifera (L.) DC., a medicinal plant with high economic value in the Asteraceae family, is widely distributed in China and Southeast Asia. However, studies on the population structure or phylogenetic relationships with other related species are rare owing to the lack of genome information. In this study, through high-throughput sequencing, we found that the chloroplast genome of B. balsamifera was 151,170 bp in length, with a pair of inverted repeat regions (IRa and IRb) comprising 24,982 bp, a large single-copy (LSC) region comprising 82,740 bp, and a small single-copy (SSC) region comprising 18,466 bp. A total of 130 genes were identified in the chloroplast genome of B. balsamifera, including 85 protein-coding, 37 transfer RNA, and 8 ribosomal RNA genes; furthermore, sequence analysis identified 53 simple sequence repeats. Whole chloroplast genome comparison indicated that the inverted regions (IR) were more conserved than large single-copy and SSC regions. Phylogenetic analysis showed that B. balsamifera is closely related to Pluchea indica. Conclusively, the chloroplast genome of B. balsamifera was helpful for species identification and analysis of the genetic diversity and evolution in the genus Blumea and family Asteraceae.  相似文献   

6.
以姜科(Zingiberaceae)豆蔻属(Amomum Roxb.)阳春砂(Amomum villosum)为试材,利用Illumina Hiseq 4000测序平台对阳春砂叶绿体基因组进行测序,通过生物信息学分析方法进行序列组装、注释和特征分析,以揭示阳春砂与其他姜科植物的进化关系及其在系统发育中的地位,为豆蔻属植物的物种鉴定提供理论依据。结果表明:(1)阳春砂叶绿体基因组全长164 069 bp,GC含量为36.1%,包括1对29 959 bp的反向重复区(IR)、一个大单拷贝区(LSC;88 798 bp)和一个小单拷贝区(SSC;15 353 bp);共注释得到133个基因,包括8个rRNA基因、38个tRNA基因和87个蛋白编码基因。(2)在阳春砂基因组中共检测到157个SSR位点,大部分SSR均由A和T组成;豆蔻属物种在基因组大小、IR边界区高度保守,核酸变异主要发生在LSC和SSC区。(3)最大似然法(Maximum Likelihood, ML)聚类分析显示,阳春砂与同属的爪哇白豆蔻(Amomum compactum)和白豆蔻(Amomum kravanh)亲缘关系最近,并且与山姜属(Alpinia Roxb.)也有较近的亲缘关系。  相似文献   

7.
Rice PolA1 gene, encoding for the largest subunit of RNA polymerase I, spans ca. 15 kb containing 21 exons and presents as a single-copy-per-haploid genome. The genus Oryza comprises 22 wild species and 9 recognized genome types: AA, BB, CC, EE, FF, GG, BBCC, CCDD, and HHJJ. We analyzed sequences of the 19th intron (PI19) within PolA1 genes in 17 Oryza species. The AA species, containing two cultivated species, showed similar length of PI19 to that of CC species (287–296 bp). The longer PI19s were found in BB (502 bp) and FF (349 bp) species, although EE (217 bp) and GG (222 bp) species had shorter sequences. The size differences of the PI19s are particularly useful to discriminate between diploid (BB and CC) and allotetraploid (BBCC) species using simple PCR analysis. The evolutionary relationship among seven genomes was inferred based on the comparison of their PI19 sequences.  相似文献   

