首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Worldwide hundreds of millions of schistosomiasis patients rely on treatment with a single drug, praziquantel. Therapeutic limitations and the threat of praziquantel resistance underline the need to discover and develop next generation drugs.

Methodology

We studied the antischistosomal properties of the Medicines for Malaria Venture (MMV) malaria box containing 200 diverse drug-like and 200 probe-like compounds with confirmed in vitro activity against Plasmodium falciparum. Compounds were tested against schistosomula and adult Schistosoma mansoni in vitro. Based on in vitro performance, available pharmacokinetic profiles and toxicity data, selected compounds were investigated in vivo.

Principal Findings

Promising antischistosomal activity (IC50: 1.4–9.5 µM) was observed for 34 compounds against schistosomula. Three compounds presented IC50 values between 0.8 and 1.3 µM against adult S. mansoni. Two promising early leads were identified, namely a N,N′-diarylurea and a 2,3-dianilinoquinoxaline. Treatment of S. mansoni infected mice with a single oral 400 mg/kg dose of these drugs resulted in significant worm burden reductions of 52.5% and 40.8%, respectively.

Conclusions/Significance

The two candidates identified by investigating the MMV malaria box are characterized by good pharmacokinetic profiles, low cytotoxic potential and easy chemistry and therefore offer an excellent starting point for antischistosomal drug discovery and development.  相似文献   

2.

Background

The white mold fungus Sclerotinia sclerotiorum is a devastating necrotrophic plant pathogen with a remarkably broad host range. The interaction of necrotrophs with their hosts is more complex than initially thought, and still poorly understood.

Results

We combined bioinformatics approaches to determine the repertoire of S. sclerotiorum effector candidates and conducted detailed sequence and expression analyses on selected candidates. We identified 486 S. sclerotiorum secreted protein genes expressed in planta, many of which have no predicted enzymatic activity and may be involved in the interaction between the fungus and its hosts. We focused on those showing (i) protein domains and motifs found in known fungal effectors, (ii) signatures of positive selection, (iii) recent gene duplication, or (iv) being S. sclerotiorum-specific. We identified 78 effector candidates based on these properties. We analyzed the expression pattern of 16 representative effector candidate genes on four host plants and revealed diverse expression patterns.

Conclusions

These results reveal diverse predicted functions and expression patterns in the repertoire of S. sclerotiorum effector candidates. They will facilitate the functional analysis of fungal pathogenicity determinants and should prove useful in the search for plant quantitative disease resistance components active against the white mold.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-336) contains supplementary material, which is available to authorized users.  相似文献   

3.

Background

As plans to expand mass drug treatment campaigns to fight schistosomiasis form, worries about reliance on praziquantel as the sole available treatment motivate the investigation for novel antischistosomal compounds. Drug repurposing might be an inexpensive and effective source of novel antischistosomal leads.

Methodology

1600 FDA approved compounds were first assayed against Schistosoma mansoni schistosomula at a concentration of 10 µM. Active compounds identified from this screen were advanced to the adult worm screen at 33.33 µM, followed by hit characterization. Leads with complementary pharmacokinetic and toxicity profiles were then selected for in vivo studies.

Principal Findings

The in vitro screen identified 121 and 36 compounds active against the schistosomula and adult stage, respectively. Further, in vitro characterization and comparison with already available pharmacokinetic and toxicity data identified 11 in vivo candidates. Doramectin (10 mg/kg) and clofazimine (400 mg/kg) were found to be active in vivo with worm burden reductions of 60.1% and 82.7%, respectively.

Conclusions/Significance

The work presented here expands the knowledge of antischistosomal properties of already approved compounds and underscores variations observed between target-based and phenotypic approaches and among laboratories. The two in vivo-active drugs identified in this study, doramectin and clofazimine are widely available and present as novel drug classes as starting points for further investigation.  相似文献   

4.

Background

Evasion of apoptosis is a hallmark of cancer cells. One mechanism to deregulate the apoptotic pathway is by upregulation of the anti-apoptotic Bcl-2 family members. Navitoclax (ABT-263) is a Bcl-2/Bcl-xL inhibitor that restores the ability of cancer cells to undergo apoptosis.

