首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In situ hybridization of a recombinant cDNA probe containing the human alpha 1-antitrypsin gene to metaphase chromosomes demonstrated significant hybridization to chromosomal segment 14q31-32. A high percentage of cells analyzed (31%) displayed labeling on chromosome 14. Of all labeled sites on chromosome 14, 60% were found on segment 14q31-32. These results refine the previous assignment of the human alpha 1-antitrypsin gene to segment 14q24.1-32.1.  相似文献   

2.

Objectives

To investigate the clinical utility of VEMPs in patients suffering from unilateral vestibular schwannoma (VS) and to determine the optimal stimulation parameter (air conducted sound, bone conducted vibration) for evaluating the function of the vestibular nerve.

Methods

Data were obtained in 63 patients with non-operated VS, and 20 patients operated on VS. Vestibular function was assessed by caloric, cervical and ocular VEMP testing. 37/63 patients with conclusive ACS ocular VEMPs responses were studied separately.

Results

In the 63 non-operated VS patients, cVEMPs were abnormal in 65.1% of patients in response to AC STB and in 49.2% of patients to AC clicks. In the 37/63 patients with positive responses from the unaffected side, oVEMPs were abnormal in 75.7% of patients with ACS, in 67.6% with AFz and in 56.8% with mastoid BCV stimulation. In 16% of the patients, VEMPs were the only abnormal test (normal caloric and normal hearing). Among the 26 patients who did not show oVEMP responses on either side with ACS, oVEMPs responses could be obtained with AFz (50%) and with mastoid stimulation (89%).

Conclusions

The VEMP test demonstrated significant clinical value as it yielded the only abnormal test results in some patients suffering from a unilateral vestibular schwannoma. For oVEMPs, we suggest that ACS stimulation should be the initial test. In patients who responded to ACS and who had normal responses, BCV was not required. In patients with abnormal responses on the affected side using ACS, BCV at AFz should be used to confirm abnormal function of the superior vestibular nerve. In patients who exhibited no responses on either side to ACS, BCV was the only approach allowing assessment of the function of the superior vestibular nerve. We favor using AFz stimulation first because it is easier to perform in clinical practice than mastoid stimulation.  相似文献   

3.
We report analyses of a Brazilian study of early onset schizophrenia (BEOS) families. We genotyped 22 members of 4 families on a linkage SNP array and report here non-parametric linkage analyses using MERLIN® software. We found suggestive evidence for linkage on two chromosomal regions, 13q32 and 11p15.4. A LOD score of 2.71 was observed at 13q32 with a one LOD interval extending from 60.63–92.35 cM. From simulations, this LOD score gave a genome-wide empirical corrected p = 0.33, after accounting for all markers tested. Similarly 11p15.4 showed the same maximum LOD of 2.71 and a narrower one LOD interval of 4–14 cM. Of these, 13q32 has been reported to be linked to schizophrenia by multiple different studies. Thus, our study provides additional supporting evidence for an aetiological role of variants at 13q32 in schizophrenia.  相似文献   

4.
Subtelomeric regions of human chromosomes are the sites of increased meiotic recombination and have a male-to-female recombination ratio that is higher than elsewhere in the genome. We isolated two novel, polymorphic CA repeat markers from the distal part of the immunoglobulin heavy chain gene cluster, approximately 90 and 200 kb from the telomere of chromosome 14q. The 14q telomere was unambiguously located by physical mapping of telomeric YACs andBal31 exonuclease digestion of genomic DNA. We then constructed haplotypes using genotype data from these markers and data from sCAW1 (D14S826) for use as a highly polymorphic genetic marker. Linkage analysis using the 40 pedigree CEPH reference panel and genotype data from these and other loci physically mapped to the terminal 1.5 Mb of chromosome 14q revealed an apparent increase in meiotic recombination within this region, relative to the average rate for the genome. Further, we found that recombination was higher in females than in males, indicating that the subtelomeric region of 14q differs from other human subtelomeric regions.  相似文献   

5.
Summary The T cell receptor chain gene locus and the immunoglobulin heavy chain gene locus (IgH) have previously been mapped to the q11 and q32 positions respectively of the human chromosome 14. Both of these sites are also common breakpoints in lymphocytes from ataxia telangiectasia (A-T) patients. Using in situ hybridisation we show that the 14q32 breakpoint in an A-t non-leukaemic T cell clone with t(14;14) translocation, lies outside the IgH locus and proximal to it with respect to the centromere. The 14q11-14qter segment of the homologous chromosome 14 carrying the constant gene region of the chain locus is translocated to this 14q32 position.  相似文献   

