首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
The 11 gene products of the Agrobacterium tumefaciens virB operon, together with the VirD4 protein, are proposed to form a membrane complex which mediates the transfer of T-DNA to plant cells. This study examined one putative component of that complex, VirB4. A deletion of the virB4 gene on the Ti plasmid pTiA6NC was constructed by replacing the virB4 gene with the kanamycin resistance-conferring nptII gene. The virB4 gene was found to be necessary for virulence on plants and for the transfer of IncQ plasmids to recipient cells of A. tumefaciens. Genetic complementation of the deletion strain by the virB4 gene under control of the virB promoter confirmed that the deletion was nonpolar on downstream virB genes. Genetic complementation was also achieved with the virB4 gene placed under control of the lac promoter, even though synthesis of the VirB4 protein from this promoter is far below wild-type levels. Having shown a role for the VirB4 protein in DNA transfer, lysine-439, found within the conserved mononucleotide binding domain of VirB4, was changed to a glutamic acid, methionine, or arginine by oligonucleotide-directed mutagenesis. virB4 genes bearing these mutations were unable to complement the virB4 deletion for either virulence or for IncQ transfer, showing that an intact mononucleotide binding site is necessary for the function of VirB4 in DNA transfer. The necessity of the VirB4 protein with an intact mononucleotide binding site for extracellular complementation of virE2 mutants was also shown. In merodiploid studies, lysine-439 mutations present in trans decreased IncQ plasmid transfer frequencies, suggesting that VirB4 functions within a complex to facilitate DNA transfer.  相似文献   

13.
14.
15.
16.
H-NS is a major Escherichia coli nucleoid-associated protein involved in bacterial DNA condensation and global modulation of gene expression. This protein exists in cells as at least two different isoforms separable by isoelectric focusing. Among other phenotypes, mutations in hns result in constitutive expression of the proU and fimB genes, increased fimA promoter inversion rates, and repression of the flhCD master operon required for flagellum biosynthesis. To understand the relationship between H-NS structure and function, we transformed a cloned hns gene into a mutator strain and collected a series of mutant alleles that failed to repress proU expression. Each of these isolated hns mutant alleles also failed to repress fimB expression, suggesting that H-NS-specific repression of proU and fimB occurs by similar mechanisms. Conversely, alleles encoding single amino acid substitutions in the C-terminal DNA-binding domain of H-NS resulted in significantly reduced affinity for DNA yet conferred a wild-type fimA promoter inversion frequency, indicating that the mechanism of H-NS activity in modulating promoter inversion is independent of DNA binding. Furthermore, two specific H-NS amino acid substitutions resulted in hypermotile bacteria, while C-terminal H-NS truncations exhibited reduced motility. We also analyzed H-NS isoform composition expressed by various hns mutations and found that the N-terminal 67 amino acids were sufficient to support posttranslational modification and that substitutions at positions 18 and 26 resulted in the expression of a single H-NS isoform. These results are discussed in terms of H-NS domain organization and implications for biological activity.  相似文献   

17.
We report a new role for H-NS in Shigella spp.: suppression of repair of DNA damage after UV irradiation. H-NS-mediated suppression of virulence gene expression is thermoregulated in Shigella, being functional at 30°C and nonfunctional at 37 to 40°C. We find that H-NS-mediated suppression of DNA repair after UV irradiation is also thermoregulated. Thus, Shigella flexneri M90T, incubated at 37 or 40°C postirradiation, shows up to 30-fold higher survival than when incubated at 30°C postirradiation. The hns mutants BS189 and BS208, both of which lack functional H-NS, show a high rate of survival (no repression) whether incubated at 30 or 40°C postirradiation. Suppression of DNA repair by H-NS is not mediated through genes on the invasion plasmid of S. flexneri M90T, since BS176, cured of plasmid, behaves identically to the parental M90T. Thus, in Shigella the nonfunctionality of H-NS permits enhanced DNA repair at temperatures encountered in the human host. However, pathogenic Escherichia coli strains (enteroinvasive and enterohemorrhagic E. coli) show low survival whether incubated at 30 or 40°C postirradiation. E. coli K-12 shows markedly different behavior; high survival postirradiation at both 30 and 40°C. These K-12 strains were originally selected from E. coli organisms subjected to both UV and X irradiation. Therefore, our data suggest that repair processes, extensively described for laboratory strains of E. coli, require experimental verification in pathogenic strains which were not adapted to irradiation.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号