首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Free radical research》2013,47(10):1258-1266
Abstract

Objectives: The aim of the present study was to investigate the potential importance of oxidative stress, measured by isoprostanes-related compounds, as non-traditional risk factor for cardiovascular disease. We planned to examine the relationship between concentrations of plasma F2-isoprostanes (F2-IsoPs), isofurans (IsoFs), measures of obesity and various cardiometabolic risk factors. Materials and methods: Cross-sectional study using a sub-sample from the population of a survey conducted in the summer and fall 2007 and 2008 by Canadian Coastguard Ship Amundsen in 36 Canadian Arctic Inuit communities. Subjects included a subset (n =?233) of a total study population (n =?2595) with a mean age 42.56 ± 15.39 years and body mass index 27.78 ± 5.65 kg/m2. Plasma levels of F2-IsoPs and IsoFs was determined by gas chromatography/negative ion chemical ionization/mass spectrometry (GC/NICI/MS) method; and their relationships to waist circumference (WC), blood pressure C reactive proteins (CRP), blood lipids and fasting glucose were assessed by multivariate analyses. Results: Plasma F2-IsoPs correlated positively with CRP (r =.132, P =.048) and systolic blood pressure (SBP) (r =.157, P =.024) after adjustment for age, sex and body mass index. IsoFs correlated with WC (r =.190, P =.005) and SBP (r =.137, P =.048). F2-IsoPs were not found elevated in smokers (P =.034), whereas IsoFs were decreased in smokers (P =.001). WC, SBP and sex were found to be major correlates of oxidative stress in Canadian Inuit. Conclusions: Plasma measures of F2-IsoPs and IsoFs increase with increased obesity and associated cardiometabolic risk factors, including CRP and blood pressure. Simultaneous measurement of IsoFs provides an advantageous mechanistic insight into oxidative stress not captured by F2-IsoPs alone.  相似文献   

2.
Abstract Objectives: The aim of the present study was to investigate the potential importance of oxidative stress, measured by isoprostanes-related compounds, as non-traditional risk factor for cardiovascular disease. We planned to examine the relationship between concentrations of plasma F(2)-isoprostanes (F(2)-IsoPs), isofurans (IsoFs), measures of obesity and various cardiometabolic risk factors. Materials and methods: Cross-sectional study using a sub-sample from the population of a survey conducted in the summer and fall 2007 and 2008 by Canadian Coastguard Ship Amundsen in 36 Canadian Arctic Inuit communities. Subjects included a subset (n =?233) of a total study population (n =?2595) with a mean age 42.56 ± 15.39 years and body mass index 27.78 ± 5.65 kg/m(2). Plasma levels of F(2)-IsoPs and IsoFs was determined by gas chromatography/negative ion chemical ionization/mass spectrometry (GC/NICI/MS) method; and their relationships to waist circumference (WC), blood pressure C reactive proteins (CRP), blood lipids and fasting glucose were assessed by multivariate analyses. Results: Plasma F(2)-IsoPs correlated positively with CRP (r =.132, P =.048) and systolic blood pressure (SBP) (r =.157, P =.024) after adjustment for age, sex and body mass index. IsoFs correlated with WC (r =.190, P =.005) and SBP (r =.137, P =.048). F2-IsoPs were not found elevated in smokers (P =.034), whereas IsoFs were decreased in smokers (P =.001). WC, SBP and sex were found to be major correlates of oxidative stress in Canadian Inuit. Conclusions: Plasma measures of F(2)-IsoPs and IsoFs increase with increased obesity and associated cardiometabolic risk factors, including CRP and blood pressure. Simultaneous measurement of IsoFs provides an advantageous mechanistic insight into oxidative stress not captured by F(2)-IsoPs alone.  相似文献   

3.
The development of a specific, reliable and noninvasive method for measuring oxidative stress in humans is essential for establishing the role of free radicals in human diseases. Currently, accurate techniques to assess oxidant injury in vivo are extremely limited although a number of approaches are being investigated. Of these, the measurement of specific products of nonenzymatic lipid peroxidation, the F2-isoprostanes (F2-IsoPs), appears to be a more accurate marker of oxidative stress in vivo in humans than other available methods. The purpose of this brief review is to acquaint the reader with the IsoPs from a biochemical perspective and to provide information regarding the utility of quantifying these compounds as indicators of oxidant stress.  相似文献   