Methods

In this study we performed a high-throughput screen with 640 FDA-approved drugs to identify potential therapeutic combinations with navitoclax in a non-small cell lung cancer (NSCLC) cell line.

Results

Other than a panel of cancer compounds such as doxorubicin, camptothecin, and docetaxel, four antihelminthic compounds (benzimidazoles) potentiated navitoclax activity. Treatment with benzimidazoles led to induction of the pro-apoptotic protein Noxa at the mRNA and protein level. Noxa binds and antagonizes antiapoptotic protein Mcl-1. siRNA-mediated knock-down of Noxa completely rescued benzimidazole-potentiated navitoclax activity. In addition, inhibiting caspase 3 and 9 partially rescued benzimidazole-potentiated navitoclax activity.

Conclusions

We have identified compounds and mechanisms which potentiate navitoclax activity in lung cancer cell lines. Further validation of the benzimidazole-potentiated navitoclax effect in vivo is required to evaluate the potential for translating this observation into clinical benefit.

Electronic supplementary material

The online version of this article (doi:10.1186/s12935-014-0151-3) contains supplementary material, which is available to authorized users.  相似文献   

5.
Wang S  Yin T  Zeng S  Che H  Yang F  Chen X  Shen G  Wu Z 《PloS one》2012,7(1):e30779

Background

The parasite Schistosoma japonicum causes schistosomiasis disease, which threatens human life and hampers economic and social development in some Asian countries. An important lesson learned from efforts to reduce the occurrence of schistosomiasis is that the diagnostic approach must be altered as further progress is made towards the control and ultimate elimination of the disease.

Methodology/Principal Findings

Using mixed self-assembled monolayer membrane (mixed SAM) technology, a mixture of mercaptopropionic acid (MPA) and mercaptoethanol (ME) was self-assembled on the surface of quartz crystals by gold-sulphur-bonds. Soluble egg antigens (SEA) of S. japonicum were then cross-linked to the quartz crystal using a special coupling agent. As compared with the traditional single self-assembled monolayer immobilization method, S. japonicum antigen (SjAg) immobilization using mixed self-assembled monolayers exhibits much greater immunoreactivity. Under optimal experimental conditions, the detection range is 1∶1500 to 1∶60 (infected rabbit serum dilution ratios). We measured several infected rabbit serum samples with varying S. japonicum antibody (SjAb) concentrations using both immunosensor and ELISA techniques and then produced a correlation analysis. The correlation coefficients reached 0.973.

Conclusions/Significance

We have developed a new, simple, sensitive, and reusable piezoelectric immunosensor that directly detects SjAb in the serum. This method may represent an alternative to the current diagnostic methods for S. japonicum infection in the clinical laboratory or for analysis outside the laboratory.  相似文献   

6.

Background

Helical tomotherapy (HT) and volumetric modulated arc therapy (VMAT) are both advanced techniques of delivering intensity-modulated radiotherapy (IMRT). Here, we conduct a study to compare HT and partial-arc VMAT in their ability to spare organs at risk (OARs) when stereotactic ablative radiotherapy (SABR) is delivered to treat centrally located early stage non-small-cell lung cancer or lung metastases.

Methods

12 patients with centrally located lung lesions were randomly chosen. HT, 2 & 8 arc (Smart Arc, Pinnacle v9.0) plans were generated to deliver 70 Gy in 10 fractions to the planning target volume (PTV). Target and OAR dose parameters were compared. Each technique’s ability to meet dose constraints was further investigated.

Results

HT and VMAT plans generated essentially equivalent PTV coverage and dose conformality indices, while a trend for improved dose homogeneity by increasing from 2 to 8 arcs was observed with VMAT. Increasing the number of arcs with VMAT also led to some improvement in OAR sparing. After normalizing to OAR dose constraints, HT was found to be superior to 2 or 8-arc VMAT for optimal OAR sparing (meeting all the dose constraints) (p = 0.0004). All dose constraints were met in HT plans. Increasing from 2 to 8 arcs could not help achieve optimal OAR sparing for 4 patients. 2/4 of them had 3 immediately adjacent structures.

