首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dorsomedial hypothalamus (DMH) is a site of circadian clock gene and immediate early gene expression inducible by daytime restricted feeding schedules that entrain food anticipatory circadian rhythms in rats and mice. The role of the DMH in the expression of anticipatory rhythms has been evaluated using different lesion methods. Partial lesions created with the neurotoxin ibotenic acid (IBO) have been reported to attenuate food anticipatory rhythms, while complete lesions made with radiofrequency current leave anticipatory rhythms largely intact. We tested a hypothesis that the DMH and fibers of passage spared by IBO lesions play a time-of-day dependent role in the expression of food anticipatory rhythms. Rats received intra-DMH microinjections of IBO and activity and body temperature (T(b)) rhythms were recorded by telemetry during ad-lib food access, total food deprivation and scheduled feeding, with food provided for 4-h/day for 20 days in the middle of the light period and then for 20 days late in the dark period. During ad-lib food access, rats with DMH lesions exhibited a lower amplitude and mean level of light-dark entrained activity and T(b) rhythms. During the daytime feeding schedule, all rats exhibited food anticipatory activity and T(b) rhythms that persisted during 2 days without food in constant dark. In some rats with partial or total DMH ablation, the magnitude of the anticipatory rhythm was weak relative to most intact rats. When mealtime was shifted to the late night, the magnitude of the food anticipatory activity rhythms in these cases was restored to levels characteristic of intact rats. These results confirm that rats can anticipate scheduled daytime or nighttime meals without the DMH. Improved anticipation at night suggests a modulatory role for the DMH in the expression of food anticipatory activity rhythms during the daily light period, when nocturnal rodents normally sleep.  相似文献   

2.
Our aim was to investigate how circadian adaptation to night shift work affects psychomotor performance, sleep, subjective alertness and mood, melatonin levels, and heart rate variability (HRV). Fifteen healthy police officers on patrol working rotating shifts participated to a bright light intervention study with 2 participants studied under two conditions. The participants entered the laboratory for 48 h before and after a series of 7 consecutive night shifts in the field. The nighttime and daytime sleep periods were scheduled during the first and second laboratory visit, respectively. The subjects were considered “adapted” to night shifts if their peak salivary melatonin occurred during their daytime sleep period during the second visit. The sleep duration and quality were comparable between laboratory visits in the adapted group, whereas they were reduced during visit 2 in the non-adapted group. Reaction speed was higher at the end of the waking period during the second laboratory visit in the adapted compared to the non-adapted group. Sleep onset latency (SOL) and subjective mood levels were significantly reduced and the LF∶HF ratio during daytime sleep was significantly increased in the non-adapted group compared to the adapted group. Circadian adaptation to night shift work led to better performance, alertness and mood levels, longer daytime sleep, and lower sympathetic dominance during daytime sleep. These results suggest that the degree of circadian adaptation to night shift work is associated to different health indices. Longitudinal studies are required to investigate long-term clinical implications of circadian misalignment to atypical work schedules.  相似文献   

3.
Light-to-dark transitions have been found to enhance paradoxical sleep (PS) in albino rats but not pigmented rats. Furthermore, PS inducing effect of dark pulses in albino rats depends on sleep states. This study examined whether the relationship between PS and preceding non-rapid-eye-movement sleep (NREMS) in pigmented Brown Norway rats was different from that in albino F344 rats and whether such a difference was associated with different responses to dark pulses in the two rat strains. Both rat strains showed a positive relationship between PS and preceding NREMS. However, only the albino F344 rats exhibited the PS inducing effect of dark pulses. Dark pulses did not alter the relationship between PS and preceding NREMS in either rat strain, and, reciprocally, nor did duration of preceding NREMS affect dark pulse-induced PS enhancement. Furthermore, this study verified that dark pulses given during NREMS in albino F344 rats specifically induced the suppression of NREMS concomitant with the enhancement of PS. This study proposed that dark pulses might inhibit NREMS and facilitate PS regulating areas concurrently in albino rats.  相似文献   

