首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sans-fille (SNF) is the Drosophila homologue of mammalian general splicing factors U1A and U2B″, and it is essential in Drosophila sex determination. We found that, besides its ability to bind U1 snRNA, SNF can also bind polyuridine RNA tracts flanking the male-specific exon of the master switch gene Sex-lethal (Sxl) pre-mRNA specifically, similar to Sex-lethal protein (SXL). The polyuridine RNA binding enables SNF directly inhibit Sxl exon 3 splicing, as the dominant negative mutant SNF1621 binds U1 snRNA but not polyuridine RNA. Unlike U1A, both RNA recognition motifs (RRMs) of SNF can recognize polyuridine RNA tracts independently, even though SNF and U1A share very high sequence identity and overall structure similarity. As SNF RRM1 tends to self-associate on the opposite side of the RNA binding surface, it is possible for SNF to bridge the formation of super-complexes between two introns flanking Sxl exon 3 or between a intron and U1 snRNP, which serves the molecular basis for SNF to directly regulate Sxl splicing. Taken together, a new functional model for SNF in Drosophila sex determination is proposed. The key of the new model is that SXL and SNF function similarly in promoting Sxl male-specific exon skipping with SNF being an auxiliary or backup to SXL, and it is the combined dose of SXL and SNF governs Drosophila sex determination.  相似文献   

2.
The Sex-lethal (SXL) protein belongs to the family of RNA-binding proteins and is involved in the regulation of pre-mRNA splicing. SXL has undergone an obvious change of function during the evolution of the insect clade. The gene has acquired a pivotal role in the sex-determining pathway of Drosophila, although it does not act as a sex determiner in non-drosophilids. We collected SXL sequences of insect species ranging from the pea aphid (Acyrtho siphom pisum) to Drosophila melanogaster by searching published articles, sequencing cDNAs, and exploiting homology searches in public EST and whole-genome databases. The SXL protein has moderately conserved N- and C-terminal regions and a well-conserved central region including 2 RNA recognition motifs. Our phylogenetic analysis shows that a single orthologue of the Drosophila Sex-lethal (Sxl) gene is present in the genomes of the malaria mosquito Anopheles gambiae, the honeybee Apis mellifera, the silkworm Bombyx mori, and the red flour beetle Tribolium castaneum. The D. melanogaster, D. erecta, and D. pseudoobscura genomes, however, contain 2 paralogous genes, Sxl and CG3056, which are orthologous to the Anopheles, Apis, Bombyx, and Tribolium Sxl. Hence, a duplication in the fly clade generated Sxl and CG3056. Our hypothesis maintains that one of the genes, Sxl, adopted the new function of sex determiner in Drosophila, whereas the other, CG3056, continued to serve some or all of the yet-unknown ancestral functions.  相似文献   

3.
4.
Tribolium castaneum Transformer (TcTra) is essential for female sex determination and maintenance through the regulation of sex-specific splicing of doublesex (dsx) pre-mRNA. In females, TcTra also regulates the sex-specific splicing of its own pre-mRNA to ensure continuous production of functional Tra protein. Transformer protein is absent in males and hence dsx pre-mRNA is spliced in a default mode. The mechanisms by which males inhibit the production of functional Tra protein are not known. Here, we report on functional characterization of transformer-2 (tra-2) gene (an ortholog of Drosophila transformer-2) in T. castaneum. RNA interference-mediated knockdown in the expression of gene coding for tra-2 in female pupae or adults resulted in the production of male-specific isoform of dsx and both female and male isoforms of tra suggesting that Tra-2 is essential for the female-specific splicing of tra and dsx pre-mRNAs. Interestingly, knockdown of tra-2 in males did not affect the splicing of dsx but resulted in the production of both female and male isoforms of tra suggesting that Tra-2 suppresses female-specific splicing of tra pre-mRNA in males. This dual regulation of sex-specific splicing of tra pre-mRNA ensures a tight regulation of sex determination and maintenance. These data suggest a critical role for Tra-2 in suppression of female sex determination cascade in males. In addition, RNAi studies showed that Tra-2 is also required for successful embryonic and larval development in both sexes.  相似文献   

5.
6.
7.
In the past two decades, scientists have elucidated the molecular mechanisms behind Drosophila sex determination and dosage compensation. These two processes are controlled essentially by two different sets of genes, which have in common a master regulatory gene, Sex-lethal (Sxl). Sxl encodes one of the best-characterized members of the family of RNA binding proteins. The analysis of different mechanisms involved in the regulation of the three identified Sxl target genes (Sex-lethal itself, transformer, and male specific lethal-2) has contributed to a better understanding of translation repression, as well as constitutive and alternative splicing. Studies using the Drosophila system have identified the features of the protein that contribute to its target specificity and regulatory functions. In this article, we review the existing data concerning Sxl protein, its biological functions, and the regulation of its target genes.  相似文献   