Conclusion

HT appears to be superior to VMAT in OAR sparing mainly in cases which require conformal dose avoidance of multiple immediately adjacent OARs. For such cases, increasing the number of arcs in VMAT cannot significantly improve OAR sparing.  相似文献   

7.

Background

Gene expression analysis in Leishmania donovani (Ld) identified an orthologue of the urea cycle enzyme, argininosuccinate synthase (LdASS), that was more abundantly expressed in amastigotes than in promastigotes. In order to characterize in detail this newly identified protein in Leishmania, we determined its enzymatic activity, subcellular localization in the parasite and affect on virulence in vivo.

Methodology/Principal Findings

Two parasite cell lines either over expressing wild type LdASS or a mutant form (G128S) associated with severe cases of citrullinemia in humans were developed. In addition we also produced bacterially expressed recombinant forms of the same proteins. Our results demonstrated that LdASS has argininosuccinate synthase enzymatic activity that is abolished using an ASS specific inhibitor (MDLA: methyl-D-L-Aspartic acid). However, the mutant form of the protein is inactive. We demonstrate that though LdASS has a glycosomal targeting signal that binds the targeting apparatus in vitro, only a small proportion of the total cellular ASS is localized in a vesicle, as indicated by protection from protease digestion of the crude organelle fraction. The majority of LdASS was found to be in the cytosolic fraction that may include large cytosolic complexes as indicated by the punctate distribution in IFA. Surprisingly, comparison to known glycosomal proteins by IFA revealed that LdASS was located in a structure different from the known glycosomal vesicles. Significantly, parasites expressing a mutant form of LdASS associated with a loss of in vitro activity had reduced virulence in vivo in BALB/c mice as demonstrated by a significant reduction in the parasite load in spleen and liver.

Conclusion/Significance

Our study suggests that LdASS is an active enzyme, with unique localization and essential for parasite survival and growth in the mammalian host. Based on these observations LdASS could be further explored as a potential drug target.  相似文献   

8.

Background

Resuscitation promoting factors (RPF) are secreted proteins involved in reactivation of dormant actinobacteria, including Mycobacterium tuberculosis. They have been considered as prospective targets for the development of new anti-tuberculosis drugs preventing reactivation of dormant tubercle bacilli, generally associated with latent tuberculosis. However, no inhibitors of Rpf activity have been reported so far. The goal of this study was to find low molecular weight compounds inhibiting the enzymatic and biological activities of Rpfs.

Methodology/Principal Findings

Here we describe a novel class of 2-nitrophenylthiocyanates (NPT) compounds that inhibit muralytic activity of Rpfs with IC50 1–7 µg/ml. Fluorescence studies revealed interaction of active NPTs with the internal regions of the Rpf molecule. Candidate inhibitors of Rpf enzymatic activity showed a bacteriostatic effect on growth of Micrococcus luteus (in which Rpf is essential for growth protein) at concentrations close to IC50. The candidate compounds suppressed resuscitation of dormant (“non-culturable”) cells of M. smegmatis at 1 µg/ml or delayed resuscitation of dormant M. tuberculosis obtained in laboratory conditions at 10 µg/ml. However, they did not inhibit growth of active mycobacteria under these concentrations.

Conclusions/Significance

NPT are the first example of low molecular weight compounds that inhibit the enzymatic and biological activities of Rpf proteins.  相似文献   

9.

Background

A newly identified mechanism of smooth muscle relaxation is the interaction between the small heat shock protein 20 (HSP20) and 14-3-3 proteins. Focusing upon this class of interactions, we describe here a novel drug target screening approach for treating airflow obstruction in asthma.

Methods

Using a high-throughput fluorescence polarization (FP) assay, we screened a library of compounds that could act as small molecule modulators of HSP20 signals. We then applied two quantitative, cell-based biophysical methods to assess the functional efficacy of these molecules and rank-ordered their abilities to relax isolated human airway smooth muscle (ASM). Scaling up to the level of an intact tissue, we confirmed in a concentration-responsive manner the potency of the cell-based hit compounds.