4.
5.
ObjectiveWe aimed to assess whether oxidative stress is a predictor of mortality in HIV-infected patients.MethodsWe conducted a nested case-control study in CoRIS, a contemporary, multicentre cohort of HIV-infected patients, antiretroviral-naïve at entry, launched in 2004. Cases were patients who died with available stored plasma samples collected. Two age and sex-matched controls for each case were selected. We measured F2-isoprostanes (F2-IsoPs) and malondialdehyde (MDA) plasma levels in the first blood sample obtained after cohort engagement.Results54 cases and 93 controls were included. Median F2-IsoPs and MDA levels were significantly higher in cases than in controls. When adjustment was performed for age, HIV-transmission category, CD4 cell count and HIV viral load at cohort entry, and subclinical inflammation measured with highly-sensitive C-reactive protein (hsCRP), the association of F2-IsoPs with mortality remained significant (adjusted OR per 1 log10 increase, 2.34 [1.23–4.47], P = 0.009). The association of MDA with mortality was attenuated after adjustment: adjusted OR (95% CI) per 1 log10 increase, 2.05 [0.91–4.59], P = 0.080. Median hsCRP was also higher in cases, and it also proved to be an independent predictor of mortality in the adjusted analysis: OR (95% CI) per 1 log10 increase, 1.39 (1.01–1.91), P = 0.043; and OR (95% CI) per 1 log10 increase, 1.46 (1.07–1.99), P = 0.014, respectively, when adjustment included F2-IsoPs and MDA.ConclusionOxidative stress is a predictor of all-cause mortality in HIV-infected patients. For plasma F2-IsoPs, this association is independent of HIV-related factors and subclinical inflammation.  相似文献   

6.
Oxidative damage has been implicated in the pathogenesis of Parkinson disease (PD) but the literature data are confusing. Using products of lipid and DNA oxidation measured by accurate methods, we assessed the extent of oxidative damage in PD patients. The levels of plasma F2-isoprostanes (F2-IsoPs), hydroxyeicosatetraenoic acid products (HETEs), cholesterol oxidation products, neuroprostanes (F4-NPs), phospholipase A2 (PLA2) and platelet activating factor–acetylhydrolase (PAF-AH) activities, urinary 8-hydroxy-2′-deoxyguanosine (8-OHdG), and serum high-sensitivity C-reactive protein were compared in 61 PD patients and 61 age-matched controls. The levels of plasma F2-IsoPs, HETEs, 7β-and 27-hydroxycholesterol, 7-ketocholesterol, F4-NPs, and urinary 8-OHdG were elevated, whereas the levels of plasma PLA2 and PAF-AH activities were lower, in PD patients compared to controls (p <  0.05). The levels of plasma F2-IsoPs, HETEs, and urinary 8-OHdG were higher in the early stages of PD (p trend <  0.05). There was a significant negative correlation between the cumulative intake of levodopa and urinary 8-OHdG (r =  ?0.305, p =  0.023) and plasma total HETEs (r =  ?0.285, p =  0.043). Oxidative damage markers are systemically elevated in PD, which may give clues about the relation of oxidative damage to the onset and progression of PD.  相似文献   

7.
《Free radical research》2013,47(12):1419-1430
Several events occurring during the secondary damage of traumatic brain injury (TBI) can cause oxidative stress. F2-isoprostanes (F2-IsoPs) and F4-neuroprostanes (F4-NPs) are specific lipid peroxidation markers generated from arachidonic acid and docosahexaenoic acid, respectively. In this study, we evaluated oxidative stress in patients with moderate and severe TBI. Since sedatives are routinely used to treat TBI patients and propofol has been considered an antioxidant, TBI patients were randomly treated with propofol or midazolam for 72 h postoperation. We postoperatively collected cerebrospinal fluid (CSF) and plasma from 15 TBI patients for 6–10 d and a single specimen of CSF or plasma from 11 controls. Compared with the controls, the TBI patients exhibited elevated levels of F2-IsoPs and F4-NPs in CSF throughout the postsurgery period regardless of the sedative used. Compared with the group of patients who received midazolam, those who received propofol exhibited markedly augmented levels of plasma F2-IsoPs, which were associated with higher F4-NPs levels and lower total nitrate/nitrite levels in CSF early in the postsurgery period. Furthermore, the higher CSF F2-IsoPs levels correlated with 6-month and 12-month worse outcomes, which were graded according to the Glasgow Outcome Scale. The results demonstrate enhanced oxidative damage in the brain of TBI patients and the association of higher CSF levels of F2-IsoPs with a poor outcome. Moreover, propofol treatment might promote lipid peroxidation in the circulation, despite possibly suppressing nitric oxide or peroxynitrite levels in CSF, because of the increased loading of the lipid components from the propofol infusion.  相似文献   