4.
Retinas of rats, rabbits, chicks and carp possess enzymes, i.e. serotonin N-acetyltransferase (NAT) and hydroxyindole-O-methyltransferase (HIOMT), which convert serotonin (5-HT) to melatonin, NAT activity and melatonin levels, but not HIOMT activity, show distinct circadian rhythms, with peak values occurring during the dark (night) phase of the 12 h light-dark cycle. Exposure of the animals to light at night inhibited the night-stimulated NAT activity. Treatment of rats and rabbits with the dopaminergic agonist, apomorphine, inhibited the retinal NAT activity. Dopamine levels in the rabbit retina showed diurnal variations, with higher contents seen during the light phase of both the 12 h light-dark cycle with lights on between 06:00–18:00, and that with reversed periods of illumination (lights on between 18:00–06:00). Melatonin potently inhibited the electrically-evoked calcium-dependent release of [3H]dopamine from pieces of retina from both albino and pigmented rabbits. Our results indicate that the light-regulated melatonin-generating system does operate in the vertebrate retina. The present data, together with other findings, suggest that in the retina there is an antagonistic interplay between melatonin and dopamine. Thus, melatonin inhibits dopamine synthesis in, and release from, the retinal dopaminergic cells, whilst dopamine inhibits the night (dark)-stimulated melatonin formation by decreasing NAT activity. Since light increases metabolic activity of the retinal dopaminergic cells (it enhances the amine synthesis, levels and release), it seems likely that the retinal dopamine plays a role of a “light” messenger in the inhibition of melatonin synthesis. It is suggested that an interplay between melatonin and dopamine in the retina is responsible for regulation of those retinal events which follow circadian rhythmicity, and/or are dependent on light-dark conditions.  相似文献   

5.
Increases in activity typically accompany the food deprivation of Norway rats housed in activity wheels. The hypothesis that domestication has reduced the intensity of this response to food deprivation was tested by comparing the wheel-running scores of adult male wild (laboratory-reared) and domestic Norway rats when food-deprived and satiated.Wild rats were more active in the wheels than domestic subjects, irrespective of the presence or absence of food. However, the proportional increase in wheel-running when food deprived was the same for both stocks. It is hypothesized that the process of domestication has had little influence on the wheel-running response of rats to food deprivation.  相似文献   

6.
The long-term (10–30 day) continuous recording of valve movements in the mussel Mytilus galloprovincialis was carried out in the laboratory under nearly natural conditions. Fourier analysis revealed the circadian (close to the diurnal) rhythm of the valve activity, the phase of which is readily shifted by a shift in the beginning of the daytime, since the light regime is one of the main factors determining the circadian rhythm. The circadian rhythm was manifested in the daily dynamics of mussel valve activity: in the daytime, mussels hold their valves closed more often than at night. This behavior may be a protective response, namely the “shadow reflex”: mussels close their valves upon a sudden decrease in illumination, thus protecting themselves from possible predators. Circadian activity can mask a mussel’s response to environmental pollution; therefore, regular valve closure should be taken into account in early warning systems such as “MusselMonitor®” with a correction for the season of the year, time of day, and other factors.  相似文献   

7.
Interstrain differences in thermoregulation of rats are important in biomedical research because subtleties in thermoregulatory sensitivities may greatly affect data collected. Little is known regarding how individual rodent strains differentially utilize behavioral thermal preference to regulate core temperature (Tc). Sprague-Dawley (SD) and Fischer 344 (F344) rats are known to have differences in thermoregulation including heat tolerance and are useful models to study interstrain differences in thermoregulation. Adult male SD and F344 rats of similar body size were implanted with radiotelemetry thermoprobes (DSI) to measure Tc and MA and housed in either a longitudinal temperature gradient with an ambient temperature (Ta) range of ∼15–40 °C to measure selected Ta (STa) or control environment maintained at a Ta of 23 °C. When continuously monitored for 48 h, Tc and MA increased at night, while STa decreased, according to their normal circadian cycle in both strains. SD rats were more active than F344 rats throughout the circadian cycle (SD gradient: day=12.9±1.2 m/h, night=32.1±2.4 m/h; F344 gradient: day=4.1±0.6 m/h, night=16.8±1.8 m/h; p<0.05 interstrain and circadian effects). The STa of each strain was greater during the daytime (SD: 26.4±0.2 °C; F344: 27.8±0.3 °C) than at night (SD: 24.7±0.3 °C; F344: 25.7±0.3 °C) confirming past studies that thermopreference during the day and night is greater than standard room temperature (∼23 °C). Correlations between MA and Tc suggest that MA has a greater effect on Tc in the F344 but not the SD strain when housed in a temperature gradient. There were significant strain differences in Tc depending on whether rats were housed in a temperature gradient. That is, the control F344 rats had a lower Tc during the transition from dark to light compared to rats housed in a gradient. Tc of the SD strain was unaffected by housing in the gradient. Rats are typically housed at a standard room temperature of 23 °C. However, the results demonstrate that when given the opportunity to behaviorally thermoregulate in a temperature gradient, the F344 strain selects a warmer environment that affects the regulation of Tc. This may be important in the experimenters' choice of ambient temperatures to house and study rats and other rodents.  相似文献   

