首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tumor repopulation after radiotherapy is a big obstacle for clinical cancer therapy. The molecular mechanisms of tumor cell repopulation after radiotherapy remain unclear. This study investigated the role of sonic hedgehog (SHH) and Wnt signaling pathways in tumor repopulation after radiotherapy in an in vitro repopulation model. In this model, irradiated dying tumor cells functioned as feeder cells, whereas luciferase-labeled living tumor cells acted as reporter cells. Proliferation of reporter cells was measured by bioluminescence imaging. Results showed that irradiated dying HT29 and Panc1 tumor cells significantly stimulated the repopulation of living cells in their respective cultures. In HT29 and Panc1 cells, radiation significantly inhibited Wnt activity. In the irradiated dying HT29 and Panc1 cells, the level of the activated nuclear β-catenin was significantly decreased. Treatment with the Wnt agonist 68166 significantly decreased, whereas treatment with Wnt antagonist significantly increased, repopulation in HT29 and Panc1 tumor cells in a dose-dependent manner. β-catenin short-hairpin RNA (shRNA) also significantly promoted tumor cell repopulation. The level of secreted frizzled related protein-1 (SFRP1), hedgehog and Gli1 were increased in irradiated cells. Our results highlight the interaction between Wnt and SHH signaling pathways in dying tumor cells and suggest that downregulation of Wnt signaling after SHH activation is negatively associated with tumor repopulation.KEY WORDS: Colon cancer, Pancreatic cancer, Radiotherapy, Repopulation, Wnt signaling  相似文献   

2.
目的:细胞再增殖是导致胰腺癌放化疗失败的主要原因之一,但缺乏合适的用于研究胰腺癌再增殖的细胞模型。本研究拟建立简便、实用的胰腺癌细胞再增殖体外模型。方法:表达绿色荧光蛋白-荧光素酶(GFP-Luc)的慢病毒感染人胰腺癌细胞,经嘌呤霉素筛选,用荧光显微镜和流式细胞仪观察双标记细胞GFP表达情况,用生物成像检测双标记细胞Luc活性及分析细胞数量与Luc活性之间的关系。以X-线照射胰腺癌细胞制备饲养细胞,以相应的双标记肿瘤细胞为报告细胞进行共培养。对共培养细胞进行荧光显微镜观察和生物成像,以判断饲养细胞对报告细胞的生长促进作用。结果:通过表达GFP-Luc的慢病毒感染获得双标记人胰腺癌细胞,经荧光显微术、流式细胞术和生物成像术证实这些双标记的人胰腺癌细胞能有效地表达GFP和Luc活性,可作为报告细胞用于建立人胰腺癌再增殖细胞模型。将经X-线照射的饲养细胞和相应的报告细胞共培养,经荧光显微镜观察和生物成像分析,结果显示X-线照射过的饲养细胞对报告细胞的生长具有显著的促进作用。结论:成功建立了简便、实用的人胰腺癌再增殖体外模型,该模型能很好地模拟人体内胰腺癌细胞再增殖过程,为进一步研究胰腺癌细胞再增殖的分子机制提供了新的技术手段。  相似文献   

3.
Exosomes are nanometer-sized extracellular vesicles that are believed to function as intercellular communicators. Here, we report that exosomes are able to modify the radiation response of the head and neck cancer cell lines BHY and FaDu. Exosomes were isolated from the conditioned medium of irradiated as well as non-irradiated head and neck cancer cells by serial centrifugation. Quantification using NanoSight technology indicated an increased exosome release from irradiated compared to non-irradiated cells 24 hours after treatment. To test whether the released exosomes influence the radiation response of other cells the exosomes were transferred to non-irradiated and irradiated recipient cells. We found an enhanced uptake of exosomes isolated from both irradiated and non-irradiated cells by irradiated recipient cells compared to non-irradiated recipient cells. Functional analyses by exosome transfer indicated that all exosomes (from non-irradiated and irradiated donor cells) increase the proliferation of non-irradiated recipient cells and the survival of irradiated recipient cells. The survival-promoting effects are more pronounced when exosomes isolated from irradiated compared to non-irradiated donor cells are transferred. A possible mechanism for the increased survival after irradiation could be the increase in DNA double-strand break repair monitored at 6, 8 and 10 h after the transfer of exosomes isolated from irradiated cells. This is abrogated by the destabilization of the exosomes. Our results demonstrate that radiation influences both the abundance and action of exosomes on recipient cells. Exosomes transmit prosurvival effects by promoting the proliferation and radioresistance of head and neck cancer cells. Taken together, this study indicates a functional role of exosomes in the response of tumor cells to radiation exposure within a therapeutic dose range and encourages that exosomes are useful objects of study for a better understanding of tumor radiation response.  相似文献   