8.
Little is known about the effects of NaCl stress on perennial ryegrass (Lolium perenne L.) photosynthesis and carbohydrate flux. The objective of this study was to understand the carbohydrate metabolism and identify the gene expression affected by salinity stress. Seventy-four days old seedlings of two perennial ryegrass accessions (salt-sensitive ‘PI 538976’ and salt-tolerant ‘Overdrive’) were subjected to three levels of salinity stress for 5 days. Turf quality in all tissues (leaves, stems and roots) of both grass accessions negatively and significantly correlated with GFS (Glu+Fru+Suc) content, except for ‘Overdrive’ stems. Relative growth rate (RGR) in leaves negatively and significantly correlated with GFS content in ‘Overdrive’ (P<0.01) and ‘PI 538976’ (P<0.05) under salt stress. ‘Overdrive’ had higher CO2 assimilation and Fv/Fm than ‘PI 538976’. Intercellular CO2 concentration, however, was higher in ‘PI 538976’ treated with 400 mM NaCl relative to that with 200 mM NaCl. GFS content negatively and significantly correlated with RGR in ‘Overdrive’ and ‘PI 538976’ leaves and in ‘PI 538976’ stems and roots under salt stress. In leaves, carbohydrate allocation negatively and significantly correlated with RGR (r2 = 0.83, P<0.01) and turf quality (r2 = 0.88, P<0.01) in salt-tolerant ‘Overdrive’, however, the opposite trend for salt-sensitive ‘PI 538976’ (r2 = 0.71, P<0.05 for RGR; r2 = 0.62, P>0.05 for turf quality). A greater up-regulation in the expression of SPS, SS, SI, 6-SFT gene was observed in ‘Overdrive’ than ‘PI 538976’. A higher level of SPS and SS expression in leaves was found in ‘PI 538976’ relative to ‘Overdrive’. Accumulation of hexoses in roots, stems and leaves can induce a feedback repression to photosynthesis in salt-stressed perennial ryegrass and the salt tolerance may be changed with the carbohydrate allocation in leaves and stems.  相似文献   

9.
Low HDL cholesterol (HDL-C) is a risk factor for coronary artery disease (CAD). However, interventions that raise HDL-C have failed to reduce cardiovascular events. We previously reported that HDL is the main carrier of plasma F2-isoprostanes (F2-IsoPs) that are markers of oxidative stress formed upon oxidation of arachidonic acid. F2-IsoPs are predominantly associated with phospholipids. However, there is evidence that F2-IsoPs in the liver of rats treated with carbon tetrachloride associate with the neutral lipids. To date it is not known whether F2-IsoPs are found in the neutral lipids in HDL in humans. Possible candidate neutral lipids include cholesteryl esters, triglycerides, diglycerides, and monoglycerides. This study aimed to identify the lipid classes within native and oxidized HDL that contain F2-IsoPs. We showed that F2-IsoPs in HDL are bound to neutral lipids as well as phospholipids. HDL-3 contained the highest concentration of F2-IsoPs in all lipid classes before and after in vitro oxidation. Using targeted LC/MS and high resolution MS, we were unable to provide conclusive evidence for the presence of the synthesized standards 15(R)-15-F2t-isoP cholesterol and 1-ent-15(RS)-15-F2t-isoprostanoyl-sn-glycerol in the neutral lipids of HDL. Our findings show that oxidized lipids such as F2-IsoPs are found in the core and surface of HDL. However, the exact molecular species remain to be definitively characterized. Future studies are required to determine whether the presence of F2-IsoPs in neutral lipids alters HDL function.  相似文献   