8.
Salmonid herpesvirus 1 (SalHV-1) is a pathogen of the rainbow trout (Oncorhynchus mykiss). Restriction endonuclease mapping, cosmid cloning, DNA hybridization, and targeted DNA sequencing experiments showed that the genome is 174.4 kbp in size, consisting of a long unique region (UL; 133.4 kbp) linked to a short unique region (US; 25.6 kbp) which is flanked by an inverted repeat (RS; 7.7 kbp). US is present in virion DNA in either orientation, but UL is present in a single orientation. This structure is characteristic of the Varicellovirus genus of the subfamily Alphaherpesvirinae but has evidently evolved independently, since an analysis of randomly sampled DNA sequence data showed that SalHV-1 shares at least 18 genes with channel catfish virus (CCV), a fish herpesvirus whose complete sequence is known and which is unrelated to mammalian herpesviruses. The use of oligonucleotide probes demonstrated that in comparison with CCV, the conserved SalHV-1 genes are located in UL in at least five rearranged blocks. Large-scale gene rearrangements of this type are also characteristic of the three mammalian herpesvirus subfamilies. The junction between two SalHV-1 gene blocks was confirmed by sequencing a 4,245-bp region which contains the dUTPase gene, part of a putative spliced DNA polymerase gene, and one other complete gene. The implications of these findings in herpesvirus taxonomy are discussed.Herpesviruses are a large group of complex, double-stranded DNA viruses which infect vertebrates from teleost (bony) fish to humans. They exhibit narrow host specificites, most infecting only a single species in nature, and are thus considered likely to have evolved with their hosts. Comparisons of primary amino acid sequences predicted from complete genome sequences have shown that mammalian herpesviruses are genetically very divergent but nonetheless share a set of about 40 homologous genes, thus providing compelling evidence that these viruses evolved from a single ancestral herpesvirus (reviewed in reference 7). Moreover, genetic comparisons support the division of the family into three subfamilies, Alphaherpesvirinae, Betaherpesvirinae, and Gammaherpesvirinae, as proposed previously from biological criteria (15). The order of genes is largely conserved within each subfamily, whereas members of different subfamilies are more distantly related and exhibit several large-scale genomic rearrangements (4, 9). Viral phylogenies derived from rigorous sequence comparisons generally fit well with host phylogenies deduced from the fossil record, thus supporting the view that mammalian herpesviruses have cospeciated with their hosts, and this has allowed a time frame to be assigned (13, 14). Moreover, limited sequence data also indicate that avian herpesviruses fit readily into the subfamily Alphaherpesvirinae.Nearly all research on herpesviruses has involved mammalian (and, to a lesser extent, avian) herpesviruses, and little is known about the many herpesviruses which infect cold-blooded vertebrates. The most extensively studied member of the latter group, channel catfish virus (CCV; ictalurid herpesvirus 1), was initially classified as a herpesvirus on the basis of its virion morphology and as a member of the Alphaherpesvirinae on the basis of its biological properties (15). Analysis of the complete genome sequence (6) indicated, however, that CCV has no specific relationship with mammalian herpesviruses at the level of primary amino acid sequence, in that no counterpart of a protein which is encoded only by mammalian herpesviruses, such as a structural protein, was detected in CCV. Thus CCV cannot be accommodated by the current taxonomy. The virus does encode several enzymes which are also specified by mammalian herpesviruses, such as DNA polymerase, dUTPase, and thymidine kinase. The genes encoding these proteins, however, are ubiquitous and could quite possibly have been acquired independently by the mammalian and fish herpesvirus lineages. Moreover, the CCV enzymes are no more closely related to their counterparts in other herpesviruses than to those in other organisms.These findings may be interpreted in two ways. First, CCV and mammalian herpesviruses arose independently and have convergently acquired similar virion morphologies. Second, they evolved from an ancestral herpesvirus but have diverged so extensively over the 400 million years since their hosts separated that little sequence evidence remains. Several lines of evidence support the latter view, but it is fair to say that the case is not yet overwhelming. The best genetic indication for divergence rests in a single highly conserved protein which is encoded by two exons in the mammalian herpesviruses and three in CCV (open reading frames [ORFs] 62, 69, and 71). This protein apparently has a distant relative in bacteriophage T4 which functions as a subunit of the terminase involved in DNA packaging, but the fact that no cellular counterpart has yet been discovered highlights it as the best candidate for a gene which may have been inherited from a common ancestor rather than acquired via independent capture events. Moreover, despite the lack of conservation of the amino acid sequences of structural proteins, structural and functional congruences have been detected. Thus, the detailed three-dimensional structure of the CCV capsid is strikingly similar to that of herpes simplex virus type 1 (3). Also, local sequence features of the putative scaffold protein involved in CCV capsid formation suggest that it may be autoproteolytically processed via a pathway that is otherwise found only in mammalian herpesviruses (8).Evidence for a herpesvirus lineage that lies outside the current taxonomic scheme has prompted investigations of its extent. Comparisons of CCV with salmonid herpesviruses appear useful in this respect, since the fossil record indicates that the three main subgroups of euteleosts (salmoniforms, neoteleosts, and ostariophysans, the latter including catfish) diverged around 130 million years ago (1). Salmonid fish are host to several herpesviruses, the principal of which are salmonid herpesviruses 1 and 2 (SalHV-1 and SalHV-2) (reviewed in reference 19). SalHV-1 was isolated on several occasions from a rainbow trout (Oncorhynchus mykiss) hatchery in the state of Washington in association with excessive mortality in young fish (20). The virus causes disease when injected into young rainbow trout maintained at 6 to 9°C but not in other salmonid species. SalHV-2 was isolated from Oncorhynchus masou, a landlocked Japanese form of Pacific salmon (11). It is serologically distinct from and has a wider host range than SalHV-1, causing virulent disease in the young of several Oncorhynchus species, including the rainbow trout. It also exhibits a higher temperature optimum for growth in cell culture than SalHV-1.Partial sequence data for two genes have previously indicated that SalHV-2 is related to CCV (2). In this report, I describe the genome structure and gene arrangement of SalHV-1 and show that this virus is evolutionarily related to SalHV-2 and CCV. The data indicate that the processes which have resulted in the generation of certain genome structures and large-scale gene rearrangements during mammalian herpesvirus evolution have parallels in fish herpesvirus evolution. They also imply that fish herpesviruses occupy a distinct evolutionary space of an size equivalent to that occupied by mammalian herpesviruses and urge an accommodation in the herpesvirus taxonomy.  相似文献   