Results

Among 58,019 compound tested, 268 compounds caused 20% or more reduction of the polarized emission in the FP assay. A small subset of these primary screen hits, belonging to two scaffolds, caused relaxation of isolated ASM cell in vitro and attenuated active force development of intact tissue ex vivo.

Conclusions

This staged biophysical screening paradigm provides proof-of-principle for high-throughput and cost-effective discovery of new small molecule therapeutic agents for obstructive lung diseases.  相似文献   

10.

Background

Fracture of the femur is the most frequent late complication in patients with soft tissue sarcomas (STS) who receive external beam radiotherapy after limb-sparing surgery.

Aim

To reduce the risk of bone fracture following radiotherapy of STS of the thigh, we minimized the dose to the femur and to surrounding normal tissues by applying intensity modulated radiation therapy (IMRT). We report preliminary results of post-surgery IMRT of the thigh in patients with STS in this extremity.

Materials and methods

10 adult patients undergoing post-operative radiotherapy of STS of the thigh were treated using IMRT. Clinical IMRT plans with simultaneous integrated boost (SIB) and 3-phase three-dimensional conformal radiotherapy (3D-CRT) were designed to adequately treat the planning target volume and to spare the femur to the largest extent possible. Dose distributions and dose-volume histograms were compared.

Results

For either technique, a comparable target coverage was achieved; however, target volume was better covered and critical structures were better spared in IMRT plans. Mean and maximum doses to OAR structures were also significantly reduced in the IMRT plans. On average, the mean dose to the femur in 3D-CRT plans was about two times higher than that in IMRT plans.

Conclusion

Compared with 3D-CRT, the application of IMRT improves the dose distribution within the concave target volumes and reduces dose to the OAR structures without compromising target coverage.  相似文献   

11.

Background

The treatment and control of schistosomiasis, an often neglected tropical disease that exacerbates poverty, depends on a single drug, praziquantel. The large-scale use of praziquantel might select for drug-resistant parasites, hence there is a need to develop new antischistosomal compounds. Here, we report that the antimalarial drug mefloquine possesses promising antischistosomal properties in mice.

Methodology/Principal Findings

A single dose of mefloquine (200 or 400 mg/kg) administered orally to mice infected with adult Schistosoma mansoni or adult S. japonicum resulted in high or complete total and female worm burden reductions (72.3%–100%). Importantly, high worm burden reductions were also observed for young developing stages of S. mansoni and S. japonicum harbored in the mouse. Both mefloquine erythro-enantiomers resulted in high and comparable total and female worm burden reductions when given to mice with either a sub-patent or patent S. mansoni infection.

Conclusions/Significance

Our findings hold promise for the development of a novel antischistosomal drug based on an aminoalcohol functionality. Further in vitro and in vivo studies have been launched to elucidate the possible mechanism of action and to study the effect of mefloquine on S. haematobium and other trematodes. It will be interesting to investigate whether mefloquine, which is widely and effectively used for the treatment of malaria, has an impact on schistosomiasis in areas where both malaria and schistosomiasis co-exist.  相似文献   

12.

Background

Presynaptically neurotoxic phospholipases A2 inhibit synaptic vesicle recycling through endocytosis.

Principal Findings

Here we provide insight into the action of a presynaptically neurotoxic phospholipase A2 ammodytoxin A (AtxA) on clathrin-dependent endocytosis in budding yeast. AtxA caused changes in the dynamics of vesicle formation and scission from the plasma membrane in a phospholipase activity dependent manner. Our data, based on synthetic dosage lethality screen and the analysis of the dynamics of sites of endocytosis, indicate that AtxA impairs the activity of amphiphysin.

Conclusions

We identified amphiphysin and endocytosis as the target of AtxA intracellular activity. We propose that AtxA reduces endocytosis following a mechanism of action which includes both a specific protein–protein interaction and enzymatic activity, and which is applicable to yeast and mammalian cells. Knowing how neurotoxic phospholipases A2 work can open new ways to regulate endocytosis.  相似文献   

13.

