首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We previously reported that propofol (20 mg/kg/h) post-conditioning provided acute (up to 24 h) neuroprotection in rats with transient middle cerebral artery occlusion. In this study, we extend these data by examining long-term protection and exploring underlying mechanisms involving AMPA receptor GluR2 subunit internalization. Rats were treated with propofol 20 mg/kg/h after 60 min of occlusion (beginning of reperfusion for 4 h). Propofol post-conditioning reduced infarct volume and improved spatial memory deficiencies (up to 28 days) induced by ischemia/reperfusion injury. Additionally, Propofol post-conditioning promoted neurogenesis in the dentate gyrus of hippocampus, as measured by bromodeoxyuridine and neuron-specific nuclear protein immunofluorescence-double staining at day 28 after reperfusion. Finally, propofol post-conditioning increased the surface expression of AMPA receptor GluR2 subunit, thus inhibited the internalization of this part until 28 days after stroke. In conclusion, our data suggest that propofol post-conditioning provides long-term protection against focal cerebral ischemia/reperfusion injury in rats. Furthermore, we found that the inhibition of AMPA receptor GluR2 subunit internalization may contributed to this long-term neuroprotection.  相似文献   

2.
Reduction in GluR2 subunit expression and subsequent increases in AMPA receptor mediated Ca(2+) currents were postulated to exacerbate glutamate neurotoxicity following seizures or global ischemia. To directly test the effects of shifting the GluR1/GluR2 subunit ratio on excitotoxicity, GluR2 antisense deoxyoligonucleotides (AS-ODNs) were applied to dissociated hippocampal cultures for 1-8 days. The GluR1/GluR2 protein ratio was examined immunohistochemically and by Western blotting. [Ca(2+)](i) concentrations were determined by ratiometric imaging of Fura 2-loaded cells. The cultures were exposed to glutamate, AMPA, NMDA or kainic acid (KA) 3 days after GluR2 knockdown and cell viability was determined 1 day later by MTT reduction assay or Trypan blue exclusion. Although GluR2 AS-ODNs increased the GluR1/GluR2 protein ratio in a time dependent manner, neurons and glia appeared healthy and MTT reduction values were similar to untreated and sense controls. Basal [Ca(2+)](i) levels were unchanged but [Ca(2+)](i) was selectively increased by agonist stimulation of AMPA receptors. Unexpectedly, delayed neurotoxicity was attenuated at saturating doses of glutamate while little difference in cell viability was observed at lower doses or with the other excitotoxins at any concentration. Therefore, there was a dissociation between rises in AMPA receptor-mediated Ca(2+) influx and neurotoxicity despite marked decreases in GluR2 but not GluR1 immunoreactivity. It is proposed that a modification of AMPA receptor stochiometry that raises agonist-stimulated Ca(2+) influx during an excitotoxic insult may have eventual neuroprotective effects.  相似文献   

3.
Lee SH  Simonetta A  Sheng M 《Neuron》2004,43(2):221-236
Removal of synaptic AMPA receptors is important for synaptic depression. Here, we characterize the roles of individual subunits in the inducible redistribution of AMPA receptors from the cell surface to intracellular compartments in cultured hippocampal neurons. The intracellular accumulation of GluR2 and GluR3 but not GluR1 is enhanced by AMPA, NMDA, or synaptic activity. After AMPA-induced internalization, homomeric GluR2 enters the recycling pathway, but following NMDA, GluR2 is diverted to late endosomes/lysosomes. In contrast, GluR1 remains in the recycling pathway, and GluR3 is targeted to lysosomes regardless of NMDA receptor activation. Interaction with NSF plays a role in regulated lysosomal targeting of GluR2. GluR1/GluR2 heteromeric receptors behave like GluR2 homomers, and endogenous AMPA receptors show differential activity-dependent sorting similar to homomeric GluR2. Thus, GluR2 is a key subunit that controls recycling and degradation of AMPA receptors after internalization.  相似文献   