4.
Objectives: The roles of innate immunity including macrophages in radiation-induced abscopal effect (RIAE) are ambiguous. In this study, we evaluated the role of macrophage in RIAE and the interaction of cytokines in tumor microenvironment after irradiation.Materials and Methods: Transplanted tumor of breast cancer cells in BalB/C mice, severe combined immunodeficiency (SCID) mice and non-obese diabetic (NOD)-SCID mice were irradiated with fractionation doses to observe anti-tumor abscopal effect. The underlying mechanism of RIAE was investigated by treating the mice with TNF-α inhibitor or macrophage depletion drug and analyzing the alteration of macrophage distribution in tumors. A co-culture system of breast cancer cells and macrophages was applied to disclose the signaling factors and related pathways involved in the RIAE.Results: The growth of nonirradiated tumor was effectively suppressed in mice with normal or infused macrophages but not in mice with insufficiency/depletion of macrophage or TNF-α inhibition, where M1-macrophage was mainly involved. Investigation of the bystander signaling factors in vitro demonstrated that HMGB1 released from irradiated breast cancer cells promoted bystander macrophages to secret TNF-α through TLR-4 pathway and further inhibited the proliferation and migration of non-irradiated cancer cells by PI3K-p110γ suppression.Conclusions: HMGB1 and TNF-α contributes to M1-macrophages facilitated systemic anti-tumor abscopal response triggered by radiotherapy in breast cancer, indicating that the combination of immunotherapy and radiotherapy may has important implication in enhancing the efficiency of tumor treatment.  相似文献   

5.
6.
Chemokine CXCL12 and receptor CXCR4 have emerged as promising therapeutic targets for ovarian cancer, a disease that continues to have a dismal prognosis. CXCL12-CXCR4 signaling drives proliferation, survival, and invasion of ovarian cancer cells, leading to tumor growth and metastasis. Pleiotropic effects of CXCR4 in multiple key steps in ovarian cancer suggest that blocking this pathway will improve outcomes for patients with this disease. To quantify CXCL12-CXCR4 signaling in cell-based assays and living mouse models of ovarian cancer, we developed a click beetle red luciferase complementation reporter that detects activation of CXCR4 based on recruitment of the cytosolic adapter protein β-arrestin 2. Both in two-dimensional and three-dimensional cell cultures, we established that bioluminescence from this reporter measures CXCL12-dependent activation of CXCR4 and inhibition of this pathway with AMD3100, a clinically-approved small molecule that blocks CXCL12-CXCR4 binding. We used this imaging system to quantify CXCL12-CXCR4 signaling in a mouse model of metastatic ovarian cancer and showed that treatment with AMD3100 interrupted this pathway in vivo. Combination therapy with AMD3100 and cisplatin significantly decreased tumor burden in mice, although differences in overall survival were not significantly greater than treatment with either agent as monotherapy. These studies establish a molecular imaging reporter system for analyzing CXCL12-CXCR4 signaling in ovarian cancer, which can be used to investigate biology and therapeutic targeting of this pathway in cell-based assays and living mice.  相似文献   

7.
The radiation-induced bystander effect is a well-established phenomenon which results in damage in non-irradiated cells in response to signaling from irradiated cells. Since communication between irradiated and bystander cells could be reciprocal, we examined the mutual bystander response between irradiated cells and co-cultured with them non-irradiated recipients. Using a transwell culture system, irradiated human melanoma (Me45) cells were co-cultured with non-irradiated Me45 cells or normal human dermal fibroblasts (NHDF) and vice versa. The frequency of micronuclei and of apoptosis, ROS level, and mitochondrial membrane potential were used as the endpoints. Irradiated Me45 and NHDF cells induced conventional bystander effects detected as modest increases of the frequency of micronuclei and apoptosis in both recipient neighbors; the increase of apoptosis was especially high in NHDF cells co-cultured with irradiated Me45 cells. However, the frequencies of micronuclei and apoptosis in irradiated Me45 cells co-cultured with NHDF cells were significantly reduced in comparison with those cultured alone. This protective effect was not observed when irradiated melanomas were co-cultured with non-irradiated cells of the same line, or when irradiated NHDF fibroblasts were co-cultured with bystander melanomas. The increase of micronuclei and apoptosis in irradiated Me45 cells was paralleled by an increase in the level of intracellular reactive oxygen species (ROS), which was reduced significantly when they were co-cultured for 24h with NHDF cells. A small but significant elevation of ROS level in NHDF cells shortly after irradiation was also reduced by co-culture with non-irradiated NHDF cells. We propose that in response to signals from irradiated cells, non-irradiated NHDF cells trigger rescue signals, whose nature remains to be elucidated, which modify the redox status in irradiated cells. This inverse bystander effect may potentially have implications in clinical radiotherapy.  相似文献   