10.
It is widely believed that oxidative stress plays an important role in the pathogenesis of type II diabetes. The present study was undertaken to examine the functioning of two antioxidant scavenger enzymes, superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), in erythrocytes in a population of healthy aging adult women compared with a similar population with type II diabetes. Blood samples were examined from 42 female adult healthy subjects at different ages and from 59 female patients with type II diabetes. A significant increase in SOD activities was correlated with aging in erythrocytes of the healthy control subjects (r = .550, P = .001); however, this correlation was not found in subjects with type II diabetes (r = .250, P < .07). A trend showing a reduction in glutathione peroxidase activities was demonstrated with aging (r = −.331, P = .228); however, this trend was not found in diabetic subjects (r = .031, P < .820). The results indicate a possible imbalance in the antioxidant system in erythrocytes of aging adult women, which is even more pronounced in cases of type II diabetes. This study may indicate possible therapeutic treatment or preventive measures to limit oxidative damage and reduce complications of diabetes.  相似文献   

11.
Animal experiments show that the kidney contributes to apolipoprotein (apo)A-I catabolism. We tested relationships of HDL cholesterol (HDL-C) and apo-I with kidney function in subjects without severe chronic kidney disease. Included was a random sample of the general population (part of the PREVEND cohort). Kidney function [estimated glomerular filtration rate (e-GFR) by two well-established equations and creatinine clearance], HDL-C, triglycerides, apoA-I and insulin resistance (HOMAir) were measured in 2,484 fasting subjects (e-GFR≥45 ml/min/1.73m2) without macroalbuminuria, cardiovascular disease, diabetes, or the use of anti-hypertensives and/or lipid-lowering agents. HDL-C (r = −0.056 to −0.102, P < 0.01 to < 0.001) and apo A-I (r = −0.096 to −0.126, P < 0.001) were correlated inversely with both GFR estimates and creatinine clearance in univariate analyses. Multiple linear regression analyses also demonstrated inverse relationships of HDL-C and apoA-I with all measures of kidney function even after adjustment for age, sex, waist circumference, HOMAir, triglycerides, and urinary albumin excretion (P = 0.053 to 0.004). In conclusion, HDL-C and apoA-I are inversely related to e-GFR and creatinine clearance in subjects without severely compromised kidney function, which fits the concept that the kidney contributes to apoA-I regulation in humans. High glomerular filtration rate may be an independent determinant of a pro-atherogenic lipoprotein profile.  相似文献   

12.
Aneurysmal subarachnoid hemorrhage (aSAH) is one type of hemorrhagic stroke in humans. F2-isoprostanes (F2-IsoPs) and F4-neuroprostanes (F4-NPs), derived from arachidonic acid and docosahexaenoic acid (DHA), respectively, are specific markers of lipid peroxidation. We previously demonstrated that F2-IsoPs levels in cerebrospinal fluid (CSF) of aSAH patients positively correlated with poor clinical conditions. In this work, we refined F4-NPs analysis and investigated the role of potential oxidative damage to neurons in aSAH patients by detecting F4-NPs in CSF. [2H4]-15-F2t-IsoP, rather than [18O2]-17-F4c-NP or [2H4]-PGF, was used as the internal standard for F4-NPs analysis. One problem of the use of [18O2]-17-F4c-NP was the potential interference resulting from F2-dihomo-IsoPs in CSF. CSF specimens of 15 aSAH patients for up to 10 days and those of 12 non-aSAH controls were analyzed. First day, mean, and peak levels of F4-NPs were all significantly higher in aSAH patients than in controls and correlated with the Fisher Scale and 3-month Glasgow Outcome Scale, but only mean levels of F4-NPs correlated with Hunt and Hess Grade. The results first demonstrate oxidative damage to DHA in brain tissue following aSAH and suggest that F4-NPs in CSF could be a better predictor for outcome of aSAH than F2-IsoPs at early time points.  相似文献   

