首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Han  Yansha  Wang  Shaojie  Zhao  Nan  Deng  Shurong  Zhao  Chenjing  Li  Nianfei  Sun  Jian  Zhao  Rui  Yi  Huilan  Shen  Xin  Chen  Shaoliang 《Journal of Plant Growth Regulation》2016,35(3):827-837

Abscisic acid (ABA), a widely known phytohormone involved in the plant response to abiotic stress, plays a vital role in mitigating Cd2+ toxicity in herbaceous species. However, the role of ABA in ameliorating Cd2+ toxicity in woody species is largely unknown. In the present study, we investigated ABA restriction on Cd2+ uptake and the relevance to Cd2+ stress alleviation in Cd2+-hypersensitive Populus euphratica. ABA (5 μM) markedly improved cell viability and growth but reduced membrane permeability in CdCl2 (100 μM)-stressed P. euphratica cells. Moreover, ABA significantly increased the activity of the antioxidant enzymes catalase (CAT), superoxide dismutase (SOD), and ascorbate peroxidase (APX), contributing to the scavenging of Cd2+-elicited H2O2 within P. euphratica cells during the period of CdCl2 exposure (100 μM, 24–72 h). ABA alleviation of Cd2+ toxicity was mainly the result of ABA restriction of Cd2+ uptake under Cd2+ stress. Steady-state and transient flux recordings showed that ABA inhibited Cd2+ entry into Cd2+-shocked (100 μM, 30 min) and short-term-stressed P. euphratica cells (100 μM, 24–72 h). Non-invasive micro-test technique data showed that H2O2 (3 mM) stimulated the Cd2+-elicited Cd2+ influx but that the plasma membrane (PM) Ca2+ channel inhibitor LaCl3 blocked it, suggesting that the Cd2+ influx was through PM Ca2+-permeable channels. These results suggested that ABA up-regulated antioxidant enzyme activity in Cd2+-stressed P. euphratica and that these enzymes scavenged the Cd2+-elicited H2O2 within cells. The entry of Cd2+ through the H2O2-mediated Ca2+-permeable channels was subsequently restricted; thus, Cd2+ buildup and toxicity were reduced in the Cd2+-hypersensitive species, P. euphratica.

  相似文献   

3.
Summary Previous studies from our laboratory have shown that Cd2+ can selectively disrupt E-cadherin-dependent cell-cell junctions in the porcine renal epithelial cell line, LLC-PK1. The objective of the present studies was to determine whether or not Cd2+ could produce similar effects in Madin-Darby canine kidney (MDCK) cells, an immortal epithelial cell line derived from dog kidney. This is an important issue because MDCK cells have been used extensively as a model system to study the basic mechanisms of E-cadherin-dependent cell-cell adhesion. MDCK cells on permeable membrane supports were exposed to Cd2+ by adding CdCl2 to either the apical or the basolateral compartment. The integrity of cell-cell junctions was assessed by morphologic observation of the cells and by monitoring the transepithelial electrical resistance. The results showed that exposure to 10–40 μM Cd2+ for 15 min-4 h caused the cells to separate from each other without detaching from the growing surface. The separation of the cells was accompanied by a marked drop in the transepithelial electrical resistance, a loss of E-cadherin from the cell-cell contacts, and a reorganization of the actin cytoskeleton. These effects were much more pronounced when Cd2+ was added basolaterally than when it was added apically. Moreover, the effects of Cd2+ were qualitatively similar to those observed when the cells were incubated in Ca2+-free medium. These results show that Cd2+ can disrupt E-cadherin-dependent cell-cell junctions in MDCK cells, and they indicate that this cell line would be an appropriate model for further mechanistic studies in this area.  相似文献   

4.
Cadmium (Cd2+) is a very toxic metal that causes DNA damage, oxidative stress and apoptosis. Despite many studies, the cellular and molecular mechanisms underlying its high toxicity are not clearly understood. We show here that very low doses of Cd2+ cause ER stress in Saccharomyces cerevisiae as evidenced by the induction of the unfolded protein response (UPR) and the splicing of HAC1 mRNA. Furthermore, mutant strains (Δire1 and Δhac1) unable to induce the UPR are hypersensitive to Cd2+, but not to arsenite and mercury. The full functionality of the pathways involved in ER stress response is required for Cd2+ tolerance. The data also suggest that Cd2+‐induced ER stress and Cd2+ toxicity are a direct consequence of Cd2+ accumulation in the ER. Cd2+ does not inhibit disulfide bond formation but perturbs calcium metabolism. In particular, Cd2+ activates the calcium channel Cch1/Mid1, which also contributes to Cd2+ entry into the cell. The results reinforce the interest of using yeast as a cellular model to study toxicity mechanisms in eukaryotic cells.  相似文献   

