首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Heterodera glycines is an obligate plant parasite capable of biochemically and developmentally altering its host's cells in order to create a specialized feeding cell. Although the exact mechanism of feeding cell morphogenesis remains a mystery, the nematode's ability to manipulate the plant is thought to be due in part to horizontal gene transfers (HGTs). A bioinformatic screen of the nematode genome has revealed homologues of the genes SNZ and SNO, which comprise a metabolic pathway for the de novo biosynthesis of pyridoxal 5'-phosphate, the active form of vitamin B(6) (VB(6)). Analysis of the 2 genes, HgSNZ and HgSNO, show that they contain nematode-like introns, generate polyadenylated mRNAs, and map to the soybean cyst nematode genetic linkage map, indicating that they are part of the nematode genome. However, gene synteny, protein homology, and phylogenetic evidence suggest prokaryotic origin. This would represent the first case of the HGT of a complete pathway into a nematode or terrestrial animal. VB(6) acts as a cofactor in over 140 different enzymes, and recent studies point toward an important role as a potent quencher of reactive oxygen species. With H. glycines' penchant for acquiring parasitism genes through HGT along with the absence of this pathway in other land-based animals suggests a specific need for VB(6) which may involve the parasite-host interaction.  相似文献   

2.
3.
4.
(i) Omission of L-methionine from the medium resulted in an 80% population reduction. Substitution of D,L-homocysteine corrected methionine deficiency in C. briggsae in the presence of supraoptimal vitamin B12 and folic acid. (ii) An absolute vitamin B12 requirement in C. briggsae developed in the medium containing homocysteine at the second subculture. Concentration of 6 ng/ml of vitamin B12 (at 100 ng/ml of folic acid) was sufficient to support maximum growth of C. briggsae in the medium containing homocysteine. (iii) It was found that either supraoptimal folic acid (2000 ng/ml) or supraoptimal vitamin B12 (3750 ng/ml), with homocysteine, supported very little population growth of C. briggsae. However, supraoptimal folic acid and supraoptimal vitamin B12 together supported a maximum population growth. Therefore, it was concluded that both vitamin B12 and folic acid were required for the biosynthesis of methionine from homocysteine. Studies also showed that the two vitamins spared each other for population growth in the medium containing homocysteine.  相似文献   

5.
Vitamin B12 is an essential biomolecule that assists in the catalysis of methyl transfer and radical-based reactions in cellular metabolism. The structure of B12 is characterized by a tetrapyrrolic corrin ring with a central cobalt ion coordinated with an upper ligand, and a lower ligand anchored via a nucleotide loop. Multiple methyl groups decorate B12, and their presence (or absence) have structural and functional consequences. In this minireview, we focus on the methyl groups that distinguish vitamin B12 from other tetrapyrrolic biomolecules and from its own naturally occurring analogues called cobamides. We draw information from recent advances in the field to understand the origins of these methyl groups and the enzymes that incorporate them, and discuss their biological significance.  相似文献   

6.
Vitamin B12 (cobalamin) is a cobalt-containing modified tetrapyrrole that is an essential nutrient for higher animals. Its biosynthesis is restricted to certain bacteria and requires approximately 30 enzymatic steps for its complete de novo construction. Remarkably, two distinct biosynthetic pathways exist, which are termed the aerobic and anaerobic routes. The anaerobic pathway has yet to be fully characterized due to the inherent instability of its oxygen-sensitive intermediates. Bacillus megaterium, a bacterium previously used for the commercial production of cobalamin, has a complete anaerobic pathway and this organism is now being used to investigate the anaerobic B12 pathway through the application of recent advances in recombinant protein production. The present paper provides a summary of recent findings in the anaerobic pathway and future perspectives.  相似文献   

7.
The biosynthesis of vitamin B12.   总被引:2,自引:0,他引:2  
The use of 13C-Fourier transform nuclear magnetic resonance (F.t.-n.m.r.) has led to the observation that while 8 molecules of [2-13C]ALA are incorporated into vitamin B12 in P. shermanii, [5-13C]ALA labels only seven of the carbon atoms of cyanocobalamin, i.e. one of the amino methyl groups of ALA is "lost" in the process. It has also been confirmed that seven of the methyl groups of B12 are derived from 13CH3-enriched methionine and further that the chirality of the gemdimethyl grouping at C12 labelled with [13CH3]methionine is R. A soluble enzyme mixture from the 37000 or 100000 g supernatant of disrupted cells of P. shermanii converts both 14 C-labelled ALA and [14C]uro'gen III to cobyrinic acid, the simplest corrinoid material on the pathway to vitamin B12 and the coenzyme, in presence of NADPH, Co2+, Mg2+, S-adenosyl-methionine and glutathione. Multiply-labelled uro'gens (13C, 14C and 3H) have been used to show that incorporation takes place without randomization. A sequence for corrin synthesis from uro'gen III is presented.  相似文献   