9.
Pyrolobus fumarii Blöchl et al. 1997 is the type species of the genus Pyrolobus, which belongs to the crenarchaeal family Pyrodictiaceae. The species is a facultatively microaerophilic non-motile crenarchaeon. It is of interest because of its isolated phylogenetic location in the tree of life and because it is a hyperthermophilic chemolithoautotroph known as the primary producer of organic matter at deep-sea hydrothermal vents. P. fumarii exhibits currently the highest optimal growth temperature of all life forms on earth (106°C). This is the first completed genome sequence of a member of the genus Pyrolobus to be published and only the second genome sequence from a member of the family Pyrodictiaceae. Although Diversa Corporation announced the completion of sequencing of the P. fumarii genome on September 25, 2001, this sequence was never released to the public. The 1,843,267 bp long genome with its 1,986 protein-coding and 52 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.  相似文献   

10.
《Genomics》2020,112(1):581-591
Previous studies to resolve phylogenetic and taxonomic discrepancies of Hibiscus remained inconclusive. Here, we report chloroplast genome sequence of Hibiscus rosa-sinensis. Hibiscus rosa-sinensis chloroplast genome was 160,951 bp, comprising of large single copy (89,509 bp) and small single copy (20,246 bp) regions, separated by IRa and IRb (25,598 bp each). The genome contained 130 genes including 85 protein-coding genes, 37 transfer RNAs and 8 ribosomal RNAs. Comparative analyses of chloroplast genomes revealed similar structure among 12 species within family Malvaceae. Evolutionary rates of 77 protein-coding genes showed 95% similarities. Analyses of codon usage, amino acid frequency, putative RNA editing sites, and repeats showed a great extent of similarities between Hibiscus rosa-sinensis and Hibiscus syriacus. We identified 30 mutational hotpots including psbZ-trnG, trnK-rps16, trnD-trnY, trnW-trnP, rpl33-rps18, petG-trnW, trnS-trnG, trnH-psbA, atpB-rbcL, and rpl32-trnL that might be used as polymorphic and robust markers to resolve phylogenetic discrepancies in genus Hibiscus.  相似文献   