8.
The transgenic TGR(mREN-2)27 rat is not only characterized by fulminant hypertension, but also by a disturbance in circadian blood pressure regulation, resulting in inverse circadian blood pressure profiles. The reasons for these alterations are not very well understood at present. We therefore investigated the circadian rhythms in several hormones participating in blood pressure regulation. From TGR and Sprague-Dawley (SPRD) control rats synchronized to 12h light and 12h dark (LD 12:12) blood was collected at different circadian times (07, 11, 15, 19, 23, 03, and 07 again, 5 rats per strain and time). The activities of plasma renin and converting enzyme, as well as plasma concentrations of corticosterone and aldosterone, were determined by radioimmunoassay (RIA). SPRD rats showed significant circadian rhythms in all variables except plasma renin activity, with maxima occurring during the day. TGR rats showed significant circadian rhythmicity in plasma renin activity and corticosterone and daily variation in aldosterone; angiotensin-converting enzyme (ACE) activity did not reach statistical significance. In TGR rats, 24h means in plasma renin activity and aldosterone were approximately sevenfold and fourfold higher, respectively, than in SPRD rats. Peak concentrations in corticosterone around 15h were more than two times higher in TGR rats than in SPRD rats, whereas no differences were observed during the night. It is concluded that, in TGR rats, the overall increase in plasma renin activity and aldosterone may contribute to the elevated blood pressure. The comparatively high levels in corticosterone and plasma renin activity during daytime may be involved in the inverse circadian blood pressure profiles in the transgenic animals. (Chronobiology International, 17(5), 645-658, 2000)  相似文献   

9.
The transgenic TGR(mREN-2)27 rat is not only characterized by fulminant hypertension, but also by a disturbance in circadian blood pressure regulation, resulting in inverse circadian blood pressure profiles. The reasons for these alterations are not very well understood at present. We therefore investigated the circadian rhythms in several hormones participating in blood pressure regulation. From TGR and Sprague-Dawley (SPRD) control rats synchronized to 12h light and 12h dark (LD 12:12) blood was collected at different circadian times (07, 11, 15, 19, 23, 03, and 07 again, 5 rats per strain and time). The activities of plasma renin and converting enzyme, as well as plasma concentrations of corticosterone and aldosterone, were determined by radioimmunoassay (RIA). SPRD rats showed significant circadian rhythms in all variables except plasma renin activity, with maxima occurring during the day. TGR rats showed significant circadian rhythmicity in plasma renin activity and corticosterone and daily variation in aldosterone; angiotensin-converting enzyme (ACE) activity did not reach statistical significance. In TGR rats, 24h means in plasma renin activity and aldosterone were approximately sevenfold and fourfold higher, respectively, than in SPRD rats. Peak concentrations in corticosterone around 15h were more than two times higher in TGR rats than in SPRD rats, whereas no differences were observed during the night. It is concluded that, in TGR rats, the overall increase in plasma renin activity and aldosterone may contribute to the elevated blood pressure. The comparatively high levels in corticosterone and plasma renin activity during daytime may be involved in the inverse circadian blood pressure profiles in the transgenic animals. (Chronobiology International, 17(5), 645–658, 2000)  相似文献   