8.
Epidermal growth factor receptor (EGFR), a receptor tyrosine kinase, is commonly altered in different tumor types, leading to abnormally regulated kinase activity and excessive activation of downstream signaling cascades, including cell proliferation, differentiation, and migration. To investigate the EGFR signaling events in real time and in living cells and animals, here we describe a multidomain chimeric reporter whose bioluminescence can be used as a surrogate for EGFR kinase activity. This luciferase-based reporter was developed in squamous cell carcinoma cells (UMSCC1) to generate a cancer therapy model for imaging EGFR. The reporter is designed to act as a phosphorylated substrate of EGFR and reconstitutes luciferase activity when it is not phosphorylated, thereby providing a robust indication of EGFR inhibition. We validated the reporter in vitro and demonstrated that its activity could be differentially modulated by EGFR tyrosine kinase inhibition with erlotonib or receptor activation with epidermal growth factor. Further experiments in vivo demonstrated quantitative and dynamic monitoring of EGFR tyrosine kinase activity in xenograft. Results obtained from these studies provide unique insight into pharmacokinetics and pharmacodynamics of agents that modulate EGFR activity, revealing the usefulness of this reporter in evaluating drug availability and cell targeting in both living cells and mouse models.  相似文献   

9.
Although endothelial cell apoptosis participates in the tumor shrinkage after single high-dose radiotherapy, little is known regarding the vascular response after conventionally fractionated radiation therapy. Therefore, we evaluated hypoxia, perfusion and vascular microenvironment changes in an orthotopic prostate cancer model of conventionally fractionated radiation therapy at clinically relevant doses (2 Gy fractions, 5 fractions/week). First, conventionally fractionated radiation therapy decreased tumor cell proliferation and increased cell death with kinetics comparable to human prostate cancer radiotherapy. Secondly, the injection of Hoechst 33342 or fluorescent-dextrans showed an increased tumor perfusion within 14 days in irradiated tumors, which was correlated with a clear reduction of hypoxia. Improved perfusion and decreased hypoxia were not explained by increased blood vessel density, size or network morphology. However, a tumor vascular maturation defined by perivascular desmin+/SMA+ cells coverage was clearly observed along with an increase in endothelial, zonula occludens (ZO)-1 positive, intercellular junctions. Our results show that, in addition to tumor cell killing, vascular maturation plays an uncovered role in tumor reoxygenation during fractionated radiation therapy.  相似文献   

10.

Background

Despite effective radiotherapy for the initial stages of cancer, several studies have reported the recurrence of various cancers, including medulloblastoma. Here, we attempt to capitalize on the radiation-induced aggressive behavior of medulloblastoma cells by comparing the extracellular protease activity and the expression pattern of molecules, known to be involved in cell adhesion, migration and invasion, between non-irradiated and irradiated cells.

Methodology/Principal Findings

We identified an increase in invasion and migration of irradiated compared to non-irradiated medulloblastoma cells. RT-PCR analysis confirmed increased expression of uPA, uPAR, focal adhesion kinase (FAK), N-Cadherin and integrin subunits (e.g., α3, α5 and β1) in irradiated cells. Furthermore, we noticed a ∼2-fold increase in tyrosine phosphorylation of FAK in irradiated cells. Immunoprecipitation studies confirmed increased interaction of integrin β1 and FAK in irradiated cells. In addition, our results show that overexpression of uPAR in cancer cells can mimic radiation-induced activation of FAK signaling. Moreover, by inhibiting FAK phosphorylation, we were able to reduce the radiation-induced invasiveness of the cancer cells. In this vein, we studied the effect of siRNA-mediated knockdown of uPAR on cell migration and adhesion in irradiated and non-irradiated medulloblastoma cells. Downregulation of uPAR reduced the radiation-induced adhesion, migration and invasion of the irradiated cells, primarily by inhibiting phosphorylation of FAK, Paxillin and Rac-1/Cdc42. As observed from the immunoprecipitation studies, uPAR knockdown reduced interaction among the focal adhesion molecules, such as FAK, Paxillin and p130Cas, which are known to play key roles in cancer metastasis. Pretreatment with uPAR shRNA expressing construct reduced uPAR and phospho FAK expression levels in pre-established medulloblastoma in nude mice.