6.
7.
Van der Woude syndrome (VWS) is the most frequent form of syndromic clefting. Linkage analysis has localized the gene between D1S245 and D1S414, an interval of 4.1 cM with the following order of loci: centromere–D1S245/D1S471–D1S491–D1S205–D1S414–telomere. A microdeletion around D1S205 aided in narrowing the critical region to D1S491–D1S414 by heterozygosity testing. In this study, the location was refined by detection of a recombinant with D1S205 in a new family, indicating that VWS lies between D1S491 and D1S205, a 1.6-cM interval. A roughly 3.5-Mb YAC contig was built from D1S245 through D1S414, encompassing the interval D1S491–D1S205 in level 1 or level 2 paths. Clones were assembled by sequence tagged site (STS) content using the five polymorphic markers from above, four novel STSs identified from YAC ends, and a new STS derived from probe CRI-L461 (D1S70). D1S70 was assigned to the critical region. One single YAC, yCEPH785B2, contains both flanking STSs (D1S491, D1S205). STS content mapping suggests neither chimerism nor deletion of yCEPH785B2 but does suggest that the maximum size of the critical region is approximately 850 kb. All STSs were tested for their presence on a somatic cell hybrid containing the microdeleted chromosome 1 as the sole human chromosome 1 component. Both the proximal and distal ends of the microdeletion mapped to the 850-kb YAC, yCEPH785B2. Therefore, the microdeletion overlapped the critical region, confirming the genetic recombinant data.  相似文献   

8.

Background

Atopic dermatitis (AD) is the most prevalent chronic inflammatory skin disease in children characterized by dermatitis and pruritus. MicroRNAs (miRNAs) have been shown as great potential biomarkers for disease fingerprints to predict prognostics. We aimed to identify miRNA signature from serum and urine for the prognosis of AD patient by genome-wide miRNA profiling analysis.

Methods

Serum and urine from 30 children with AD and 28 healthy children were collected and their genome-wide miRNA expression profiles were measured by TaqMan-based array and confirmed by quantitative real-time PCR. Inflammatory factors in serum were detected by Antibody Array System.

Results

miR-203 and miR-483-5p were significantly up-regulated in serum of children with AD compared with healthy children. The level of miR-483-5p in serum was significantly associated with other atopic conditions, such as rhinitis and/or asthma. However, miR-203 was markedly decreased in urine of children with AD compared with healthy children. Down-regulated miR-203 in urine was significant associated with abnormal level of serum IgE in AD patients. 7 inflammatory factors in serum were altered in children with AD compared with healthy children. Up-regulated miR-203 in serum was significantly associated with increased sTNFRI and sTNFRII.

Conclusions

Up-regulated miR-483-5p in serum may be indicative of other atopic conditions in children with AD. Down-regulated miR-203 in urine may serve as a biomarker for the severity of inflammation in children with AD.  相似文献   

9.
MicroRNAs (miRNAs) regulate gene expression by fully or partially binding to complementary sequences and play important roles in skeletal muscle development. However, the roles of miRNAs in embryonic breast muscle of duck are unclear. In this study, we analyzed the miRNAs profiling in embryonic breast muscle of Pekin duck at E13 (the 13th day of hatching), E19, and E27 by high-throughput sequencing. A total of 382 miRNAs including 359 preciously identified miRNAs 23 novel miRNA candidates were obtained. The nucleotide bias analysis of identified miRNAs showed that the miRNAs in Pekin duck was high conserved. The expression of identified miRNAs were significantly different between E13 and E19 as well as between E27 and E19. Fifteen identified miRNAs validated using stem-loop qRT-PCR can be divided into three groups: those with peak expression at E19, those with minimal expression at E19, and those with continuous increase from E11 to E27. Considering that E19 is the fastest growth stage of embryonic Pekin duck breast muscle, these three groups of miRNAs might be the potential promoters, the potential inhibitors, and the potential sustainer for breast muscle growth. Among the 23 novel miRNAs, novel-miRNA-8 and novel-miRNA-14 had maximal expression at some stages. The stem-loop qRT-PCR analysis of the two novel miRNAs and their two targets (MAP2K1 and PPARα) showed that the expression of novel-mir-8 and PPARα reached the lowest points at E19, while that of novel-mir-14 and MAP2K1 peaked at E19, suggesting novel-miRNA-8 and novel-miRNA-14 may be a potential inhibitor and a potential promoter for embryonic breast muscle development of duck. In summary, these results not only provided an overall insight into the miRNAs landscape in embryonic breast muscle of duck, but also a basis for the further investigation of the miRNAs roles in duck skeletal muscle development.  相似文献   

10.
The human serine protease inhibitor (serpin) gene cluster at 14q32.1 contains a number of genes that are specifically expressed in hepatic cells. Cell-specific enhancers have been identified in several of these genes, but elements involved in locus-wide gene and chromatin control have yet to be defined. To identify regulatory elements in this region, we prepared a series of mutant chromosomal alleles by homologous recombination and transferred the specifically modified human chromosomes to hepatic cells for functional tests. We report that deletion of an 8-kb DNA segment upstream of the human alpha1-antitrypsin gene yields a mutant serpin allele that fails to be activated in hepatic cells. Within this region, a 2.3-kb DNA segment between kb -8.1 and -5.8 contains a previously unrecognized control region that is required not only for serpin gene activation but also for chromatin remodeling of the entire locus.  相似文献   