11.
Halalkalicoccus jeotgali B3T, isolated from salt-fermented seafood from South Korea, is an extremely halophilic archaeon belonging to the family Halobacteriaceae. Here, we present the complete genome sequence of the type strain H. jeotgali B3T (3,698,650 bp, with a G+C content of 62.5%), which consists of one chromosome and six plasmids. This is the first complete genome sequence of the Halalkalicoccus species.Extremely halophilic archaea (haloarchaea) are adapted to hypersaline environments and grow optimally in NaCl solutions of 2.6 M or higher (12). These haloarchaea are classified within the family Halobacteriaceae in the order Halobacteriales; currently, this family comprises 28 genera (3), and only 11 complete genome sequences in Halobacteriaceae have been reported. In a study of archaeal diversity in salt-fermented small shrimp or shellfish from South Korea, our laboratory isolated and characterized 5 novel, extremely halophilic archaeal strains of Halobacteriaceae. These strains included Natronococcus jeotgali (9), Halalkalicoccus jeotgali (11), Halorubrum cibi (7), Haloterrigena jeotgali (10) and Haladaptatus cibarius (8). We have now sequenced the genome of Halalkalicoccus jeotgali B3T; genome sequencing had not been completed or initiated for any strain in this genus when our sequencing project was begun. The genus Halalkalicoccus currently contains only two species, Halalkalicoccus tibetensis (13) and H. jeotgali, and these species exhibit 98.6% gene sequence similarity in their 16S rRNA. The genome of H. jeotgali B3T is the first of this genus to be sequenced.The complete genome sequence of H. jeotgali B3T was determined by a whole-genome shotgun strategy using Roche 454 GS (FLX Titanium) pyrosequencing (898,168 reads totaling ∼348 Mb; ∼94-fold coverage of the genome) and a fosmid library (514 reads totaling ∼680 kb) at the Genome Resource Center, KRIBB (Korea Research Institute of Bioscience and Biotechnology). Genome sequences from pyrosequencing were processed by Roche''s software according to the manufacturer''s instructions, and sequences from the fosmid library were processed by PESTAS (6). A total of 898,196 reads were assembled using Newbler Assembler 2.3 (454 Life Science), which generated 54 large contigs (>100 bp in size) with bases having quality scores of 40 and above. The gaps between contigs were closed by primer walking and sequencing of PCR products across the gaps. The annotation was done by merging results obtained from the RAST (Rapid Annotation using Subsystem Technology) pipeline (1), Glimmer 3.02 (2), tRNAscan-SE 1.21 (5), and RNAmmer 1.2 (4).The H. jeotgali B3T genome is 3,698,650 bases long with a 62.5% G+C content. The chromosome consists of a single circular chromosome (2,809,118 bp, with a G+C content of 65.0%) and six plasmids (406,285 bp, 55.3%; 363,534 bp, 54.2%; 44,576 bp, 58.9%; 44,459 bp, 54.9%; 23,727 bp, 47.6%; 6,951 bp, 60.6%). The genome contains 3,860 predicted coding sequences and 52 RNA genes (determined using RAST). The chromosome is predicted to contain 3,101 coding sequences with a coding intensity of 90.0%, including 47 tRNA genes, 1 5S rRNA gene, 1 16S rRNA gene, and 1 23S rRNA gene. The largest plasmid contains 466 coding sequences with a coding intensity of 81.2% and 2 tRNA genes, while the other five plasmids contain 425, 44, 48, 29, and 5 coding sequences with coding intensities of 80.2%, 84.2%, 83.0%, 69.6%, and 22.8%, respectively (determined using Glimmer3). More detailed analysis of this genome and comparative analysis with other haloarchaea will provide further insight into the genomic differences and metabolism of the extremely halophilic archaea.  相似文献   

12.
Evolvulus alsinoides, belonging to the family Convolvulaceae, is an important medicinal plant widely used as a nootropic in the Indian traditional medicine system. In the genus Evolvulus, no research on the chloroplast genome has been published. Hence, the present study focuses on annotation, characterization, identification of mutational hotspots, and phylogenetic analysis in the complete chloroplast genome (cp) of E. alsinoides. Genome comparison and evolutionary dynamics were performed with the species of Solanales. The cp genome has 114 genes (80 protein-coding genes, 30 transfer RNA, and 4 ribosomal RNA genes) that were unique with total genome size of 157,015 bp. The cp genome possesses 69 RNA editing sites and 44 simple sequence repeats (SSRs). Predicted SSRs were randomly selected and validated experimentally. Six divergent hotspots such as trnQ-UUG, trnF-GAA, psaI, clpP, ndhF, and ycf1 were discovered from the cp genome. These microsatellites and divergent hot spot sequences of the Taxa ‘Evolvulus’ could be employed as molecular markers for species identification and genetic divergence investigations. The LSC area was found to be more conserved than the SSC and IR region in genome comparison. The IR contraction and expansion studies show that nine genes rpl2, rpl23, ycf1, ycf2, ycf1, ndhF, ndhA, matK, and psbK were present in the IR-LSC and IR-SSC boundaries of the cp genome. Fifty-four protein-coding genes in the cp genome were under negative selection pressure, indicating that they were well conserved and were undergoing purifying selection. The phylogenetic analysis reveals that E. alsinoides is closely related to the genus Cressa with some divergence from the genus Ipomoea. This is the first time the chloroplast genome of the genus Evolvulus has been published. The findings of the present study and chloroplast genome data could be a valuable resource for future studies in population genetics, genetic diversity, and evolutionary relationship of the family Convolvulaceae.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12298-021-01051-w.  相似文献   