Conclusion/Significance

Taken together, our results show that radiation enhances uPAR-mediated FAK signaling and by targeting uPAR we can inhibit radiation-activated cell adhesion and migration both in vitro and in vivo.  相似文献   

11.
We have shown in previous studies that metastatically-competent variant subpopulations (B5, C1) derived from a non-metastatic murine mammary adenocarcinoma (SP1) have a pronounced growth advantage over their non-metastatic tumor cell counterparts in primary tumors. As a result, primary tumors can be progressively overgrown by cells having the competence to spread elsewhere in the body. This occurs despite any evidence to indicate an intrinsic in vivo growth rate advantage of the metastatic cells when grown as isolated populations. This suggested that cell-cell interactions between metastatic and non-metastatic tumor populations may be involved in the metastatic cell growth dominance process. Evidence was therefore sought for growth factors released by SP1 cells which could preferentially stimulate the B5 or C1 variants and thereby mediate this cell-cell interaction process. We found that cocultures of SP1 and C1 or B5 cells with irradiated C1, B5, or SP1 "feeder" cells showed significant stimulation of C1 and B5 by SP1 "feeder" cells. Cell growth stimulation in response to EGF, TGF-alpha, TGF-beta 1, bFGF, PDGF, NGF, IGF-1, or IGF-2 demonstrated that only TGF-beta 1 could duplicate this effect. A repeat of the coculture experiment in the presence of specific neutralizing anti-TGF-beta antibodies was therefore undertaken and this was found to markedly reduce the stimulation of C1 or B5 cells by irradiated SP1 cells. Conditioned media from the SP1 and C1 cell lines was quantitated for TGF-beta activity and contained 4.5 ng/ml and 2.0 ng/ml, respectively. However, the majority of the TGF-beta released by SP1 cells was found to be spontaneously active, whereas 70% of the TGF-beta released by C1 cells was in its latent form. Scatchard analysis revealed approximately four times the number of TGF-beta receptors, of similar type and affinity, present on C1 as compared with SP1 cells. The in vitro results support the hypothesis that active TGF-beta released by SP1 cells may stimulate the proliferation of metastatic variant cells in a paracrine like fashion. In vivo evidence for this was obtained by showing that coinjection of irradiated SP1 cells could selectively stimulate tumor growth of viable C1 cells and this effect was markedly diminished by neutralizing polyclonal anti-TGF-beta antibodies. Taken together, the results suggest a novel role for TGF-beta in clonal evolution of malignant tumor growth and as a molecular mediator of tumor cell-tumor cell interactions involved in facilitating tumor progression.  相似文献   

12.
Glioblastoma is the most malignant central nervous system tumor. Patients with glioblastoma are treated with a combination of surgery, radiotherapy and chemotherapy; however, this effect is not satisfactory with regard to the prognosis. It is reported that the tumor stem cells affect recurrence, and radio- and chemotherapy resistance of the tumor, and that these cells play an important role in tumorigenesis and tumor progression. Using human glioblastoma cell lines (T98G and A172), irradiated (0, 30, 60 Gy) glioblastoma cells were prepared under the same conditions as clinical therapy. We analyzed cell proliferation rate, side population analysis by fluorescence-activated cell sorting and isolation of CD133+ cells, and performed genetic analysis (human stem cells) on these cells. We also investigated the difference in gene expression in the cells after radiation. The stem cell-related genes were highly expressed in the CD133+ cells compared with the CD133? cells, suggesting that the cancer stem cells may be located in these CD133+ cells. In the T98G cell line, the cell proliferation rate of 30-Gy irradiated cells was higher than those of non-irradiated cells and 60-Gy irradiated cells. Stem cell-related genes were highly expressed in 30-Gy irradiated CD133+ T98G cells. In conclusion, we suggest that CD133+ cells may strongly affect tumor proliferation and the resistance against radiation therapy.  相似文献   