5.
Catch me if you can! Novel aspects of cadmium transport in mammalian cells   总被引:1,自引:0,他引:1  
Frank Thévenod 《Biometals》2010,23(5):857-875
Cadmium (Cd2+) is a nonessential divalent metal ion that causes toxicity in multiple organs in humans. In order for toxicity to occur Cd2+ must first enter cells by utilizing transport pathways for essential metals. This review focuses on studies in which Cd2+ transport was directly demonstrated by electrophysiological, radiotracer or Cd2+-sensitive fluorescent dye techniques. The chemistry of Cd2+ and metal ions in general is addressed in the context of properties relevant for transport through membrane proteins, such as hydration energy. Apart from transport by the ZIP transporters SLC39A8 and SLC39A14, which is not topic of the review, uptake of free Cd2+ has been demonstrated for the Fe2+/H+ cotransporter divalent metal transporter 1. Moreover, the multiligand endocytic receptors megalin and cubilin take up cadmium-metallothionein complexes via receptor-mediated endocytosis. The role of ATP binding cassette transporters in Cd2+ efflux from cells is also discussed. Both the multidrug resistance-associated protein 1 and cystic fibrosis transmembrane conductance regulator are likely to transport cadmium–glutathione complexes out of cells, whereas transport of free Cd2+ by the multidrug resistance P-glycoprotein remains controversial. Finally, arguments for and against Cd2+ transport by Ca2+ channels are presented. Most N- and L-type Ca2+ channels are closed at resting membrane potential (with the exception of CaV1.3 channels) and therefore unlikely to allow significant Cd2+ influx under physiological conditions. CaV3.1 and CaV3.2 T-type calcium channels are permeated by divalent metal ions, such as Fe2+ and Mn2+ because of considerable “window” currents close to resting membrane potential and could be responsible for tonic Cd2+ entry. TRPM7 and the mitochondrial Ca2+ uniporter are other likely candidates for Cd2+ transporters, whereas the role of Orai proteins, the store-operated calcium channels carrying Ca2+ release-activated Ca2+ current, in Cd2+ influx remains to be investigated.  相似文献   

6.
Development of a broad-spectrum fluorescent heavy metal bacterial biosensor   总被引:1,自引:0,他引:1  
Bacterial biosensors can measure pollution in terms of their actual toxicity to living organisms. A recombinant bacterial biosensor has been constructed that is known to respond to toxic levels of Zn2+, Cd2+ and Hg2+. The zinc regulatory gene zntR and zntA promoter from znt operon of E. coli have been used to trigger the expression of GFP reporter protein at toxic levels of these ions. The sensor was induced with 3–800?ppm of Zn2+, 0.005–4?ppm of Cd2+ and 0.001–0.12?ppm of Hg2+ ions. Induction studies were also performed in liquid media to quantify GFP fluorescence using fluorimeter. To determine the optimum culture conditions three different incubation periods (16, 20 and 24?h) were followed. Results showed an increased and consistent fluorescence in cells incubated for 16?h. Maximum induction for Zn2+, Cd2+ and Hg2+ was observed at 20, 0.005 and 0.002?ppm, respectively. The pPROBE-zntR-zntA biosensor reported here can be employed as a primary screening technique for aquatic heavy metal pollution.  相似文献   

7.
Protoplasts prepared from yeast-like cells, hyphae and chlamydospores of Aureobasidium pullulans can take up heavy metals such as Zn2+, Co2+, Cd2+ and Cu2+. In relation to intact cells, the sensitivity of protoplasts to Cu2+ and Cd2+ was increased although chlamydospore protoplasts were more tolerant than yeast-like cell protoplasts. Surface binding of metals was reduced in protoplasts as compared with intact cells and this reduction was particularly evident for chlamydospore protoplasts. At the highest concentrations used, uptake of Zn2+, Co2+ and Cd2+ by yeast-like cell protoplasts was greater than that observed in intact cells which may have been due to toxicity, especially for Cd2+, resulting in increased membrane permeability, though for Zn2+ and Co2+ some barrier effect of the cell wall could not be completely discounted. Chlamydospore protoplasts were capable of intracellular metal uptake, unlike intact chlamydospores, and for Zn2+, uptake appeared to be via a different system less specific than that of the other cell types. For chlamydospores, the use of protoplasts confirmed the importance of the cell wall in preventing entry of metal ions into the cell.  相似文献   