Background

For over two decades, a racemic mixture of oxamniquine (OXA) was administered to patients infected by Schistosoma mansoni, but whether one or both enantiomers exert antischistosomal activity was unknown. Recently, a ~30 kDa S. m ansoni sulfotransferase (SmSULT) was identified as the target of OXA action.

Methodology/Principal Findings

Here, we separate the OXA enantiomers using chromatographic methods and assign their optical activities as dextrorotary [(+)-OXA] or levorotary [(-)-OXA]. Crystal structures of the parasite enzyme in complex with optically pure (+)-OXA and (-)-OXA) reveal their absolute configurations as S- and R-, respectively. When tested in vitro, S-OXA demonstrated the bulk of schistosomicidal activity, while R-OXA had antischistosomal effects when present at relatively high concentrations. Crystal structures R-OXA•SmSULT and S-OXA•SmSULT complexes reveal similarities in the modes of OXA binding, but only the S-OXA enantiomer is observed in the structure of the enzyme exposed to racemic OXA.

Conclusions/Significance

Together the data suggest the higher schistosomicidal activity of S-OXA is correlated with its ability to outcompete R-OXA binding the sulfotransferase active site. These findings have important implications for the design, syntheses, and dosing of new OXA-based antischistosomal compounds.  相似文献   

14.
Chi A  Liao Z  Nguyen NP  Xu J  Welsh JS  Jang SY  Howe C  Komaki R 《PloS one》2012,7(4):e35809

Background

No selection criteria for helical tomotherapy (HT) based stereotactic ablative radiotherapy (SABR) to treat early stage non-small cell lung cancer (NSCLC) or solitary lung metastases has been established. In this study, we investigate the dosimetric selection criteria for HT based SABR delivering 70 Gy in 10 fractions to avoid severe toxicity in the treatment of centrally located lesions when adequate target dose coverage is desired.

Materials and Methods

78 HT-SABR plans for solitary lung lesions were created to prescribe 70 Gy in 10 fractions to the planning target volume (PTV). The PTV was set to have ≥95% PTV receiving 70 Gy in each case. The cases for which dose constraints for ≥1 OAR could not be met without compromising the target dose coverage were compared with cases for which all target and OAR dose constraints were met.

Results

There were 23 central lesions for which OAR dose constraints could not be met without compromising PTV dose coverage. Comparing to cases for which optimal HT-based SABR plans were generated, they were associated with larger tumor size (5.72±1.96 cm vs. 3.74±1.49 cm, p<0.0001), higher lung dose, increased number of immediately adjacent OARs ( 3.45±1.34 vs. 1.66±0.81, p<0.0001), and shorter distance to the closest OARs (GTV: 0.26±0.22 cm vs. 0.88±0.54 cm, p<0.0001; PTV 0.19±0.18 cm vs. 0.48±0.36 cm, p = 0.0001).

Conclusion

Delivery of 70 Gy in 10 fractions with HT to meet all the given OAR and PTV dose constraints are most likely when the following parameters are met: lung lesions ≤3.78 cm (11.98 cc), ≤2 immediately adjacent OARs which are ≥0.45 cm from the gross lesion and ≥0.21 cm from the PTV.  相似文献   

15.

Background

Psalmopeotoxin I (PcFK1), a protein of 33 aminoacids derived from the venom of the spider Psalmopoeus Cambridgei, is able to inhibit the growth of Plasmodium falciparum malaria parasites with an IC in the low micromolar range. PcFK1 was proposed to act as an ion channel inhibitor, although experimental validation of this mechanism is lacking. The surface loops of PcFK1 have some sequence similarity with the parasite protein sequences cleaved by PfSUB1, a subtilisin-like protease essential for egress of Plasmodium falciparum merozoites and invasion into erythrocytes. As PfSUB1 has emerged as an interesting drug target, we explored the hypothesis that PcFK1 targeted PfSUB1 enzymatic activity.

Findings

Molecular modeling and docking calculations showed that one loop could interact with the binding site of PfSUB1. The calculated free energy of binding averaged −5.01 kcal/mol, corresponding to a predicted low-medium micromolar constant of inhibition. PcFK1 inhibited the enzymatic activity of the recombinant PfSUB1 enzyme and the in vitro P.falciparum culture in a range compatible with our bioinformatics analysis. Using contact analysis and free energy decomposition we propose that residues A14 and Q15 are important in the interaction with PfSUB1.