13.
Results from prevention trials, including the Alzheimer''s Disease Anti-inflammatory Prevention Trial (ADAPT), have fueled discussion about the cardiovascular (CV) risks associated with non-steroidal anti-inflammatory drugs (NSAIDs). We tested the hypotheses that (i) adverse CV events reported among ADAPT participants (aged 70 years and older) are associated with increased ratio of urine 11-dehydrothromboxane B2 (Tx-M) to 2′3-donor–6-keto-PGF1 (PGI-M) attributable to NSAID treatments; (ii) coincident use of aspirin (ASA) would attenuate NSAID-induced changes in Tx-M/PGI-M ratio; and (iii) use of NSAIDs and/or ASA would not alter urine or plasma concentrations of F2-isoprostanes (IsoPs), in vivo biomarkers of free radical damage. We quantified urine Tx-M and PGI-M, and urine and plasma F2-IsoPs from 315 ADAPT participants using stable isotope dilution assays with gas chromatography/mass spectrometry, and analyzed these data by randomized drug assignment and self-report compliance as well as ASA use. Adverse CV events were significantly associated with higher urine Tx-M/PGI-M ratio, which seemed to derive mainly from lowered PGI-M. Participants taking ASA alone had reduced urine Tx-M/PGI-M compared to no ASA or NSAID; however, participants taking NSAIDs plus ASA did not have reduced urine Tx-M/PGI-M ratio compared to NSAIDs alone. Neither NSAID nor ASA use altered plasma or urine F2-IsoPs. These data suggest a possible mechanism for the increased risk of CV events reported in ADAPT participants assigned to NSAIDs, and suggest that the changes in the Tx-M/PGI-M ratio was not substantively mitigated by coincident use of ASA in individuals 70 years or older.  相似文献   

14.
Escherichia coli O157:H7 (EcO157) associated with the 2006 spinach outbreak appears to have persisted as the organism was isolated, three months after the outbreak, from environmental samples in the produce production areas of the central coast of California. Survival in harsh environments may be linked to the inherent fitness characteristics of EcO157. This study evaluated the comparative fitness of outbreak-related clinical and environmental strains to resist protozoan predation and survive in soil from a spinach field in the general vicinity of isolation of strains genetically indistinguishable from the 2006 outbreak strains. Environmental strains from soil and feral pig feces survived longer (11 to 35 days for 90% decreases, D-value) with Vorticella microstoma and Colpoda aspera, isolated previously from dairy wastewater; these D-values correlated (P<0.05) negatively with protozoan growth. Similarly, strains from cow feces, feral pig feces, and bagged spinach survived significantly longer in soil compared to clinical isolates indistinguishable by 11-loci multi-locus variable-number tandem-repeat analysis. The curli-positive (C+) phenotype, a fitness trait linked with attachment in ruminant and human gut, decreased after exposure to protozoa, and in soils only C cells remained after 7 days. The C+ phenotype correlated negatively with D-values of EcO157 exposed to soil (r s = −0.683; P = 0.036), Vorticella (r s = −0.465; P = 0.05) or Colpoda (r s = −0.750; P = 0.0001). In contrast, protozoan growth correlated positively with C+ phenotype (Vorticella, r s = 0.730, P = 0.0004; Colpoda, r s = 0.625, P = 0.006) suggesting a preference for consumption of C+ cells, although they grew on C strains also. We speculate that the C phenotype is a selective trait for survival and possibly transport of the pathogen in soil and water environments.  相似文献   

15.
F2-isoprostanes (F2-IsoPs) are well-established sensitive and specific markers of oxidative stress in vivo. Isofurans (IsoFs) are also products of lipid peroxidation, but in contrast to F2-IsoPs, their formation is favored when oxygen tension is increased in vitro or in vivo. Mitochondrial dysfunction in Parkinson's disease (PD) may not only lead to oxidative damage to brain tissue but also potentially result in increased intracellular oxygen tension, thereby influencing relative concentrations of F2-IsoPs and IsoFs. In this study, we attempted to compare the levels of F2-IsoPs and IsoFs esterified in phospholipids in the substantia nigra (SN) from patients with PD to those of age-matched controls as well as patients with other neurodegenerative diseases, including dementia with Lewy body disease (DLB), multiple system atrophy (MSA), and Alzheimer's disease (AD). The results demonstrated that IsoFs but not F2-IsoPs in the SN of patients with PD and DLB were significantly higher than those of controls. Levels of IsoFs and F2-IsoPs in the SN of patients with MSA and AD were indistinguishable from those of age-matched controls. This preferential increase in IsoFs in the SN of patients with PD or DLB not only indicates a unique mode of oxidant injury in these two diseases but also suggests different underlying mechanisms of dopaminergic neurodegeneration in PD and DLB from those of MSA.  相似文献   