13.
Mammalian and avian cells cultured on glass or plastic substrates produce microexudates of cellular macromolecules which remain bound to the substrate when the cells are detached. The gross macromolecular composition of microexudates from a range of diploid, heteroploid, and virus-transformed cells was determined with cells labeled with radioisotopes. Significant differences in the amounts of cellular glycoproteins, proteins, and RNA present in microexudates were found between different cell types and between cells of the same type at different stages of growth. Inoculation of cells onto substrates "coated" with microexudates altered their growth behavior. Microexudates from exponentially growing subconfluent homotypic and heterotypic cell populations enhanced the growth of mouse and chick embryo cells seeded at very low densities, but similar microexudates had no effect on the proliferation of cells seeded at higher densities. The enhanced growth of low-density cell populations seeded on microexudates was compared with the growth enhancement produced by feeder cell layers and conditioned medium.  相似文献   

14.
Survivin在细胞内环境稳定和肿瘤的形成中起重要的作用,在肿瘤的治疗中,survivivin的靶向治疗调节与一些典型的信号通路和一系列生长因子有关。众所周知,survivin是一个小的凋亡蛋白抑制因子,也是一个主要的抗癌靶标,与细胞分裂和凋亡抑制有关,它在大部分正常组织中缺失但在大部分癌组织中过表达。Survivin是一个与众多细胞信号通路有关的节点蛋白,这些通路协调各种细胞因子、转录网络和修饰基因,通过调节癌细胞内环境稳定直接或间接促进细胞增殖。临床前研究数据表明,survivin的抑制可以降低细胞增殖促进凋亡,增加细胞对细胞毒药物和放疗的敏感性,其过表达与不良预后和治疗耐受有关。因此对于癌症治疗,survivin是一个潜在的靶标。  相似文献   

15.
音猬因子(sonic hedgehog,SHH)是一种分泌蛋白质,可在发育过程中控制神经祖细胞、神经元和神经胶质细胞的形成。研究发现,海马是学习和记忆中至关重要的大脑区域,SHH在海马神经元回路的形成和可塑性中发挥重要作用,可介导海马神经的发生和突触的可塑性调节。海马神经元树突中SHH受体的激活是跨神经元信号通路的组成部分,该信号通路可加速轴突的生长并增强谷氨酸从突触前末端的释放。SHH信号通路转导受损可导致中枢神经系统损伤和相关疾病(如自闭症、抑郁症和神经退行性疾病等)发生。因此,控制SHH信号通路转导,如使用SHH通路抑制剂或激动剂可能有助于相关疾病的治疗。综述了SHH信号通路的海马神经可塑性及其在中枢神经系统发育和相关疾病中的影响,以期为阐明SHH信号转导受损导致的海马神经受损和中枢神经系统相关疾病的机制奠定一定的理论依据。  相似文献   

16.
Studies over the last several years have revealed the existence of a biological phenomenon known as "bystander effect", wherein cells that are not exposed to radiation elicit a similar response to that of irradiated cells. Understanding the mechanism(s) underlying the bystander effect is important not only for radiation risk assessment but also for evaluation of protocols for cancer radiotherapy. Evaluation of signaling pathways in bystander cells may provide an insight to understand the molecular mechanisms(s) responsible for this complex phenomenon. With this objective, the time course kinetics of intracellular distribution of protein kinase C (PKC isoforms PKC-betaII, PKC-alpha/beta, PKC-theta) was investigated in total and subcellular (cytosolic and nuclear) fractions of human lung fibroblast (MRC-5) cells. MRC-5 cells were either irradiated or treated with the irradiated conditioned medium collected 1h after 1 or 10 Gy of gamma-irradiation. The radiation dose selected was in the range of therapeutic usage of radiation for the human cancer treatment. Unexpectedly, bystander cells showed higher activation of protein kinase C isoforms as compared to irradiated and sham-treated control cells. Protein kinase C isoforms were more enriched in the nuclear fraction than the cytosolic fraction proteins. Induction of PKC isoforms in bystander cells are due to post-translational modifications as shown by the non-phosphorylated protein kinase C level in both irradiated and bystander cells did not differ from the sham-treated control cells. The specific activation of protein kinase C isoforms in bystander cells as demonstrated for the first time in this study may help to identify the effect of therapeutically used radiation exposure for the tumor destructions along with its implications for adjacent non-irradiated cells and organs.  相似文献   