Conclusions

Our computational reverse engineering supported the hypothesis that PcFK1 targeted PfSUB1, and this was confirmed by experimental evidence showing that PcFK1 inhibits PfSUB1 enzymatic activity. This outlines the usefulness of advanced bioinformatics tools to predict the function of a protein structure. The structural features of PcFK1 represent an interesting protein scaffold for future protein engineering.  相似文献   

16.
Song L  Li J  Xie S  Qian C  Wang J  Zhang W  Yin X  Hua Z  Yu C 《PloS one》2012,7(2):e31456

Background

Schistosomiasis remains a major public health concern affecting billions of people around the world. Currently, praziquantel is the only drug of choice for treatment of human schistosomiasis. The emergence of drug resistance to praziquantel in schistosomes makes the development of novel drugs an urgent task. Thioredoxin glutathione reductase (TGR) enzymes in Schistosoma mansoni and some other platyhelminths have been identified as alternative targets. The present study was designed to confirm the existense and the potential value of TGR as a target for development of novel antischistosomal agents in Schistosoma japonicum, a platyhelminth endemic in Asia.

Methods and Findings

After cloning the S. japonicum TGR (SjTGR) gene, the recombinant SjTGR selenoprotein was purified and characterized in enzymatic assays as a multifunctional enzyme with thioredoxin reductase (TrxR), glutathione reductase (GR) and glutaredoxin (Grx) activities. Immunological and bioinformatic analyses confirmed that instead of having separate TrxR and GR proteins in mammalian, S. japonicum only encodes TGR, which performs the functions of both enzymes and plays a critical role in maintaining the redox balance in this parasite. These results were in good agreement with previous findings in Schistosoma mansoni and some other platyhelminths. Auranofin, a known inhibitor against TGR, caused fatal toxicity in S. japonicum adult worms in vitro and reduced worm and egg burdens in S. japonicum infected mice.

Conclusions

Collectively, our study confirms that a multifunctional enzyme SjTGR selenoprotein, instead of separate TrxR and GR enzymes, exists in S. japonicum. Furthermore, TGR may be a potential target for development of novel agents against schistosomes. This assumption is strengthened by our demonstration that the SjTGR is an essential enzyme for maintaining the thiol-disulfide redox homeostasis of S. japonicum.  相似文献   

17.

Background

The Ottawa ankle rules (OAR) are clinical decision guidelines used to identify whether patients with ankle injuries need to undergo radiography. The OAR have been proven that their application reduces unnecessary radiography. They have nearly perfect sensitivity for identifying clinically significant ankle fractures.

Objectives

The purpose of this study was to assess the applicability of the OAR in China, to examine their accuracy for the diagnosis of fractures in patients with acute ankle sprains, and to assess their clinical utility for the detection of occult fractures.

Methods

In this prospective study, patients with acute ankle injuries were enrolled during a 6-month period. The eligible patients were examined by emergency orthopedic specialists using the OAR, and then underwent ankle radiography. The results of examination using the OAR were compared with the radiographic results to assess the accuracy of the OAR for ankle fractures. Patients with OAR results highly suggestive of fracture, but no evidence of a fracture on radiographs, were advised to undergo 3-dimensional computed tomography (3D-CT).

Results

183 patients with ankle injuries were enrolled in the study and 63 of these injuries involved fractures. The pooled sensitivity, specificity, positive predictive value and negative predictive value of the OAR for detection of fractures of the ankle were 96.8%, 45.8%, 48.4% and 96.5%, respectively. Our results suggest that clinical application of the OAR could decrease unnecessary radiographs by 31.1%. Of the 21 patients with positive OAR results and negative radiographic findings who underwent 3D-CT examination, five had occult fractures of the lateral malleolus.

Conclusions

The OAR are applicable in the Chinese population, and have high sensitivity and modest specificity for the diagnosis of fractures associated with acute ankle injury. They may detect some occult fractures of the malleoli that are not visible on radiographs.  相似文献   

18.