8.
The deleterious action of Cd2+ on rat liver mitochondria was investigated in this work using spectroscopic and microscopic methods. The concentration dependence of Cd2+ on mitochondrial swelling, membrane potential and membrane fluidity was studied. Our aim was to detect the active sites of Cd2+ in the mitochondrial membrane treatments with cyclosporin A (CsA) and EGTA on the mitochondrial permeability transition (MPT) induced by low and high concentrations of Cd2+. The protective effects of dithiothreitol, human serum albumin and monobromobimane+ on Cd2+-induced MPT were also monitored. All of these investigations indicated that Cd2+ can directly affect MPT at two separate localization sites at different concentrations: the classic Ca2+ triggering site and the thiol (–SH) groups of membrane proteins matched by MPT pore opening (defined as “S” site). At the high concentration of Cd2+, other free –SH groups in the mitochondrial matrix may be involved in this process. These findings were supported by transmission electron microscopy and shed light on the toxic mechanism of Cd2+ on mitochondria.  相似文献   

9.
Toxic metals such as cadmium (Cd2+) pose serious risks to human health. However, even though the importance of Cd2+ as environmental health hazards is now widely appreciated, the specific mechanisms by which it produces its adverse effects have yet to be fully elucidated. Cd2+ is known to enter cells, it binds and interacts with a multitude of molecules, it may indirectly induce oxidative stress and interfere with gene expression and repair of DNA. It also interacts with transport across cell membranes and epithelia and may therefore disturb the cell’s homeostasis and function. Interaction with epithelial transport, especially in the kidney and the liver, may have serious consequences in general health. A lot of research still needs to be done to understand the exact way in which Cd2+ interferes with these transport phenomena. It is not always clear whether Cd2+ has primary or secondary effects on cell membrane transport. In the present review we try to summarize the work that has been done up to now and to critically discuss the relevance of the experimental work in vitro with respect to the in vivo situation.  相似文献   

10.
The human calcium transporter, hCaT1, was cloned and analyzed. The obtained amino acid sequence was slightly different from the ortholog of hCaT1 which had been identified by Peng et al. (2000. Biochem. Biophys. Res. Commun 278: 326-332). An mRNA analysis of human gastrointestinal segments demonstrates that hCaT1 was expressed in the stomach, duodenum, jejunum, ileum, ileocecum, cecum, ascending colon, transverse colon, descending colon, and, at very low levels, in the esophagus and rectum. hCaT1 was transiently expressed by transfecting COS-1 cells and was stably expressed by the transfected CHO cells. The transfected cells expressed hCaT1 with a molecular mass of 75 kDa. Stable expression of hCaT1 in the CHO cells increased the cellular uptake of Ca2+. hCaT1 was inhibited by La3+, Gd3+ and Cd2+, whereas Co2+, Fe2+, Mn2+ and Mg2+ showed no significant effects on the activity. Acidification of the extracellular solution to pH 5.5 reduced the 45Ca2+uptake by hCaT1 in the CHO cells. The addition of lactose and raffinose had no effect on the 45Ca2+ uptake, whereas galactose and glucose increased the 45Ca2+ uptake. CHO cells stably expressing hCaT1 will be useful to detect and analyze food substances that could modulate the hCaT1 activity.  相似文献   

11.
Heavy metals inhibit plant growth. This proces may be directly or indirectly connected with mechanisms regulating cell division. We analyzed the effect of Cd2+ on cell cycle progression in partially synchronized soybean (Glycine max) cell suspension culture and followed the expression of cell cycle genes (cyclin B1 and cyclin-dependent kinase A - CDK-A). We have checked the hypothesis that Cd2+-induced impairment of cell division is connected with DNA damage. The [3H]-thymidine incorporation in cell cultures synchronized either with hydroxyurea (HU) or phosphate starvation have shown, that Cd2+ strongly affects the S phase of soybean cell cycle, by causing the earlier entry of cells into S phase and by decreasing the rate of DNA synthesis. RT-PCR analysis indicated that Cd2+ decreases the level of cyclin B1 mRNA and has no effect on CDK-A mRNA. The result of comet assay indicated the damaging effect of Cd2+ on DNA of soybean cells. We suggest that Cd2+ affects plant cell cycle at two major checkpoints: the G1/S — by damaging of DNA, and G2/M - by decreasing the level of cyclin B1 mRNA  相似文献   