11.
12.
Frequent deletions and loss of heterozygosity in a segment of chromosome 13 (13q14) in cases of B-cell chronic lymphocytic leukemia (CLL) have suggested that this malignancy is caused by inactivation of an unknown tumor suppressor gene located in this region. Toward the identification of the putative CLL tumor suppressor, we have constructed a high-resolution physical map of YAC, PAC, and cosmid contigs covering 600 kb of the 13q14 genomic region. In addition to densely positioned genetic markers and STSs, this map was further annotated by localization of 32 transcribed sequences (ESTs) using a combination of exon trapping, direct cDNA selection, sample sequencing of cosmids and PACs, and homology searches. On the basis of these mapping data, allelic loss analyses at 13q14 using CLL tumor samples allowed narrowing of the genomic segment encompassing the putative CLL gene to <300 kb. Twenty-three ESTs located within this minimally deleted region are candidate exons for the CLL-associated tumor suppressor gene.  相似文献   

13.
14.
We report here a cytogenetic and molecular analysis of two cases of T-cell leukemia with t(14;14) (q11.2;q32). Through in situ hybridization and Southern blotting, using radioactively labeled immunoglobulin heavy chain (IGH) and alpha T-cell receptor (TCRA) gene probes, we found in both tumors that the loci of both IGH and TCRA were rearranged. Molecular analysis of the t(14;14) clearly demonstrated that in some tumors rearrangements of the IGH and TCRA genes are associated with interchromosomal exchanges that result in specific chromosome translocations that confer a proliferative advantage and predisposition to leukemic transformation. The implication of these rearrangements for normal and neoplastic T-cell development is discussed.  相似文献   

15.
16.
Micro RNAs(mi RNAs) are small non-coding RNAs that are important in regulating metabolic stress. In this study, we determined the expression and structural characteristics of 20 mi RNAs in brown(BAT) and white adipose tissue(WAT) during torpor in thirteen-lined ground squirrels. Using a modified stem-loop technique, we found that during torpor, expression of six mi RNAs including let-7a, let-7b, mi R-107, mi R-150, mi R-222 and mi R-31 was significantly downregulated in WAT(P 〈 0.05), which was 16%–54% of euthermic non-torpid control squirrels,whereas expression of three mi RNAs including mi R-143, mi R-200 a and mi R-519 d was found to be upregulated by 1.32–2.34-fold. Similarly, expression of more mi RNAs was downregulated in BAT during torpor. We detected reduced expression of 6 mi RNAs including mi R-103 a, mi R-107, mi R-125 b, mi R-21, mi R-221 and mi R-31(48%–70% of control), while only expression of mi R-138 was significantly upregulated(2.91 ± 0.8-fold of the control, P 〈 0.05). Interestingly,mi RNAs found to be downregulated in WAT during torpor were similar to those dysregulated in obese humans for increased adipogenesis, whereas mi RNAs with altered expression in BAT during torpor were linked to mitochondrial b-oxidation. mi RPath target prediction analysis showed that mi RNAs downregulated in both WAT and BAT were associated with the regulation of mitogen-activated protein kinase(MAPK) signaling, while the mi RNAs upregulated in WAT were linked to transforming growth factor b(TGFb) signaling. Compared to mouse sequences, no unique nucleotide substitutions within the stem-loop region were discovered for the associated pre-mi RNAs for the mi RNAs used in this study, suggesting no structure-influenced changes in pre-mi RNA processing efficiency in the squirrel. As well, the expression of mi RNA processingenzyme Dicer remained unchanged in both tissues during torpor. Overall, our findings suggest that changes of mi RNA expression in adipose tissues may be linked  相似文献   

17.
Cytogenetic analysis of mantle cell lymphoma (MCL), characterized by the presence of t(11;14)(q13;q32) translocation, is often difficult because of the low proliferating rate of MCL cells and the presence of normal cells in bone marrow which may interfere with growth of MCL cells. We describe herein a TPA (12-O-tetradecanoylphorbol 13-acetate) stimulated culture to improve detection of t(11;14)(q13;q32) in 20 MCL patients regardless of the samples used.  相似文献   

18.
19.
20.
Deletions in the region located between the STS markers D13S1168 and D13S25 on chromosome 13 are the most frequent genomic changes in patients with B-cell chronic lymphocytic leukemia (B-CLL). After sequencing of this region, two novel candidate genes were identified: C13orf1(chromosome 13 open reading frame 1) and PLCC (putative large CLL candidate). Analysis of the repeat distribution revealed two subregions differing in composition of repetitious DNA and gene organization. The interval D13S1168–D13S319 contains 131 Alu repeats accounting for 24.8% of its length, whereas the interval GCT16C05–D13S25, which is no more than 180 kb away from the former one is extremely poor in Alu repeats (4.1% of the total length). Both intervals contain almost the same amount of the LINE-type repeats L1 and L2 (20.3 and 21.24%, respectively). In the chromosomal region studied, 29 Alu repeats were found to belong to the evolutionary young subfamily Y, which is still capable of amplifying. A considerable proportion of repeats of this type with similar nucleotide sequences may contribute to the recombinational activity of the chromosomal region 13q14.3, which is responsible for its rearrangements in some tumors in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号