4.
AMPA glutamate receptors play a crucial role in brain functions such as synaptic plasticity and development. We have studied the chemo-architecture of the AMPA glutamate receptor subtype GluR2/3 in the hamster visual cortex by immunocytochemistry and compared it with the distribution of the calcium-binding proteins, calbindin D28K and calretinin. Anti-GluR2/3-immunoreactive (IR) neurons were predominantly located in layers II/III, V, and VI, and the majority of the labeled neurons were round or oval. However, many pyramidal cells in layer V were also labeled. Two-color immunofluorescence revealed that none of the GluR2/3-IR neurons contained calbindin D28 K or calretinin. Thus specific layers of neurons express the GluR2/3 subunit and these do not correlate with expression of calbindin D28K and calretinin.  相似文献   

5.
谷氨酸下调培养海马神经元AMPA受体G1uR2亚单位的表达   总被引:1,自引:0,他引:1  
目的 研究在癫痫发病过程中,谷氨酸对AMPA受体G1uR2亚单位表达变化的影响。方法 用RT-PCR和Western Blot方法观察谷氨酸诱导培养大鼠海马神经元AMPA受体G1uR2亚单位mRNA和蛋白的表达变化。结果 在谷氨酸刺激后2h,8h,12h,培养海马神经元G1uR2 mRNA和蛋白表达明显下降,与对照组相比,差异有显著性(P〈0.05),而非NMDA受体拮抗剂CNQX能阻断此变化。结论 在癫痫等疾病中,谷氨酸能通过激活AMAP/KA受体下调AMPA受体G1uR2亚单位的表达,参与发病过程。  相似文献   

6.
目的研究在癫痫发病过程中,谷氨酸对AMPA受体Glu R2亚单位表达变化的影响。方法用RT-PCR和Western Blot方法观察谷氨酸诱导培养大鼠海马神经元AMPA受体Glu R2亚单位mRNA和蛋白的表达变化。结果在谷氨酸刺激后2h,8h,12h,培养海马神经元Glu R2mRNA和蛋白表达明显下降,与对照组相比,差异有显著性(P<0.05),而非NMDA受体拮抗剂CNQX能阻断此变化。结论在癫痫等疾病中,谷氨酸能通过激活AMAP/KA受体下调AMPA受体GluR2亚单位的表达,参与发病过程。  相似文献   

7.
8.
Unilateral hypoglossal nerve axotomy was used as a model to analyse immunohistochemically the expression of the GluR1, GluR2, GluR3, and GluR4 glutamate receptor subunits of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) subtype and the NR1 subunit of the N-methyl-D-aspartate (NMDA) subtype in the different morphofunctional hypoglossal pools from 1 to 45 days postaxotomy. Following hypoglossal nerve axotomy, the percentage of motoneurons that were GluR1-immunopositive and the labeling intensity for this subunit was increased in some hypoglossal pools. Immunolabeling for the GluR2 subunit was undetectable. These results contrast with the unchanged pattern for these two subunits after sciatic nerve axotomy previously described. Image analysis showed a significant decrease in the intensity of immunohistochemical labeling for the GluR2/3 and GluR4 subunits in motoneurons, although most motoneurons were still immunopositive for these 2 subunits after axotomy. The intensity of immunolabeling for the NR1 subunit was slightly decreased postlesion, whereas the percentage of NR1-immunopositive motoneurons increased. Immunoreactivity returned to basal levels 45 days postlesion. These findings show that in axotomized hypoglossal motoneurons, i) AMPA and NMDA receptor subunits are still expressed, ii) the composition of the ionotropic glutamate receptor subunit pool is subjected to continuous changes during the regeneration process, iii) AMPA receptors, if functional, would have physiological properties different to those in intact motoneurons, and iv) the various AMPA receptor subunits are differentially regulated. The present results also suggest a faster recovery of basal levels of immunoreactivity for caudally localised groups of motoneurons which could reflect a caudo-rostral sequential functional revovery in the hypoglossal nucleus.  相似文献   

