首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
ABSTRACT: Controlling gene expression via small interfering RNA (siRNA) has opened the doors to a plethora of therapeutic possibilities, with many currently in the pipelines of drug development for various ocular diseases. Despite the potential of siRNA technologies, barriers to intracellular delivery significantly limit their clinical efficacy. However, recent progress in the field of drug delivery strongly suggests that targeted manipulation of gene expression via siRNA delivered through nanocarriers can have an enormous impact on improving therapeutic outcomes for ophthalmic applications. Particularly, synthetic nanocarriers have demonstrated their suitability as a customizable multifunctional platform for the targeted intracellular delivery of siRNA and other hydrophilic and hydrophobic drugs in ocular applications. We predict that synthetic nanocarriers will simultaneously increase drug bioavailability, while reducing side effects and the need for repeated intraocular injections. This review will discuss the recent advances in ocular siRNA delivery via non-viral nanocarriers and the potential and limitations of various strategies for the development of a 'universal' siRNA delivery system for clinical applications.  相似文献   

3.
4.
Cellular RNAs that do not function as messenger RNAs (mRNAs), transfer RNAs (tRNAs) or ribosomal RNAs (rRNAs) comprise a diverse class of molecules that are commonly referred to as non-protein-coding RNAs (ncRNAs). These molecules have been known for quite a while, but their importance was not fully appreciated until recent genome-wide searches discovered thousands of these molecules and their genes in a variety of model organisms. Some of these screens were based on biocomputational prediction of ncRNA candidates within entire genomes of model organisms. Alternatively, direct biochemical isolation of expressed ncRNAs from cells, tissues or entire organisms has been shown to be a powerful approach to identify ncRNAs both at the level of individual molecules and at a global scale. In this review, we will survey several such wet-lab strategies, i.e. direct sequencing of ncRNAs, shotgun cloning of small-sized ncRNAs (cDNA libraries), microarray analysis and genomic SELEX to identify novel ncRNAs, and discuss the advantages and limits of these approaches.  相似文献   

5.
正Epigenetics plays a large role in various aspects of plant biology,including development,response to biotic and abiotic stresses,silencing of transposable elements,and maintenance of genome stability.In plants,epigenetic regulation involves histone and DNA modifications and noncoding RNAs including small RNAs(s RNAs)and long noncoding RNAs(lnc RNAs).This issue of Science China Life Sciences includes five review articles and eight research  相似文献   

6.
7.
8.
We present and validate BlastR, a method for efficiently and accurately searching non-coding RNAs. Our approach relies on the comparison of di-nucleotides using BlosumR, a new log-odd substitution matrix. In order to use BlosumR for comparison, we recoded RNA sequences into protein-like sequences. We then showed that BlosumR can be used along with the BlastP algorithm in order to search non-coding RNA sequences. Using Rfam as a gold standard, we benchmarked this approach and show BlastR to be more sensitive than BlastN. We also show that BlastR is both faster and more sensitive than BlastP used with a single nucleotide log-odd substitution matrix. BlastR, when used in combination with WU-BlastP, is about 5% more accurate than WU-BlastN and about 50 times slower. The approach shown here is equally effective when combined with the NCBI-Blast package. The software is an open source freeware available from www.tcoffee.org/blastr.html.  相似文献   

9.
From structure prediction to genomic screens for novel non-coding RNAs   总被引:1,自引:0,他引:1  
Non-coding RNAs (ncRNAs) are receiving more and more attention not only as an abundant class of genes, but also as regulatory structural elements (some located in mRNAs). A key feature of RNA function is its structure. Computational methods were developed early for folding and prediction of RNA structure with the aim of assisting in functional analysis. With the discovery of more and more ncRNAs, it has become clear that a large fraction of these are highly structured. Interestingly, a large part of the structure is comprised of regular Watson-Crick and GU wobble base pairs. This and the increased amount of available genomes have made it possible to employ structure-based methods for genomic screens. The field has moved from folding prediction of single sequences to computational screens for ncRNAs in genomic sequence using the RNA structure as the main characteristic feature. Whereas early methods focused on energy-directed folding of single sequences, comparative analysis based on structure preserving changes of base pairs has been efficient in improving accuracy, and today this constitutes a key component in genomic screens. Here, we cover the basic principles of RNA folding and touch upon some of the concepts in current methods that have been applied in genomic screens for de novo RNA structures in searches for novel ncRNA genes and regulatory RNA structure on mRNAs. We discuss the strengths and weaknesses of the different strategies and how they can complement each other.  相似文献   

10.
11.
Gene-directed therapy with small interfer-ring RNA (siRNA) has a tremedous potential and in the future will undoubtly occupy one of the leading positions among other therapeutic methods. The lack of efficient and targeted delivery vectors delays the successful implementation of this method in clinic. To develop such systems, one needs a comprehansive insight into the processes of interactions between siRNAs, its delivery systems and an organism. This review covers properties of therapeutic siRNAs and non-viral systems for their delivery.  相似文献   

12.
How to find small non-coding RNAs in bacteria   总被引:11,自引:0,他引:11  
Vogel J  Sharma CM 《Biological chemistry》2005,386(12):1219-1238
  相似文献   

13.
《Epigenetics》2013,8(1):21-26
The emergence of long non-coding RNAs (lncRNAs) has shaken up our conception of gene expression regulation, as lncRNAs take prominent positions as components of cellular networks. Several cellular processes involve lncRNAs, and a significant number of them have been shown to function in cooperation with chromatin modifying enzymes to promote epigenetic activation or silencing of gene expression. Different model mechanisms have been proposed to explain how lncRNAs achieve regulation of gene expression by interacting with the epigenetic machinery. Here we describe these models in light of the current knowledge of lncRNAs, such as Xist and HOTAIR, and discuss recent literature on the role of the three-dimensional structure of the genome in the mechanism of action of lncRNAs and chromatin modifiers.  相似文献   

14.
15.
16.
17.
18.
Beyond the proteome: non-coding regulatory RNAs   总被引:3,自引:0,他引:3       下载免费PDF全文
Szymański M  Barciszewski J 《Genome biology》2002,3(5):reviews0005.1-reviews00058
  相似文献   

19.
20.
Non-coding RNAs are involved in a multitude of cellular processes but the biochemical function of many small non-coding RNAs remains unclear. The family of small non-coding Y RNAs is conserved in vertebrates and related RNAs are present in some prokaryotic species. Y RNAs are also homologous to the newly identified family of non-coding stem-bulge RNAs (sbRNAs) in nematodes, for which potential physiological functions are only now emerging. Y RNAs are essential for the initiation of chromosomal DNA replication in vertebrates and, when bound to the Ro60 protein, they are involved in RNA stability and cellular responses to stress in several eukaryotic and prokaryotic species. Additionally, short fragments of Y RNAs have recently been identified as abundant components in the blood and tissues of humans and other mammals, with potential diagnostic value. While the number of functional roles of Y RNAs is growing, it is becoming increasingly clear that the conserved structural domains of Y RNAs are essential for distinct cellular functions. Here, we review the biochemical functions associated with these structural RNA domains, as well as the functional conservation of Y RNAs in different species. The existing biochemical and structural evidence supports a domain model for these small non-coding RNAs that has direct implications for the modular evolution of functional non-coding RNAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号