10.
Anthropogenic disturbance may affect animal behaviour and should generally be minimised. We examined how anthropogenic disturbance (24 h food deprivation) affected circadian rhythms in laboratory mussels Mytilus edulis exposed to natural light in the absence of tides. Repeated measures data were collected on mussel gape angle, exhalant pumping and valve adduction using a Hall sensor system over eight consecutive 24 h periods when exposed to two feeding conditions after 24 h food deprivation. Mussels (fed once per day at either midday or midnight) exposed to natural light showed a clear day–night rhythm with increased nocturnal activity: significantly greater gape angle, increased exhalant pumping and had significantly higher valve adduction rates. However, circadian rhythms were less clear directly after anthropogenic food deprivation, in terms of the circadian rhythm in gape angle becoming significantly more apparent over the following days. Unlike mussels fed at midnight, those fed at midday displayed no significant change in gape angle from the hour before to the hour after they were fed, i.e. mussels given food at midday reacted to this food less than mussels fed at midnight. We suggest that independent of feeding time, laboratory mussels exposed to natural light and free from anthropogenic disturbance increase feeding activity at night because their circadian rhythms are strongly influenced by light levels. This study emphasises that the behaviour of animals in the laboratory and in the wild can be altered by anthropogenic disturbances such as vibrations caused by experimental setups and artificial illumination at night.  相似文献   

11.
Night shift work is associated with a myriad of health and safety risks. Phase-shifting the circadian clock such that it is more aligned with night work and day sleep is one way to attenuate these risks. However, workers will not be satisfied with complete adaptation to night work if it leaves them misaligned during days off. Therefore, the goal of this set of studies is to produce a compromise phase position in which individuals working night shifts delay their circadian clocks to a position that is more compatible with nighttime work and daytime sleep yet is not incompatible with late nighttime sleep on days off. This is the first in the set of studies describing the magnitude of circadian phase delays that occurs on progressively later days within a series of night shifts interspersed with days off. The series will be ended on various days in order to take a "snapshot" of circadian phase. In this set of studies, subjects sleep from 23:00 to 7:00 h for three weeks. Following this baseline period, there is a series of night shifts (23:00 to 07:00 h) and days off. Experimental subjects receive five 15 min intermittent bright light pulses (approximately 3500 lux; approximately 1100 microW/cm2) once per hour during the night shifts, wear sunglasses that attenuate all visible wavelengths--especially short wavelengths ("blue-blockers")--while traveling home after the shifts, and sleep in the dark (08:30-15:30 h) after each night shift. Control subjects remain in typical dim room light (<50 lux) throughout the night shift, wear sunglasses that do not attenuate as much light, and sleep whenever they want after the night shifts. Circadian phase is determined from the circadian rhythm of melatonin collected during a dim light phase assessment at the beginning and end of each study. The sleepiest time of day, approximated by the body temperature minimum (Tmin), is estimated by adding 7 h to the dim light melatonin onset. In this first study, circadian phase was measured after two night shifts and day sleep periods. The Tmin of the experimental subjects (n=11) was 04:24+/-0.8 h (mean+/-SD) at baseline and 7:36+/-1.4 h after the night shifts. Thus, after two night shifts, the Tmin had not yet delayed into the daytime sleep period, which began at 08:30 h. The Tmin of the control subjects (n=12) was 04:00+/-1.2 h at baseline and drifted to 4:36+/-1.4 h after the night shifts. Thus, two night shifts with a practical pattern of intermittent bright light, the wearing of sunglasses on the way home from night shifts, and a regular sleep period early in the daytime, phase delayed the circadian clock toward the desired compromise phase position for permanent night shift workers. Additional night shifts with bright light pulses and daytime sleep in the dark are expected to displace the sleepiest time of day into the daytime sleep period, improving both nighttime alertness and daytime sleep but not precluding adequate sleep on days off.  相似文献   

12.
In humans, the storage and voiding functions of the urinary bladder have a characteristic diurnal variation, with increased voiding during the day and urine storage during the night. However, in animal models, the daily functional differences in urodynamics have not been well-studied. The goal of this study was to identify key urodynamic parameters that vary between day and night. Rats were chronically instrumented with an intravesical catheter, and bladder pressure, voided volumes, and micturition frequency were measured by continuous filling cystometry during the light (inactive) or dark (active) phases of the circadian cycle. Cage activity was recorded by video during the experiment. We hypothesized that nocturnal rats entrained to a standard 12:12 light:dark cycle would show greater ambulatory activity and more frequent, smaller volume micturitions in the dark compared to the light. Rats studied during the light phase had a bladder capacity of 1.44±0.21 mL and voided every 8.2±1.2 min. Ambulatory activity was lower in the light phase, and rats slept during the recording period, awakening only to urinate. In contrast, rats studied during the dark were more active, had a lower bladder capacities (0.65±0.18 mL), and urinated more often (every 3.7±0.9 min). Average bladder pressures were not significantly different between the light and dark (13.40±2.49 and 12.19±2.85 mmHg, respectively). These results identify a day-night difference in bladder capacity and micturition frequency in chronically-instrumented nocturnal rodents that is phase-locked to the normal circadian locomotor activity rhythm of the animal. Furthermore, since it has generally been assumed that the daily hormonal regulation of renal function is a major driver of the circadian rhythm in urination, and few studies have addressed the involvement of the lower urinary tract, these results establish the bladder itself as a target for circadian regulation.  相似文献   