12.
Rat kidney epithelial cell culture for metal toxicity studies   总被引:3,自引:0,他引:3  
Summary Evaluation of the potential adverse human health effects of low-level chronic exposure to heavy metals is dependent on the basic knowledge of the cellular and molecular toxicology of these metals. The use of various cell culture systems has greatly facilitated our knowledge of the cellular effects. Inasmuch as most of the acute and chronic toxic effects of metals occur primarily on the renal proximal tubules, the development of a rat kidney epithelial cell culture has provided a unique system to study the uptake and mechanism of toxicity of metals and their intracellular binding ligands. In the presence ofd-valine, fibroblast growth was retarded and a primary epithelial monolayer culture was selectively grown from rat kidney cells. A distinct difference in the uptake of chemically similar divalent metals, such as Pb2+, Hg2+, Cd2+, and Zn2+, was observed in these cells. Both Pb2+ and Hg2+ were more avidly taken up by kidney cells than Cd2+ and Zn2+ salts and they also showed increased toxicity. On the other hand, the cellular uptake of Cd from cadmium-metallothionein (CdMT) was much less than from CdCl2, but CdMT was about seven times more toxic than CdCl2 when added to the renal cell culture. The cytotoxicity of CdCl2 was decreased significantly with pretreatment of the cells with CdCl2, although this had no effect on the toxicity of CdMT. The cellular toxicity of CdMT occurred probably during the process of its transport across the plasma membrane whereas that of CdCl2 occurred after it had entered the cell. Thus rat kidney epithelial cells may be a useful tool to study the mechanism of renal toxicity of environmental chemicals and drugs. This work was funded by grants-in-aid of research from the Kidney Foundation of Canada.  相似文献   

13.
Cadmium (Cd2+) is a known carcinogen that inactivates the DNA mismatch repair (MMR) pathway. In this study, we have tested the effect of Cd2+ exposure on the enzymatic activity of the mismatch binding complex MSH2–MSH6. Our results indicate that Cd2+ is highly inhibitory to the ATP binding and hydrolysis activities of MSH2–MSH6, and less inhibitory to its DNA mismatch binding activity. The inhibition of the ATPase activity appears to be dose and exposure time dependent. However, the inhibition of the ATPase activity by Cd2+ is prevented by cysteine and histidine, suggesting that these residues are essential for the ATPase activity and are targeted by Cd2+. A comparison of the mechanism of inhibition with N-ethyl maleimide, a sulfhydryl group inhibitor, indicates that this inhibition does not occur through direct inactivation of sulfhydryl groups. Zinc (Zn2+) does not overcome the direct inhibitory effect of Cd2+ on the MSH2–MSH6 ATPase activity in vitro. However, the increase in the mutator phenotype of yeast cells exposed to Cd2+ was prevented by excess Zn2+, probably by blocking the entry of Cd2+ into the cell. We conclude that the inhibition of MMR by Cd2+ is through the inactivation of the ATPase activity of the MSH2–MSH6 heterodimer, resulting in a dominant negative effect and causing a mutator phenotype.  相似文献   

14.
Nitric oxide (NO), a vital cell‐signalling molecule, has been reported to regulate toxic metal responses in plants. This work investigated the effects of NO and the relationship between NO and mitogen‐activated protein kinase (MAPK) in Arabidopsis (Arabidopsis thaliana) programmed cell death (PCD) induced by cadmium (Cd2+) exposure. With fluorescence resonance energy transfer (FRET) analysis, caspase‐3‐like protease activation was detected after Cd2+ treatment. This was further confirmed with a caspase‐3 substrate assay. Cd2+‐induced caspase‐3‐like activity was inhibited in the presence of the NO‐specific scavenger 2‐(4‐carboxyphenyl)‐4,4,5,5‐tetramethylimidazoline‐1‐oxyl‐3‐oxide (cPTIO), suggesting that NO mediated caspase‐3‐like protease activation under Cd2+ stress conditions. Pretreatment with cPTIO effectively inhibited Cd2+‐induced MAPK activation, indicating that NO also affected the MAPK pathway. Interestingly, Cd2+‐induced caspase‐3‐like activity was significantly suppressed in the mpk6 mutant, suggesting that MPK6 was required for caspase‐3‐like protease activation. To our knowledge, this is the first demonstration that NO promotes Cd2+‐induced Arabidopsis PCD by promoting MPK6‐mediated caspase‐3‐like activation.  相似文献   