9.
In hippocampal neurons, the exocytotic process of alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid (AMPA)-type glutamate receptors is known to depend on activation of N-methyl-d-aspartate channels and its resultant Ca(2+) influx from extracellular spaces. Here we found that brain-derived neurotrophic factor (BDNF) induced a rapid surface translocation of AMPA receptors in an activity-independent manner in developing neocortical neurons. The receptor translocation became evident within hours as monitored by [(3)H]AMPA binding and was resistant against ionotropic glutamate receptor antagonists as evidenced with surface biotinylation assay. This process required intracellular Ca(2+) and was inhibited by the blockers of conventional exocytosis, brefeldin A, botulinum toxin B, and N-ethylmaleimide. To explore the translocation mechanism of individual AMPA receptor subunits, we utilized the human embryonic kidney (HEK) 293 cells carrying the BDNF receptor TrkB. After the single transfection of GluR2 cDNA or GluR1 cDNA into HEK/TrkB cells, BDNF triggered the translocation of GluR2 but not that of GluR1. Subsequent mutation analysis of GluR2 carboxyl-terminal region indicated that the translocation of GluR2 subunit in HEK293 cells involved its N-ethylmaleimide-sensitive factor-binding domain but not its PDZ-interacting site. Following co-transfection of GluR1 and GluR2 cDNAs, solid phase cell sorting revealed that GluR1 subunits were also able to translocate to the cell surface in response to BDNF. An immunoprecipitation assay confirmed that BDNF stimulation can enhance the interaction of GluR2 with N-ethylmaleimide-sensitive factor. These results reveal a novel role of BDNF in regulating the surface expression of AMPA receptors through a GluR2-NSF interaction.  相似文献   

10.
We cultured a P19 mouse teratocarcinoma cell line and induced its neuronal differentiation to study the function of ionotropic glutamate receptors (GluRs) in early neuronal development. Immunocytochemical studies showed 85% neuronal population at 5 days in vitro (DIV) with microtubule-associated protein 2-positive staining. Thirty percent and 50% of the cells expressed the alpha-amino-3-hydroxy-5-methyl-4-isopropinonate (AMPA) receptor subunit, GluR2/3, and the kainate (kainic acid; KA) receptor subunit, GluR5/6/7, respectively. In Western blot analysis, the temporal expression of GluR2/3 began to appear at 3 DIV, whereas GluR5/6/7 was already expressed in the undifferentiated cells. P19-derived neurons began to respond to glutamate, AMPA and KA, but not to the metabotropic GluR agonist trans-1-aminocyclopentane-1,3-decarboxylic acid, by 5 DIV in terms of increases in intracellular calcium and phospholipase C-mediated poly-phosphoinositide turnover. Furthermore, KA reduced cell death of P19-derived neurons in both atmospheric and hypobaric conditions in a phospholipase C-dependent manner. The common AMPA/KA receptor antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione, but not the AMPA receptor antagonist, 1,2,3,4-tetrahydro-6-nitro-2,3-dioxo-benzo[f]quinoxaline-7-sulfonamide disodium, profoundly increased hypobaric insult-induced neurotoxicity. In a flow cytometry study, the nerve growth factor-mediated antiapoptotic effect was facilitated by AMPA, with an induction of TrkA, but not p75(NTR) expression. Therefore, AMPA and KA receptors might mediate neurotrophic functions to facilitate neurotrophic factor signaling to protect neurons against hypoxic insult in early neuronal development.  相似文献   

11.
Matsuda S  Launey T  Mikawa S  Hirai H 《The EMBO journal》2000,19(12):2765-2774
Cerebellar long-term depression (LTD) is thought to play an important role in certain types of motor learning. However, the molecular mechanisms underlying this event have not been clarified. Here, using cultured Purkinje cells, we show that stimulations inducing cerebellar LTD cause phosphorylation of Ser880 in the intracellular C-terminal domain of the AMPA receptor subunit GluR2. This phosphorylation is accompanied by both a reduction in the affinity of GluR2 to glutamate receptor interacting protein (GRIP), a molecule known to be critical for AMPA receptor clustering, and a significant disruption of postsynaptic GluR2 clusters. Moreover, GluR2 protein released from GRIP is shown to be internalized. These results suggest that the dissociation of postsynaptic GluR2 clusters and subsequent internalization of the receptor protein, initiated by the phosphorylation of Ser880, are the mechanisms underlying the induction of cerebellar LTD.  相似文献   