13.
Experiments were conducted in male rats to study the effects of streptozotocin-induced diabetes on circadian rhythms of (a) plasma corticosterone concentrations; (b) motor activity; and (c) metabolic patterns. Animals were entrained to LD cycles of 12: 12 hr and fed ad libitum.

A daily rhythm of plasma corticosterone concentrations was found in controls animals with peak levels at 2400 hr and low values during the remaining hours. This rhythm was statistically confirmed by the cosinor method and had an amplitude of 3.37μg/100 ml and the acrophase at 100 hr. A loss of the normal circadian variation was observed in diabetic animals, with a nadir at the onset of light period and high values throughout the remaining hours; cosinor analysis of these data showed no circadian rhythm, delete and a higher mean level than controls.

As expected, normal rats presented most of their motor activity during the dark period with 80+ of total daily activity; the cosinor method demonstrated a circadian rhythm with an amplitude of 60+ of the mean level and the acrophase at 0852 hr. Both diabetic and control rats showed a similar activity during the light phase, but diabetic animals had less activity than controls during the night and their percentage of total daily activity was similar in both phases of the LD cycle (50+ for each one). With the cosinor method we were able to show the persistence of a circadian rhythm in the motor activity of diabetic rats, but with a mesor and amplitude lower than in controls (amplitude rested at 60+ of the mean level) and its acrophase advanced to 0148 hr.

The metabolic activity pattern of diabetic rats also changed: whereas controls showed a greater metabolic activity during the night (70+ food; 82+ water; 54+ urine; 67+ faeces), diabetics did not show differences between both phases of the LD cycle. Water ingested and urine excreted by the diabetic group were higher than normal during light and dark periods; food consumed and faeces excreted were higher than controls only in the light phase.

These data suggest that alterations in circadian rhythms of plasma corticosterone and motor activity are consecutive to the loss of the feeding circadian pattern, due to polyphagia and polydipsia showed by these animals, which need to extend intakes during the light and dark phases.  相似文献   

14.
Maternal behavior of Koltushi High- and Low-avoidance (KHA and KLA) rats strains was assessed over the prewealing period (days 6-21). Ten litters of each strain were observed during the light phase of the light/dark cycle. In a series of experiments, rat pups were taken from the maternal nest and placed into the opposite corner of the cage. The following parameters of the maternal behavior were recorded: the latency of the first contact with the pups, pup licking, latency of carrying/retrieval of the first pup back to the nest, time of returning to the nest of the whole litter, and mother's spontaneous behavior (grooming and locomotion time) over the course of 10 min of observation. KLA mothers stayed with their pups and took care of them more frequently than KHA mothers during the light phase of the circadian cycle. Time of self-grooming was significantly higher in KHA rats. The highest levels of self-grooming of mothers was registered on the first day of testing. The latency of the first coming to pups after their removal from the nest was lower in KHA rats, but they needed more time to returned all pups to the nest. The experimental evidence suggests that the KHA but not KLA rats with the active coping style and higher stress reactivity display disorders in maternal behavior in a novel situation.  相似文献   