15.
Genetically encoded sensors based on fluorescence resonance energy transfer (FRET) are powerful tools for reporting on ions, molecules and biochemical reactions in living cells. Here we describe the development of new sensors for Zn2+based on alternate FRET-pairs that do not involve the traditional CFP and YFP. Zn2+ is an essential micronutrient and plays fundamental roles in cell biology. Consequently there is a pressing need for robust sensors to monitor Zn2+ levels and dynamics in cells with high spatial and temporal resolution. Here we develop a suite of sensors using alternate FRET pairs, including tSapphire/TagRFP, tSapphire/mKO, Clover/mRuby2, mOrange2/mCherry, and mOrange2/mKATE. These sensors were targeted to both the nucleus and cytosol and characterized and validated in living cells. Sensors based on the new FRET pair Clover/mRuby2 displayed a higher dynamic range and better signal-to-noise ratio than the remaining sensors tested and were optimal for monitoring changes in cytosolic and nuclear Zn2+. Using a green-red sensor targeted to the nucleus and cyan-yellow sensor targeted to either the ER, Golgi, or mitochondria, we were able to monitor Zn2+ uptake simultaneously in two compartments, revealing that nuclear Zn2+ rises quickly, whereas the ER, Golgi, and mitochondria all sequester Zn2+ more slowly and with a delay of 600–700 sec. Lastly, these studies provide the first glimpse of nuclear Zn2+ and reveal that nuclear Zn2+ is buffered at a higher level than cytosolic Zn2+.  相似文献   

16.
Inositol 1,4,5-trisphosphate (IP3) evokes release of Ca2+ from the endoplasmic reticulum (ER), but the resulting Ca2+ signals are shaped by interactions with additional intracellular organelles. Bafilomycin A1, which prevents lysosomal Ca2+ uptake by inhibiting H+ pumping into lysosomes, increased the amplitude of the initial Ca2+ signals evoked by carbachol in human embryonic kidney (HEK) cells. Carbachol alone and carbachol in combination with parathyroid hormone (PTH) evoke Ca2+ release from distinct IP3-sensitive Ca2+ stores in HEK cells stably expressing human type 1 PTH receptors. Bafilomycin A1 similarly exaggerated the Ca2+ signals evoked by carbachol or carbachol with PTH, indicating that Ca2+ released from distinct IP3-sensitive Ca2+ stores is sequestered by lysosomes. The Ca2+ signals resulting from store-operated Ca2+ entry, whether evoked by thapsigargin or carbachol, were unaffected by bafilomycin A1. Using Gd3+ (1 mM) to inhibit both Ca2+ entry and Ca2+ extrusion, HEK cells were repetitively stimulated with carbachol to assess the effectiveness of Ca2+ recycling to the ER after IP3-evoked Ca2+ release. Blocking lysosomal Ca2+ uptake with bafilomycin A1 increased the amplitude of each carbachol-evoked Ca2+ signal without affecting the rate of Ca2+ recycling to the ER. This suggests that Ca2+ accumulated by lysosomes is rapidly returned to the ER. We conclude that lysosomes rapidly, reversibly and selectively accumulate the Ca2+ released by IP3 receptors residing within distinct Ca2+ stores, but not the Ca2+ entering cells via receptor-regulated, store-operated Ca2+ entry pathways.  相似文献   