12.
Han D  Zhang QG  Yong-Liu  Li C  Zong YY  Yu CZ  Wang W  Yan JZ  Zhang GY 《FEBS letters》2008,582(9):1298-1306
In this study, we investigated whether the increase of inhibitory gamma-amino butyric acid (GABA) signal suppresses the excitatory glutamate signal induced by cerebral ischemia and the underlying mechanisms. In global cerebral ischemia, focal cerebral ischemia and oxygen-glucose deprivation, application of muscimol and baclofen, agonists of GABA(A) receptor and GABA(B) receptor, exerted neuroprotection. The agonists inhibited the increased assembly of the GluR6-PSD-95-MLK3 module induced by cerebral ischemia and the activation of the MLK3-MKK4/7-JNK3 cascade. Our results suggest that stimulation of the inhibitory GABA receptors can attenuate the excitatory JNK3 apoptotic signaling pathway via inhibiting the increased assembly of the GluR6-PSD-95-MLK3 signaling module in cerebral ischemia.  相似文献   

13.
The neuronal localization of alpha-amino-3-hydroxyl-5-methyl-4-isoxazole propionic acid (AMPA) glutamate receptor (GluR) subunits is vital as they play key roles in the regulation of calcium permeability. We have examined the distribution of the calcium permeable AMPA glutamate receptor subunit GluR1 in the mouse visual cortex immunocytochemically. We compared this distribution to that of the calcium-binding proteins calbindin D28K, calretinin, and parvalbumin, and of GABA. The highest density of GluR1-immunoreactive (IR) neurons was found in layers II/III. Enucleation appeared to have no effect on the distribution of GluR1-IR neurons. The labeled neurons varied in morphology; the majority were round or oval and no pyramidal cells were labeled by the antibody. Two-color immunofluorescence revealed that 26.27%, 10.65%, and 40.31% of the GluR1-IR cells also contained, respectively, calbindin D28K, calretinin, and parvalbumin. 20.74% of the GluR1-IR neurons also expressed GABA. These results indicate that many neurons that express calcium-permeable GluR1 also express calcium binding proteins. They also demonstrate that one fifth of the GluR1-IR neurons in the mouse visual cortex are GABAergic interneurons.  相似文献   

14.
Two 3-(5-tetrazolylmethoxy) analogues, 1a and 1b, of (RS)-2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid (AMPA), a selective AMPA receptor agonist, and (RS)-2-amino-3-(5-tert-butyl-3-hydroxy-4-isoxazolyl)propionic acid (ATPA), a GluR5-preferring agonist, were synthesized. Compounds 1a and 1b were pharmacologically characterized in receptor binding assays, and electrophysiologically on homomeric AMPA receptors (GluR1-4), homomeric (GluR5 and GluR6) and heteromeric (GluR6/KA2) kainic acid receptors, using two-electrode voltage-clamped Xenopus laevis oocytes expressing these receptors. Both analogues proved to be antagonists at all AMPA receptor subtypes, showing potencies (Kb=38-161 microM) similar to that of the AMPA receptor antagonist (RS)-2-amino-3-[3-(carboxymethoxy)-5-methyl-4-isoxazolyl]propionic acid (AMOA) (Kb=43-76 microM). Furthermore, the AMOA analogue, 1a, blocked two kainic acid receptor subtypes (GluR5 and GluR6/KA2), showing sevenfold preference for GluR6/KA2 (Kb=19 microM). Unlike the iGluR antagonist (S)-2-amino-3-[5-tert-butyl-3-(phosphonomethoxy)-4-isoxazolyl]propionic acid [(S)-ATPO], the corresponding tetrazolyl analogue, 1b, lacks kainic acid receptor effects. On the basis of docking to a crystal structure of the isolated extracellular ligand-binding core of the AMPA receptor subunit GluR2 and a homology model of the kainic acid receptor subunit GluR5, we were able to rationalize the observed structure-activity relationships.  相似文献   

15.
16.
Lou M  Ding MP  Wen SQ  Xia Q 《中国应用生理学杂志》2006,22(2):190-194,i0004
目的:研究1型血管紧张素Ⅱ受体阻滞剂厄贝沙坦对局灶性脑缺血的神经保护作用及其可能的细胞机制。方法:在激光多谱勒脑血流监测仪对局部脑血流的监测下,应用线栓法建立大鼠大脑中动脉阻塞模型。药物经侧脑室内微泵持续灌注雄性正常血压大鼠,术后行神经功能评分,测定梗死体积,并运用免疫组化染色观察活性Caspase-3及其下游多聚ADP-核糖聚合酶(PARP)p85裂解片断的改变,结合TUNEL,比较各组细胞凋亡情况。结果:厄贝沙坦明显改善大鼠的神经功能评分,第7d的梗死体积较对照组减少了42%,用药后缺血区的TUNEL阳性细胞数.荧光标记的活性Caspase-3以及PARP p85裂解片断表达均明显减少。结论:厄贝沙坦可改善局灶脑缺血的神经功能,抑制细胞凋亡可能是其神经保护机制之一。  相似文献   