Background

The Vibrio parahaemolyticus type III secreted effector VopS contains a fic domain that covalently modifies Rho GTPase threonine with AMP to inhibit downstream signaling events in host cells. The VopS fic domain includes a conserved sequence motif (HPFx[D/E]GN[G/K]R) that contributes to AMPylation. Fic domains are found in a variety of species, including bacteria, a few archaea, and metazoan eukaryotes.

Methodology/Principal Findings

We show that the AMPylation activity extends to a eukaryotic fic domain in Drosophila melanogaster CG9523, and use sequence and structure based computational methods to identify related domains in doc toxins and the type III effector AvrB. The conserved sequence motif that contributes to AMPylation unites fic with doc. Although AvrB lacks this motif, its structure reveals a similar topology to the fic and doc folds. AvrB binds to a peptide fragment of its host virulence target in a similar manner as fic binds peptide substrate. AvrB also orients a phosphate group from a bound ADP ligand near the peptide-binding site and in a similar position as a bound fic phosphate.

Conclusions/Significance

The demonstrated eukaryotic fic domain AMPylation activity suggests that the VopS effector has exploited a novel host posttranslational modification. Fic domain-related structures give insight to the AMPylation active site and to the VopS fic domain interaction with its host GTPase target. These results suggest that fic, doc, and AvrB stem from a common ancestor that has evolved to AMPylate protein substrates.  相似文献   

19.
Kajla MK  Shi L  Li B  Luckhart S  Li J  Paskewitz SM 《PloS one》2011,6(5):e19649

Background

Plasmodium requires an obligatory life stage in its mosquito host. The parasites encounter a number of insults while journeying through this host and have developed mechanisms to avoid host defenses. Lysozymes are a family of important antimicrobial immune effectors produced by mosquitoes in response to microbial challenge.

Methodology/Principal Findings

A mosquito lysozyme was identified as a protective agonist for Plasmodium. Immunohistochemical analyses demonstrated that Anopheles gambiae lysozyme c-1 binds to oocysts of Plasmodium berghei and Plasmodium falciparum at 2 and 5 days after infection. Similar results were observed with Anopheles stephensi and P. falciparum, suggesting wide occurrence of this phenomenon across parasite and vector species. Lysozyme c-1 did not bind to cultured ookinetes nor did recombinant lysozyme c-1 affect ookinete viability. dsRNA-mediated silencing of LYSC-1 in Anopheles gambiae significantly reduced the intensity and the prevalence of Plasmodium berghei infection. We conclude that this host antibacterial protein directly interacts with and facilitates development of Plasmodium oocysts within the mosquito.

Conclusions/Significance

This work identifies mosquito lysozyme c-1 as a positive mediator of Plasmodium development as its reduction reduces parasite load in the mosquito host. These findings improve our understanding of parasite development and provide a novel target to interrupt parasite transmission to human hosts.  相似文献   

20.

Background

Neglected tropical diseases, including diseases caused by trypanosomatid parasites such as Trypanosoma brucei, cost tens of millions of disability-adjusted life-years annually. As the current treatments for African trypanosomiasis and other similar infections are limited, new therapeutics are urgently needed. RNA Editing Ligase 1 (REL1), a protein unique to trypanosomes and other kinetoplastids, was identified recently as a potential drug target.

Methodology/Principal Findings

Motivated by the urgent need for novel trypanocidal therapeutics, we use an ensemble-based virtual-screening approach to discover new naphthalene-based TbREL1 inhibitors. The predicted binding modes of the active compounds are evaluated within the context of the flexible receptor model and combined with computational fragment mapping to determine the most likely binding mechanisms. Ultimately, four new low-micromolar inhibitors are presented. Three of the four compounds may bind to a newly revealed cleft that represents a putative druggable site not evident in any crystal structure.

Conclusions/Significance

Pending additional optimization, the compounds presented here may serve as precursors for future novel therapies useful in the fight against several trypanosomatid pathogens, including human African trypanosomiasis, a devastating disease that afflicts the vulnerable patient populations of sub-Saharan Africa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号