16.
Turner NC 《Plant physiology》1974,53(3):360-365
Diurnal changes in the vertical profiles of irradiance incident upon the adaxial leaf surface (I), leaf resistance (r1), leaf water potential (ψ), osmotic potential (π), and turgor potential (P) were followed concurrently in crops of maize (Zea mays L. cv. Pa602A), sorghum (Sorghum bicolor [L.] Moench cv. RS 610), and tobacco (Nicotiana tabacum L. cv. Havanna Seed 211) on several days in 1968 to 1970 when soil water potentials were low. The r1, measured with a ventilated diffusion porometer, of the leaves in the upper canopy decreased temporarily after sunrise [~0530 hours Eastern Standard Time] as I increased, but then r1 increased again between 0700 and 0830 hr Eastern Standard Time as the ψ, measured with a pressure chamber, decreased rapidly from the values of −7, −4 and −6 bars at sunrise to minimal values of −18, −22 and −15 bars near midday in the maize, sorghum, and tobacco, respectively. The π, measured with a vapor pressure osmometer, also decreased after sunrise, but not to the same degree as the decrease in ψ, so that a P of zero was reached in some leaves between 0730 and 0800 hours. The lower (more negative) π of leaves in the upper canopy than those in the lower canopy gave the upper leaves a higher P at a given ψ than the lower leaves in all three species; leaves at intermediate heights had an intermediate P. This difference between leaves at the three heights in the canopy was maintained at all values of ψ. The r1 remained unchanged over a wide range of P and then increased markedly at a P of 2 bars in maize, −1 bar in sorghum, and near zero P in tobacco: r1 also remained constant until ψ decreased to −17, −20, and −13 bars in leaves at intermediate heights in maize, sorghum, and tobacco, respectively. In all three species r1 of leaves in the upper canopy increased at more negative values of ψ than those at the base of the canopy, and in tobacco, leaves in the upper canopy wilted at more negative values of ψ than those in the lower canopy.  相似文献   

17.
We measured potential rates of bacterial dissimilatory reduction of 75SeO42− to 75Se0 in a diversity of sediment types, with salinities ranging from freshwater (salinity = 1 g/liter) to hypersaline (salinity = 320 g/liter and with pH values ranging from 7.1 to 9.8. Significant biological selenate reduction occurred in all samples with salinities from 1 to 250 g/liter but not in samples with a salinity of 320 g/liter. Potential selenate reduction rates (25 nmol of SeO42− per ml of sediment added with isotope) ranged from 0.07 to 22 μmol of SeO42− reduced liter−1 h−1. Activity followed Michaelis-Menten kinetics in relation to SeO42− concentration (Km of selenate = 7.9 to 720 μM). There was no linear correlation between potential rates of SeO42− reduction and salinity, pH, concentrations of total Se, porosity, or organic carbon in the sediments. However, potential selenate reduction was correlated with apparent Km for selenate and with potential rates of denitrification (r = 0.92 and 0.81, respectively). NO3, NO2, MoO42−, and WO42− inhibited selenate reduction activity to different extents in sediments from both Hunter Drain and Massie Slough, Nev. Sulfate partially inhibited activity in sediment from freshwater (salinity = 1 g/liter) Massie Slough samples but not from the saline (salinity = 60 g/liter) Hunter Drain samples. We conclude that dissimilatory selenate reduction in sediments is widespread in nature. In addition, in situ selenate reduction is a first-order reaction, because the ambient concentrations of selenium oxyanions in the sediments were orders of magnitude less than their Kms.  相似文献   