8.
Pantothenate (vitamin B5) is the precursor for the biosynthesis of the phosphopantetheine moiety of coenzyme A and acyl carrier protein, and is synthesised in Escherichia coli by four enzymic reactions. Ketopantoate hydroxymethyltransferase (KPHMT) and pantothenate synthetase (PtS) catalyse the first and last steps, respectively. Two genes encoding KPHMT and one for PtS were identified in the Arabidopsis thaliana genome, and cDNAs for all three genes were amplified by PCR. The cDNAs were able to complement their respective E. coli auxotrophs, demonstrating that they encoded functional enzymes. Subcellular localisation of the proteins was investigated using green fluorescent protein (GFP) fusions and confocal microscopy. The two KPHMT-GFP fusion proteins were targeted exclusively to mitochondria, whereas PtS-GFP was found in the cytosol. This implies that there must be transporters for pathway intermediates. KPHMT enzyme activity could be measured in purified mitochondria from both pea leaves and Arabidopsis suspension cultures. We investigated whether Arabidopsis encoded homologues of the remaining two pantothenate biosynthesis enzymes from E. coli, l-aspartate-alpha-decarboxylase (ADC) and ketopantoate reductase (KPR). No homologue of ADC could be identified using either conventional blast or searches with the program fugue in which the structure of the E. coli ADC was compared to all the annotated proteins in Arabidopsis. ADC also appears to be absent from the genome of the yeast, Saccharomyces cerevisiae, by the same criteria. In contrast, a putative Arabidopsis oxidoreductase with some similarity to KPR was identified with fugue.  相似文献   

9.
10.
Pyridoxineless mutants of Escherichia coli B which specifically require pyridoxal or pyridoxamine for growth can be divided into classes according to their growth responses in enriched media. Members of the slowest growing class synthesize vitamin B(6) at the fastest rates when starved for pyridoxal in glycerol minimal medium. After 80 min of synthesis at 4 x 10(-10) moles of vitamin B(6) per mg of cells per hr, the rate increases four- to fivefold and continues at the new rate for several hours. The shift to the new rate is prevented by chloramphenicol, thus suggesting that a derepression mechanism exists to control vitamin B(6) synthesis in addition to the previously discovered feedback control.  相似文献   

11.
Exogenous 5-hydroxy-[2-14C]benzimidazole was transformed by Methanosarcina barkeri into 5-hydroxy-[2-14C]benzimidazolylcobamide. Thereby the endogenous biosynthesis of 5-hydroxybenzimidazole was completely blocked.Benzimidazole and 5,6-dimethylbenzimidazole were used by M. barkeri to form benzimidazolylcobamide respectively 5,6-dimethylbenzimidazolylcobamide (vitamin B12), but in these cases the endogenous biosynthesis of factor III was not completely suppressed.With [2-14C]benzimidazole it was demonstrated that this base as well as the benzimidazolylcobamide formed thereof are no precursors in the biosynthesis of 5-hydroxybenzimidazolylcobamide.Glycine instead was found to be a building block for the biosynthesis of 5-hydroxybenzimidazole, since radioactivity from [1-14C] and [2-14C]glycine was incorporated, into the base moiety of factor III, but not into its corrin moiety. With [1-13C]glycine and 13C-NMR-spectroscopy it was shown that C-1 of glycine gets C-3a of 5-hydroxybenzimidazole.[1-13C]glycine also led to a single prominent signal in the 13C-NMR-spectrum of coenzyme F420, this was assigned to C-10a.Thus C-1 of glycine was incorporated into the hydroxybenzene part of 5-hydroxybenzimidazole, whereas it was not incorporated into this part of coenzyme F420, indicating that the hydroxybenzene part of these two compounds is not formed from a common intermediate. L-[U-14C]glutamate led to the exclusive labeling of the corrin ring of factor III, showing that the corrin precursor 5-aminolevulinic acid is formed by the C-5 pathway in M. barkeri.These experiments indicate that the biosynthesis of factor III in the archaebacterium M. barkeri is similar to the corrinoid biosynthesis in the anaerobic eubacteria Eubacterium limosum, Clostridium barkeri, and Clostridium thermoaceticum.  相似文献   