13.
The 2 species of the genus Anoplocephala (Anoplocephalidae), A. perfoliata and A. magna, are among the most important equine cestode parasites. However, there is little information about their differences at the molecular level. The present study revealed that the mitochondrial (mt) genome of A. magna was 13,759 bp in size and 700 bp shorter than that of A. perfoliata. The 2 species includes 2 rRNA, 22 tRNA, and 12 protein-coding genes each. The size of each of the 36 genes was the same as that of A. perfoliata, except for cox1, rrnL, trnC, trnS2(UCN), trnG, trnH, trnQ, and trnP. In the full mitochondrial genome, the sequence similarity was 87.1%. The divergence in the nucleotide and amino acid sequences of individual protein-coding genes ranged from 11.1% to 16% and 6.8% to 16.4%, respectively. The 2 noncoding regions of the mt genome of A. magna were 199 bp and 271 bp in length, while the equivalent regions in A. perfoliata were 875 bp and 276 bp, respectively. The results of this study support the proposal that A. magna and A. perfoliata are separate species, consistent with previous morphological analyses.  相似文献   

14.
《Genomics》2021,113(5):3072-3082
Rubiaceae is the fourth largest and a taxonomically complex family of angiosperms. Many species in this family harbor low reproductive isolation and frequently exhibit inconsistent phenotypic characteristics. Therefore, taxonomic classification and their phylogenetic relationships in the Rubiaceae family is challenging, especially in the genus Leptodermis. Considering the low taxonomic confusion and wide distribution, Leptodermis oblonga is selected as a representative Leptodermis for genome sequencing. The assemblies resulted in 497 Mbp nuclear and 155,100 bp chloroplast genomes, respectively. Using the nuclear genome as a reference, SNPs were called from 37 Leptodermis species or varieties. The phylogenetic tree based on SNPs exhibited high resolution for species delimitation of the complex and well-resolved phylogenetic relationships in the genus. Moreover, 28,987 genes were predicted in the nuclear genome and used for comparative genomics study. As the first chromosomal-level genome of the subfamily Rubioideae in Rubiaceae, it will provide fruitfully evolutionary understanding in the family.  相似文献   

15.
《Genomics》2019,111(4):799-807
Mitochondrial DNA (mtDNA) is an extrachromosomal genome which can provide important information for evolution and phylogenetic analysis. In this study, we assembled a complete mitogenome of a crab Parasesarma pictum (Brachyura: Grapsoidea: Sesarmidae) from next generation sequencing reads at the first time. P. pictum is a mudflat crab, belonging to the Sesarmidae family (subfamily Sesarminae), which is perched on East Asia. The 15,716 bp mitogenome covers 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), 2 ribosomal RNA genes (rRNAs), and one control region (CR). The control region spanns 420 bp. The genome composition was highly A+T biased 75.60% and showed negative AT-skew (−0.03) and negative GC-skew (−0.47). Compared with the ancestor of Brachyura, the gene order of Sesarmidae has several differences and the gene order of P. pictum is typical for mitogenomes of Sesarmidae. Phylogenetic tree based on nucleotide sequences of mitochondrial 13 PCGs using BI and ML determined that P. pictum has a sister group relationship with Parasesarma tripectinis and belongs to Sesarmidae.  相似文献   

16.
《Journal of Asia》2022,25(3):101933
The crickets of genus Sclerogryllus Gorochov, 1985 belongs to subfamily Sclerogryllinae of family Gryllidae. In this study, we report the first complete mitogenome sequences of the genus Sclerogryllus, and analyze the features of mitogenomes of S. punctatus. The mitogenome of S. punctatus was 15,438 bp and consisted of 37 genes, coding for 13 proteins, 2 ribosomal RNA (rRNA) and 22 transfer RNA (tRNA), and a control region. S. punctatus shares the arrangement of trnE-trnS-trnN with most mitogenomes of Grylloidea. Besides, the tRNAs possess the typical cloverleaf secondary structure except for the trnS1 (AGN) gene. The phylogenetic analysis using 13 protein-coding genes and 2 rRNA represents that genus Sclerogryllus is included in subfamily Gryllinae. Our results uncover the phylogenetic position of genus Sclerogryllus by mitogenome data within the family Gryllidae.  相似文献   