15.
Night shift work is associated with a myriad of health and safety risks. Phase‐shifting the circadian clock such that it is more aligned with night work and day sleep is one way to attenuate these risks. However, workers will not be satisfied with complete adaptation to night work if it leaves them misaligned during days off. Therefore, the goal of this set of studies is to produce a compromise phase position in which individuals working night shifts delay their circadian clocks to a position that is more compatible with nighttime work and daytime sleep yet is not incompatible with late nighttime sleep on days off. This is the first in the set of studies describing the magnitude of circadian phase delays that occurs on progressively later days within a series of night shifts interspersed with days off. The series will be ended on various days in order to take a “snapshot” of circadian phase. In this set of studies, subjects sleep from 23:00 to 7:00 h for three weeks. Following this baseline period, there is a series of night shifts (23:00 to 07:00 h) and days off. Experimental subjects receive five 15 min intermittent bright light pulses (~3500 lux; ~1100 µW/cm2) once per hour during the night shifts, wear sunglasses that attenuate all visible wavelengths—especially short wavelengths (“blue‐blockers”)—while traveling home after the shifts, and sleep in the dark (08:30–15:30 h) after each night shift. Control subjects remain in typical dim room light (<50 lux) throughout the night shift, wear sunglasses that do not attenuate as much light, and sleep whenever they want after the night shifts. Circadian phase is determined from the circadian rhythm of melatonin collected during a dim light phase assessment at the beginning and end of each study. The sleepiest time of day, approximated by the body temperature minimum (Tmin), is estimated by adding 7 h to the dim light melatonin onset. In this first study, circadian phase was measured after two night shifts and day sleep periods. The Tmin of the experimental subjects (n=11) was 04:24±0.8 h (mean±SD) at baseline and 7:36±1.4 h after the night shifts. Thus, after two night shifts, the Tmin had not yet delayed into the daytime sleep period, which began at 08:30 h. The Tmin of the control subjects (n=12) was 04:00±1.2 h at baseline and drifted to 4:36±1.4 h after the night shifts. Thus, two night shifts with a practical pattern of intermittent bright light, the wearing of sunglasses on the way home from night shifts, and a regular sleep period early in the daytime, phase delayed the circadian clock toward the desired compromise phase position for permanent night shift workers. Additional night shifts with bright light pulses and daytime sleep in the dark are expected to displace the sleepiest time of day into the daytime sleep period, improving both nighttime alertness and daytime sleep but not precluding adequate sleep on days off.  相似文献   

16.
To examine roles of the Cryptochromes (Cry1 and Cry2) in mammalian circadian photoreception, we recorded single-unit neuronal firing activity in the suprachiasmatic nucleus (SCN), a primary circadian oscillator, and optic nerve fibers in vivo after retinal illumination in anesthetized Cry1 and Cry2 double-knockout (Cry-deficient) mice. In wild-type mice, most SCN neurons increased their firing frequency in response to retinal illumination at night, whereas only 17% of SCN neurons responded during the daytime. However, 40% of SCN neurons responded to light during the daytime, and 31% of SCN neurons responded at night in Cry-deficient mice. The magnitude of the photic response in SCN neurons at night was significantly lower (1.3-fold of spontaneous firing) in Cry-deficient mice than in wild-type mice (4.0-fold of spontaneous firing). In the optic nerve near the SCN, no difference in the proportion of light-responsive fibers was observed between daytime and nighttime in both genotypes. However, the response magnitude in the light-activated fibers (ON fibers) was high during the nighttime and low during the daytime in wild-type mice, whereas this day-night difference was not observed in Cry-deficient mice. In addition, we observed day-night differences in the spontaneous firing rates in the SCN in both genotypes and in the fibers of wild-type, but not Cry-deficient mice. We conclude that the low photo response in the SCN of Cry-deficient mice is caused by a circadian gating defect in the retina, suggesting that Cryptochromes are required for appropriate temporal photoreception in mammals.  相似文献   

17.
Various combinations of interventions were used to phase-delay circadian rhythms to correct their misalignment with night work and day sleep. Young participants (median age = 22, n = 67) participated in 5 consecutive simulated night shifts (2300 to 0700) and then slept at home (0830 to 1530) in darkened bedrooms. Participants wore sunglasses with normal or dark lenses (transmission 15% or 2%) when outside during the day. Participants took placebo or melatonin (1.8 mg sustained release) before daytime sleep. During the night shifts, participants were exposed to a moving (delaying) pattern of intermittent bright light (approximately 5000 lux, 20 min on, 40 min off, 4-5 light pulses/night) or remained in dim light (approximately 150 lux). There were 6 intervention groups ranging from the least complex (normal sunglasses) to the most complex (dark sunglasses + bright light + melatonin). The dim light melatonin onset (DLMO) was assessed before and after the night shifts (baseline and final), and 7 h was added to estimate the temperature minimum (Tmin). Participants were categorized by their amount of reentrainment based on their final Tmin: not re-entrained (Tmin before the daytime dark/sleep period), partially re-entrained (Tmin during the first half of dark/sleep), or completely re-entrained (Tmin during the second half of dark/ sleep). The sample was split into earlier participants (baseline Tmin < or = 0700, sunlight during the commute home fell after the Tmin) and later participants (baseline Tmin > 0700). The later participants were completely re-entrained regardless of intervention group, whereas the degree of re-entrainment for the earlier participants depended on the interventions. With bright light during the night shift, almost all of the earlier participants achieved complete re-entrainment, and the phase delay shift was so large that darker sunglasses and melatonin could not increase its magnitude. With only room light during the night shift, darker sunglasses helped earlier participants phase-delay more than normal sunglasses, but melatonin did not increase the phase delay. The authors recommend the combination of intermittent bright light during the night shift, sunglasses (as dark as possible) during the commute home, and a regular, early daytime dark/sleep period if the goal is complete circadian adaptation to night-shift work.  相似文献   