12.
Sedentary plant‐parasitic cyst nematodes are obligate biotrophs that infect the roots of their host plant. Their parasitism is based on the modification of root cells to form a hypermetabolic syncytium from which the nematodes draw their nutrients. The aim of this study was to identify nematode susceptibility genes in Arabidopsis thaliana and to characterize their roles in supporting the parasitism of Heterodera schachtii. By selecting genes that were most strongly upregulated in response to cyst nematode infection, we identified HIPP27 (HEAVY METAL‐ASSOCIATED ISOPRENYLATED PLANT PROTEIN 27) as a host susceptibility factor required for beet cyst nematode infection and development. Detailed expression analysis revealed that HIPP27 is a cytoplasmic protein and that HIPP27 is strongly expressed in leaves, young roots and nematode‐induced syncytia. Loss‐of‐function Arabidopsis hipp27 mutants exhibited severely reduced susceptibility to H. schachtii and abnormal starch accumulation in syncytial and peridermal plastids. Our results suggest that HIPP27 is a susceptibility gene in Arabidopsis whose loss of function reduces plant susceptibility to cyst nematode infection without increasing the susceptibility to other pathogens or negatively affecting the plant phenotype.  相似文献   

13.
Vitamin B6 (pyridoxine) is vital for key metabolic reactions and reported to have antioxidant properties in planta. Therefore, enhancement of vitamin B6 content has been hypothesized to be a route to improve resistance to biotic and abiotic stresses. Most of the current studies on vitamin B6 in plants are on eudicot species, with monocots remaining largely unexplored. In this study, we investigated vitamin B6 biosynthesis in rice, with a view to examining the feasibility and impact of enhancing vitamin B6 levels. Constitutive expression in rice of two Arabidopsis thaliana genes from the vitamin B6 biosynthesis de novo pathway, AtPDX1.1 and AtPDX2, resulted in a considerable increase in vitamin B6 in leaves (up to 28.3‐fold) and roots (up to 12‐fold), with minimal impact on general growth. Rice lines accumulating high levels of vitamin B6 did not display enhanced tolerance to abiotic stress (salt) or biotic stress (resistance to Xanthomonas oryzae infection). While a significant increase in vitamin B6 content could also be achieved in rice seeds (up to 3.1‐fold), the increase was largely due to its accumulation in seed coat and embryo tissues, with little enhancement observed in the endosperm. However, seed yield was affected in some vitamin B6‐enhanced lines. Notably, expression of the transgenes did not affect the expression of the endogenous rice PDX genes. Intriguingly, despite transgene expression in leaves and seeds, the corresponding proteins were only detectable in leaves and could not be observed in seeds, possibly pointing to a mode of regulation in this organ.  相似文献   

14.
15.
16.
17.
In Rhodobacter capsulatus, cobalamin biosynthesis has been shown to occur when the bacteria are grown either aerobically or anaerobically. However, a comparison of the main cobalamin biosynthetic operon found within R. capsulatus would suggest that the encoded proteins belong to the oxygen-dependent pathway for cobalamin biosynthesis, although, significantly, no homologue of the essential mono-oxygenase CobG has yet been detected. Nonetheless, within this main cob operon is found a large open reading frame termed orf663 that is not found in any other cobalamin biosynthetic operon. When overproduced in Escherichia coli, orf663 was found to encode a 90 kDa integral membrane protein. Some of this protein is cleaved within E. coli to give a soluble N-terminal region that can easily be purified and yields a 50 kDa flavoprotein. When expressed in harness with the genes for precorrin-3a synthesis, ORF663 appears to mediate the transformation of precorrin-3a into a new chromophoric compound. Another open reading frame in close proximity to orf663 is termed orf647, and was found to encode a 2Fe-2S ferredoxin-like protein. We suggest that these two proteins may provide an alternative oxygen-independent mechanism for ring contraction within R. capsulatus.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号