8.
9.
In Drosophila melanogaster, regulation of the sex determination genes throughout development occurs by sex-specific splicing of their products. The first gene is Sex-lethal(Sxl). The downstream target of Sxl is the gene transformer (tra): the Sxl protein controls the female-specific splicing of the Tra pre-mRNA. The downstream target of the gene tra is the gene double-sex (dsx): the Tra protein of females, controls the female-specific splicing of the Dsx pre-mRNA. We have identified a gene, female-lethal-2-d fl(2)d, whose function is required for the female-specific splicing of Sxl pre-mRNA. In this report we analyze whether the gene fl(2)d is also required for the sex-specific splicing of both Tra and Dsx pre-mRNAs. We found that the Sxl protein is not sufficient for the female-specific splicing of Tra pre-mRNA, the fl(2)d function also being necessary. This gene, however, is not required for the female-specific splicing of Dsx pre-mRNA.  相似文献   

10.
11.
Endosymbiotic bacteria of the genus Wolbachia often manipulate the reproductive system of their hosts to propagate themselves in host populations. Ostrinia scapulalis moths infected with Wolbachia (wSca) produce female-only progeny (sex chromosomes: ZW), whereas females cured of the infection by antibiotic treatment produce male-only progeny (ZZ). The occurrence of female- and male-only progeny has been attributed to the specific death of the opposite sex during embryonic and larval development. In this bidirectional sex-specific lethality, embryos destined to die express a phenotypic sex opposite to their genotypic sex. On the basis of these findings, we suggested that wSca carries a genetic factor that feminizes the male host, the W chromosome of the host has lost its feminizing function, and discordance between the genotypic and phenotypic sexes underlies this sex-specific death. In the present study, we examined whether the failure of dosage compensation was responsible for this sex-specific mortality. Quantitative PCRs showed that Z-linked gene expression levels in embryos destined to die were not properly dosage compensated; they were approximately two-fold higher in the male progeny of wSca-infected females and approximately two-fold lower in the female progeny of infected-and-cured females. These results support our hypothesis that misdirection of dosage compensation underlies the sex-specific death.  相似文献   

12.
13.
14.
15.
16.
Male-specific expression of the protein male-specific-lethal 2 (MSL-2) controls dosage compensation in Drosophila. msl-2 gene expression is inhibited in females by Sex-lethal (SXL), an RNA binding protein known to regulate pre-mRNA splicing. An intron present at the 5' untranslated region (UTR) of msl-2 mRNA contains putative SXL binding sites and is retained in female flies. Here we show that SXL plays a dual role in the inhibition of msl-2 expression. Cotransfection of Drosophila Schneider cells with an SXL expression vector and a reporter containing the 5' UTR of msl-2 mRNA resulted in retention of the 5' UTR intron and efficient accumulation of the unspliced mRNA in the cytoplasm, where its translation was blocked by SXL, but not by the intron per se. Both splicing and translation inhibition by SXL were recapitulated in vitro and found to be dependent upon SXL binding to high-affinity sites within the intron, showing that SXL directly regulates these events. Our data reveal a coordinated mechanism for the regulation of msl-2 expression by the same regulatory factor: SXL enforces intron retention in the nucleus and subsequent translation inhibition in the cytoplasm.  相似文献   

17.
18.
19.
20.
Watts KM  Hunstad DA 《PloS one》2008,3(10):e3359

Background

SurA is a periplasmic peptidyl-prolyl isomerase (PPIase) and chaperone of Escherichia coli and other Gram-negative bacteria. In contrast to other PPIases, SurA appears to have a distinct role in chaperoning newly synthesized porins destined for insertion into the outer membrane. Previous studies have indicated that the chaperone activity of SurA rests in its “core module” (the N- plus C-terminal domains), based on in vivo envelope phenotypes and in vitro binding and protection of non-native substrates.

Methodology/Principal Findings

In this study, we determined the components of SurA required for chaperone activity using in vivo phenotypes relevant to disease causation by uropathogenic E. coli (UPEC), namely membrane resistance to permeation by antimicrobials and maturation of the type 1 pilus usher FimD. FimD is a SurA-dependent, integral outer membrane protein through which heteropolymeric type 1 pili, which confer bladder epithelial binding and invasion capacity upon uropathogenic E. coli, are assembled and extruded. Consistent with prior results, the in vivo chaperone activity of SurA in UPEC rested primarily in the core module. However, the PPIase domains I and II were not expendable for wild-type resistance to novobiocin in broth culture. Steady-state levels of FimD were substantially restored in the UPEC surA mutant complemented with the SurA N- plus C-terminal domains. The addition of PPIase domain I augmented FimD maturation into the outer membrane, consistent with a model in which domain I enhances stability of and/or substrate binding by the core module.

Conclusions/Significance

Our results confirm the core module of E. coli SurA as a potential target for novel anti-infective development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号