17.
Sonic hedgehog (SHH) medulloblastoma (MB) subtype is driven by a proliferative CD15+ tumor propagating cell (TPC), also considered in the literature as a putative cancer stem cell (CSC). Despite considerable research, much of the biology of this TPC remains unknown. We report evidence that phosphatase and tensin homolog (PTEN) and phosphoinositide 3-kinase (PI-3K) play a crucial role in the propagation, survival and potential response to therapy in this CD15+ CSC/TPC-driven malignant disease. Using the ND2-SmoA1 transgenic mouse model for MB, mouse genetics and patient-derived xenografts (PDXs), we demonstrate that the CD15+TPCs are 1) obligately required for SmoA1Tg-driven tumorigenicity 2) regulated by PTEN and PI-3K signaling 3) selectively sensitive to the cytotoxic effects of pan PI-3K inhibitors in vitro and in vivo but resistant to chemotherapy 4) in the SmoA1Tg mouse model are genomically similar to the SHH human MB subgroup. The results provide the first evidence that PTEN plays a role in MB TPC signaling and biology and that PI-3K inhibitors target and suppress the survival and proliferation of cells within the mouse and human CD15+ cancer stem cell compartment. In contrast, CD15+ TPCs are resistant to cisplatinum, temozolomide and the SHH inhibitor, NVP-LDE-225, agents currently used in treatment of medulloblastoma. These studies validate the therapeutic efficacy of pan PI-3K inhibitors in the treatment of CD15+ TPC dependent medulloblastoma and suggest a sequential combination of PI-3K inhibitors and chemotherapy will have augmented efficacy in the treatment of this disease.  相似文献   

18.
Olfactory receptors (ORs) are expressed in the olfactory epithelium, where they detect odorants, but also in other tissues with additional functions. Some ORs are even overexpressed in tumor cells. In this study, we identified ORs expressed in enterochromaffin tumor cells by RT-PCR, showing that single cells can co-express several ORs. Some of the receptors identified were already reported in other tumors, but they are orphan (without known ligand), as it is the case for most of the hundreds of human ORs. Thus, genes coding for human ORs with known ligands were transfected into these cells, expressing functional heterologous ORs. The in vitro stimulation of these cells by the corresponding OR odorant agonists promoted cell invasion of collagen gels. Using LNCaP prostate cancer cells, the stimulation of the PSGR (Prostate Specific G protein-coupled Receptor), an endogenously overexpressed OR, by β-ionone, its odorant agonist, resulted in the same phenotypic change. We also showed the involvement of a PI3 kinase γ dependent signaling pathway in this promotion of tumor cell invasiveness triggered by OR stimulation. Finally, after subcutaneous inoculation of LNCaP cells into NSG immunodeficient mice, the in vivo stimulation of these cells by the PSGR agonist β-ionone significantly enhanced metastasis emergence and spreading.  相似文献   

19.
20.
Pant K  Sly JE  Bruce SW  Leung C  San RH 《Mutation research》2008,654(2):108-113
The Syrian hamster embryo (SHE) cell transformation assay has traditionally been conducted with a feeder layer of X-ray irradiated cells to provide growth support to the target cells seeded in low numbers. The feeder layer of cells consists of X-ray irradiated cells which are still viable but unable to replicate. We have tried seeding the target cells in conditioned media prepared from the stock culture flasks in lieu of plating them on a feeder layer. Three SHE cell isolates were tested to investigate the feasibility of this approach. With freshly prepared conditioned medium (LeBoeuf's Dulbecco's Modified Eagle's Medium with 2 mM L-glutamine and 20% fetal bovine serum), used within 2 weeks of preparation, there was essentially no difference in the number of target cell colonies in the conditioned medium and in the plates with the X-ray irradiated feeder cell layer. The plating efficiencies of the vehicle controls were within the historical range for the standard SHE cell transformation assay. In each experiment, the positive control benzo(a)pyrene [B(a)P] elicited a significant increase in morphological transformation frequency (MTF), with or without feeder cells. Three compounds, 2,4-diaminotoluene (2,4-DAT), 2,6-diaminotoluene (2,6-DAT), and chloral hydrate were tested in the SHE cell transformation assay without an X-ray irradiated feeder layer and using a 7-day exposure regimen. The results were comparable to those reported in the published literature using the standard methodology with feeder cells, with 2,4-DAT and chloral hydrate eliciting a significant increase in MTF, and 2,6-DAT not eliciting any increase in MTF. The results of this study demonstrate the feasibility of conducting the SHE cell transformation assay without the use of an X-ray irradiated feeder layer, thereby simplifying the test procedure and facilitating the scoring of morphologically transformed colonies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号