18.
The pathophysiology of reversible cerebral vasoconstriction syndrome (RCVS) is unknown. Oxidative stress is detrimental to endothelial function and vascular reactivity. We hypothesized that the oxidative stress marker 8-iso-prostaglandin F2α, which is also a potent vasoconstrictor, might contribute to the pathogenesis of RCVS. Recruited participants included 103 RCVS patients, 53 patients with primary headache with acute severe attacks, and 54 healthy controls. Subjects recruited prior to 2009 were discovery cohort, whereas those after 2009, replication cohort. Urine samples were obtained from all patients at registration and from 79 patients with RCVS again at remission stage. Urine 8-iso-prostaglandin F2α was analyzed by liquid chromatography-tandem mass spectrometry. Patients with RCVS received magnetic resonance angiography and transcranial color-coded sonography. In RCVS patients, the urine 8-iso-prostaglandin F2α level was higher than that in the other groups in discovery, replication, and combined cohorts (RCVS, 0.29±0.18; primary headache with acute severe attacks, 0.21±0.19; control, 0.18±0.09 ng/mg creatinine; P<0.001), and it was positively correlated with the flow velocities of major intracranial arteries, especially within the first week of disease onset (middle cerebral artery, Spearman's correlation coefficient [rs]=0.580, P=0.002; anterior cerebral artery, rs=0.472, P=0.042; posterior cerebral artery, rs=0.457, P=0.022; basilar artery, rs= 0.530, P=0.002). The 8-iso-prostaglandin F2α level decreased from the ictalto remission stage in RCVS patients (0.31±0.21 vs 0.16±0.10 ng/mg creatinine, P<0.001). 8-Iso-prostaglandin F2α was higher in patients with RCVS and correlated with the severity of vasoconstrictions. Further studies are required to explore its potential pathogenic role.  相似文献   

19.
Nitrogen (N) is an essential nutrient in the sea and its distribution is controlled by microorganisms. Within the N cycle, nitrite (NO2) has a central role because its intermediate redox state allows both oxidation and reduction, and so it may be used by several coupled and/or competing microbial processes. In the upper water column and oxygen minimum zone (OMZ) of the eastern tropical North Pacific Ocean (ETNP), we investigated aerobic NO2 oxidation, and its relationship to ammonia (NH3) oxidation, using rate measurements, quantification of NO2-oxidizing bacteria via quantitative PCR (QPCR), and pyrosequencing. 15NO2 oxidation rates typically exhibited two subsurface maxima at six stations sampled: one located below the euphotic zone and beneath NH3 oxidation rate maxima, and another within the OMZ. 15NO2 oxidation rates were highest where dissolved oxygen concentrations were <5 μM, where NO2 accumulated, and when nitrate (NO3) reductase genes were expressed; they are likely sustained by NO3 reduction at these depths. QPCR and pyrosequencing data were strongly correlated (r2=0.79), and indicated that Nitrospina bacteria numbered up to 9.25% of bacterial communities. Different Nitrospina groups were distributed across different depth ranges, suggesting significant ecological diversity within Nitrospina as a whole. Across the data set, 15NO2 oxidation rates were decoupled from 15NH4+ oxidation rates, but correlated with Nitrospina (r2=0.246, P<0.05) and NO2 concentrations (r2=0.276, P<0.05). Our findings suggest that Nitrospina have a quantitatively important role in NO2 oxidation and N cycling in the ETNP, and provide new insight into their ecology and interactions with other N-cycling processes in this biogeochemically important region of the ocean.  相似文献   

20.
Nitrogenase activity in mangrove forests at two locations in the North Island, New Zealand, was measured by acetylene reduction and 15N2 uptake. Nitrogenase activity (C2H2 reduction) in surface sediments 0 to 10 mm deep was highly correlated (r = 0.91, n = 17) with the dry weight of decomposing particulate organic matter in the sediment and was independent of light. The activity was not correlated with the dry weight of roots in the top 10 mm of sediment (r = −0.01, n = 13). Seasonal and sample variation in acetylene reduction rates ranged from 0.4 to 50.0 μmol of C2H4 m−2 h−1 under air, and acetylene reduction was depressed in anaerobic atmospheres. Nitrogen fixation rates of decomposing leaves from the surface measured by 15N2 uptake ranged from 5.1 to 7.8 nmol of N2 g (dry weight)−1 h−1, and the mean molar ratio of acetylene reduced to nitrogen fixed was 4.5:1. Anaerobic conditions depressed the nitrogenase activity in decomposing leaves, which was independent of light. Nitrogenase activity was also found to be associated with pneumatophores. This activity was light dependent and was probably attributable to one or more species of Calothrix present as an epiphyte. Rates of activity were generally between 100 and 500 nmol of C2H4 pneumatophore−1 h−1 in summer, but values up to 1,500 nmol of C2H4 pneumatophore−1 h−1 were obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号