17.
Glucose sensing mechanism has been intensively studied in pancreatic cells and neurons. Depolarization of membrane potential by closure of KATP , Kv and TASK channel, and subsequently Ca2+ entry via L-type voltage gated Ca2+ channel (VGCC) are implicated to mediate the signal transduction in these cells. However, the mechanism of non-excitable cells, which are lacking VGCC, for sensing glucose remains unclear. In this study, we utilized the calcium ratio measurement and patch clamping technique to study the effects of low glucose on [Ca2+]i and currents in the human embryonic kidney epithelial cells (HEK 293). We found low glucose evoked a significant reversible [Ca2+]i elevation in HEK 293 independent of the closure of Kv channels. This increase of [Ca2+]i was mediated by Ca2+ entry across plasma membrane and exhibited a dosage dependent behaviour to external glucose concentration. The low glucose-induced entry of Ca2+ was characterized as a voltage independent behaviour and had cation permeability to Na+ and Ca2+. The modulation of PLC, AMPK, tyrosine kinase and cADPribose failed to regulate this glucose-sensitive Ca2+ entry. In addition, the entry of Ca2+ was insensitive to nifedipine, 2APB, SKF, La3+, Gd3+, and KBR9743, suggesting a novel signal pathway in mediating glucose sensing.  相似文献   

18.
The mechanism of Cd2+ on the DNA cleavage and Ce3+ on the DNA repair in the kidney of silver crucian carp (Carassius auratus gibelio) is investigated by agarose gel electrophoresis methods and assaying biochemical indexes. It proves that Cd2+ induces the classical laddering degradation of DNA in vivo, but DNA cleavage is repaired after injecting with a low Ce3+ concentration under various Cd2+ concentrations. The DNA cleavage caused by Cd2+ is the result of the activation of deoxyribonuclease (DNase) and accumulation of reactive oxygen species (ROS), and Cd2+ destroys the antioxidant system, which diminishes the activities of superoxide dismutase, catalase, and peroxidase, and the increase of the lipid peroxidation (LPO) level. However, Ce3+ could inhibit activation of Cd2+ on DNase activity, relieve inhibition of Cd2+ on activities of the antioxidant enzyme, and diminish ROS accumulation. The results show that Ce3+ could relieve the toxicity of Cd2+ to silver crucian carp.  相似文献   

19.
Heat shock protein 22 (HSP22) is an important member of small heat shock protein (sHSP) subfamily which plays a key role in the process of protecting cells, facilitating the folding of nascent peptides, and responding to stress. In the present study, the cDNA of HSP22 was cloned from Argopecten irradians (designated as AiHSP22) by rapid amplification cDNA end (RACE) based on the expressed sequence tags (ESTs). The full-length cDNA of AiHSP22 was of 1,112 bp, with an open reading frame of 588 bp encoding a polypeptide of 195 amino acids. The deduced amino acid sequence of AiHSP22 showed high similarity to previously identified HSP22s. The expression patterns of AiHSP22 mRNA in different tissues and in haemocytes of scallops exposed to Cd2+, Pb2+ or Cu2+ were investigated by real-time quantitative RT-PCR. The mRNA of AiHSP22 was constitutively expressed in all examined tissues, including haemocyte, muscle, kidney, gonad, gill and heart. The expression level in heart and muscle was higher than that in other tissues. The mRNA level of AiHSP22 in haemocytes was up-regulated after a 10 days exposure of scallops to Cu2+, Pb2+ and Cd2+. However, the expression of AiHSP22 did not increase linearly along with the rise of heavy metal concentration. Different concentrations of the same metal resulted in different effects on AiHSP22 expression. The sensitive response of AiHSP22 to Cu2+, Pb2+ and Cd2+ stress indicated that it could be developed as an indicator of exposure to heavy metals for the pollution monitoring programs in aquatic environment.  相似文献   

20.
In order to probe the mechanism of survival at high concentrations of cadmium, a population of Cd2+-resistant Chinese hamster ovary cells (CHO-K1M), was obtained by selective pressure. This stable population of cells were characterized as tolerant to 200 μM Cd2+. In addition to the acquired resistance to Cd2+, the CHO-K1M cells also demonstrated resistance to 2 mM Zn2+. The CHO-K1M cells exhibit a diminished capacity to accumulate Cd2+ at low concentration (0.5 or 1.0 μM), which is not evident at high Cd2+ concentration. CHO-K1M cells demonstrated an induced synthesis of metallothionein as defined by physical characteristics and cysteine incorporation. The CHO-K1M cells cultured in the presence of 200 μM Cd2+ were determined to have an intracellular concentration of metallothionein representing more than 50-fold that observed in the wild-type cells. These results suggest that in CHO-K1M cells, the induction of metallothionein synthesis represents the important parameter involved in the determination of resistance to high levels of Cd2+ and Zn2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号