17.
Radish (Raphanus sativus L.) is an edible root vegetable crop that is cultivated worldwide and whose genome has been sequenced. Here we report the complete nucleotide sequence of the radish cultivar WK10039 chloroplast (cp) genome, along with a de novo assembly strategy using whole genome shotgun sequence reads obtained by next generation sequencing. The radish cp genome is 153,368 bp in length and has a typical quadripartite structure, composed of a pair of inverted repeat regions (26,217 bp each), a large single copy region (83,170 bp), and a small single copy region (17,764 bp). The radish cp genome contains 87 predicted protein-coding genes, 37 tRNA genes, and 8 rRNA genes. Sequence analysis revealed the presence of 91 simple sequence repeats (SSRs) in the radish cp genome.  相似文献   

18.
Kitasatospora setae NBRC 14216T (=KM-6054T) is known to produce setamycin (bafilomycin B1) possessing antitrichomonal activity. The genus Kitasatospora is morphologically similar to the genus Streptomyces, although they are distinguishable from each other on the basis of cell wall composition and the 16S rDNA sequence. We have determined the complete genome sequence of K. setae NBRC 14216T as the first Streptomycetaceae genome other than Streptomyces. The genome is a single linear chromosome of 8 783 278 bp with terminal inverted repeats of 127 148 bp, predicted to encode 7569 protein-coding genes, 9 rRNA operons, 1 tmRNA and 74 tRNA genes. Although these features resemble those of Streptomyces, genome-wide comparison of orthologous genes between K. setae and Streptomyces revealed smaller extent of synteny. Multilocus phylogenetic analysis based on amino acid sequences unequivocally placed K. setae outside the Streptomyces genus. Although many of the genes related to morphological differentiation identified in Streptomyces were highly conserved in K. setae, there were some differences such as the apparent absence of the AmfS (SapB) class of surfactant protein and differences in the copy number and variation of paralogous components involved in cell wall synthesis.  相似文献   

19.
The genus Nitratireductor represents nitrate-reducing bacteria from the family Phyllobacteriaceae. Here we report the draft genome sequence of Nitratireductor aquibiodomus strain RA22, which contains 4,592,790 bp, with a G+C content of 61.30%, and has 4,241 protein coding genes.  相似文献   

20.
This current study presents, for the first time, the complete chloroplast genome of two Cleomaceae species: Dipterygium glaucum and Cleome chrysantha in order to evaluate the evolutionary relationship. The cp genome is 158,576 bp in length with 35.74% GC content in D. glaucum and 158,111 bp with 35.96% GC in C. chrysantha. Inverted repeats IR 26,209 bp, 26,251 bp each, LSC of 87,738 bp, 87,184 bp and SSC of 18,420 bp, 18,425 bp respectively. There are 136 genes in the genome, which includes 80 protein coding genes, 31 tRNA genes and four rRNA genes were observed in both chloroplast genomes. 117 genes are unique while the remaining 19 genes are duplicated in IR regions. The analysis of repeats shows that the cp genome includes all types of repeats with more frequent occurrences of palindromic; Also, this analysis indicates that the total number of simple sequence repeats (SSR) were 323 in D. glaucum, and 313 in C. chrysantha, of which the majority of the SSRs in these plastid genomes were mononucleotide repeats A/T which are located in the intergenic spacer. Moreover, the comparative analysis of the four cp sequences revealed four hotspot genes (atpF, rpoC2, rps19, and ycf1), these variable regions could be used as molecular makers for the species authentication as well as resources for inferring phylogenetic relationships of the species. All the relationships in the phylogenetic tree are with high support, this indicate that the complete chloroplast genome is a useful data for inferring phylogenetic relationship within the Cleomaceae and other families. The simple sequence repeats identified will be useful for identification, genetic diversity, and other evolutionary studies of the species. This study reported the first cp genome of the genus Dipterygium and Cleome. The finding of this study will be beneficial for biological disciplines such as evolutionary and genetic diversity studies of the species within the core Cleomaceae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号