17.
The ionotropic α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor is densely distributed in the mammalian brain and is primarily involved in mediating fast excitatory synaptic transmission. Recent studies in both heterologous expression systems and cultured neurons have shown that the AMPA receptor can be phosphorylated on their subunits (GluR1, GluR2, and GluR4). All phosphorylation sites reside at serine, threonine, or tyrosine on the intracellular C-terminal domain. Several key protein kinases, such as protein kinase A, protein kinase C, Ca2+/calmodulin-dependent protein kinase II, and tyrosine kinases (Trks; receptor or nonreceptor family Trks) are involved in the site-specific regulation of the AMPA receptor phosphorylation. Other glutamate receptors (N-methyl-d-aspartate receptors and metabotropic glutamate receptors) also regulate AMPA receptors through a protein phosphorylation mechanism. Emerging evidence shows that as a rapid and short-term mechanism, the dynamic protein phosphorylation directly modulates the electrophysiological, morphological (externalization and internalization trafficking and clustering), and biochemical (synthesis and subunit composition) properties of the AMPA receptor, as well as protein-protein interactions between the AMPA receptor subunits and various intracellular interacting proteins. These modulations underlie the major molecular mechanisms that ultimately affect many forms of synaptic plasticity.  相似文献   

18.
The expression and distribution of AMPA, kainate and NMDA glutamate receptor subunits was studied in the goldfish retina. For the immunocytochemical localization of the AMPA receptor antisera against GluR2, GluR2/3 and GluR4 were used, and for in situ hybridization rat specific probes for GluR1 and GluR2 and goldfish specific probes for GluR3 and GluR4 were used. The localization of the low affinity kainate receptor and NMDA receptor was studied using antisera against GluR5-7 and NR1. All AMPA receptor subtypes were demonstrated to be present in the goldfish retina both by immunocytochemistry and in situ hybridization. In situ hybridization revealed expression of all AMPA receptors subunit at the inner border of the INL. Only GluR3 was also strongly expressed in the outer border of the INL. Some of the ganglion cells displayed a strong signal for GluR1, GluR3 and GluR4. GluR1-immunoreactivity was present in subsets of bipolar, amacrine, and ganglion cells. GluR2 and GluR2/3-immunoreactivity was mainly localized in the outer plexiform layer. GluR2 and GluR2/3-immunoreactivity are associated with the photoreceptor synaptic terminals. GluR4-immunoreactivity is present on Müller cells in the inner retina and on dendrites of bipolar cells in the OPL, whereas GluR5-7-immunoreactivity was prominently present on horizontal cell axon terminals. Finally, NR1-immunoreactivity was confined to amacrine cells, the inner plexiform layer and ganglion cells. This study shows that there is a strong heterogeneity of glutamate receptor subunit expression in the various layers of the retina. Of the AMPA receptor subunits GluR3 seems to be expressed the most widely in all layers with strong glutamatergic synaptic interactions whereas all the other subunits seem to have a more restricted expressed pattern.  相似文献   

19.
20.
Lee SH  Liu L  Wang YT  Sheng M 《Neuron》2002,36(4):661-674
Proteins that bind to the cytoplasmic tails of AMPA receptors control receptor trafficking and thus the strength of postsynaptic responses. Here we show that AP2, a clathrin adaptor complex important for endocytosis, associates with a region of GluR2 that overlaps the NSF binding site. Peptides used previously to interfere with NSF binding also antagonize GluR2-AP2 interaction. Using GluR2 mutants and peptide variants that dissociate NSF and AP2 interaction, we find that AP2 is involved specifically in NMDA receptor-induced (but not ligand-dependent) internalization of AMPA receptors, and is essential for hippocampal long-term depression (LTD). NSF function, on the other hand, is needed to maintain synaptic AMPA receptor responses, but is not directly required for NMDA receptor-mediated internalization and LTD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号