18.
Rats placed in an environment other than their home cage increase their body temperature (Tb) by more than 1 degree C. This stress-induced hyperthermia is considered to be a fever, in the sense that the Tb rise seems to reflect an upward shift in the level of regulated Tb (set point). The circadian rhythm of Tb also reflects changes in set point. One might therefore expect to see differences in response to such stress during various phases of the light-dark (LD) cycle as Tb fluctuates between L and D. To test this, 3- to 6-month-old male Long-Evans rats were taken from their home cages (12:12 LD) and placed individually in a Plexiglas container for 30 min. Tb and activity were measured via telemetry. In the first experiment, rats were placed in the container during day (from 1 to 3 h after lights on) and night (from 1 to 3 h after lights off), with light on or off during the test. There was a significant Tb rise in response to placement in the container at all times except when the rats were tested during the night with light on in the container; in that condition there was no Tb rise. In the second experiment, the authors determined that 30 min of light in the home cage before the test did not affect Tb: If the light was on in the test situation, hyperthermia was inhibited, and if it was off, hyperthermia was as high as control levels. In the third experiment, to determine whether this effect was time dependent, the test was performed at 4-h intervals, with light on or off during the test. The strongest inhibiting effect of light was in early night. In the fourth experiment, the authors turned the lights on during early night while the rats were in their home cages. This reduced their Tb significantly by less than 0.3 degrees C. The authors conclude that both clock time and light condition during testing are factors affecting the Tb rise in response to stress.  相似文献   

19.
The diurnal activity rhythm of Clethrionomys rufocanus was studied under three different food conditions in a laboratory. The activity occurred both in the daytime and at night, but mainly at night (19:00~4:00). The mice fed with Mouse food exhibited six small peaks in their daily activity, and those fed with grass or hay exhibited seven, but the peak of the out nest night activity was 2~3 hours earlier.The activity amount of out nest was 30518.0 ±3694.9 s for those fed with grass, the next was 21811.7± 2288.0 s for those fed with hay, and the least was 15038.0±666.0 s for those fed with mouse food. The activity amount of feeding was 10867.3±1612.1 s for those fed with grass, much more than those fed with mouse food and hay. The activity amount for drinking was 988.5±79.1 s (fed with hay),568.9±60.9 s (fed with mouse food) and 139.3±47.2 s (fed with grass).  相似文献   

20.
Locomotor activity of troglobitic (cave restricted) catfishes, Trichomycterus sp., was recorded in the laboratory under constant darkness for ten consecutive days. Infra-red photocell beam crossings were totalled every thirty minutes and stored for later analysis. Spectral analysis of the data followed by a statistical test designed for the detection of significant components was then performed. The results of 14 individuals, seven pigmented and seven albino fishes, are reported here. In eight individuals, four pigmented and four albinos, we were not able to detect significant components in the circadian range, although ultradian and/or infradian significant components were found in all cases. Former studies on other two Brazilian cave catfishes, Pimelodella kronei and Imparfinis sp., showed similar results, suggesting a picture of gradual loss of circadian rhythmicity and persistence of ultradian and infradian rhythms in the locomotor activity of troglobitic populations. The proportion of specimens without significant circadian components was higher in Trichomycterus sp., supposedly less specialized to cave life than the other two species. This is tentatively correlated with a higher environmental stability during the time of evolutionary isolation in the subterranean biotope. These results provide strong arguments for the importance of external selection over circadian rhythmicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号