首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background and Aims

Sclerotinia sclerotiorum can attack >400 plant species worldwide. Very few studies have investigated host–pathogen interactions at the plant surface and cellular level in resistant genotypes of oilseed rape/canola (Brassica napus).

Methods

Infection processes of S. sclerotiorum were examined on two B. napus genotypes, one resistant cultivar ‘Charlton’ and one susceptible ‘RQ001-02M2’ by light and scanning electron microscopy from 2 h to 8 d post-inoculation (dpi).

Key Results

The resistant ‘Charlton’ impeded fungal growth at 1, 2 and 3 dpi, suppressed formation of appresoria and infection cushions, caused extrusion of protoplast from hyphal cells and produced a hypersensitive reaction. At 8 dpi, whilst in ‘Charlton’ pathogen invasion was mainly confined to the upper epidermis, in the susceptible ‘RQ001-02M2’, colonization up to the spongy mesophyll cells was evident. Calcium oxalate crystals were found in the upper epidermis and in palisade cells in susceptible ‘RQ001-02M2’ at 6 dpi, and throughout leaf tissues at 8 dpi. In resistant ‘Charlton’, crystals were not observed at 6 dpi, whereas at 8 dpi they were mainly confined to the upper epidermis. Starch deposits were also more prevalent in ‘RQ001-02M2’.

Conclusions

This study demonstrates for the first time at the cellular level that resistance to S. sclerotiorum in B. napus is a result of retardation of pathogen development, both on the plant surface and within host tissues. The resistance mechanisms identified in this study will be useful for engineering disease-resistant genotypes and for developing markers for screening for resistance against this pathogen.  相似文献   

2.
3.
Ferulate-5-hydroxylase is a key enzyme involved in the conversion of the guaiacyl monolignol to the syringyl monolignol in angiosperms. The monolignol ratio has been proposed to affect biomass recalcitrance and the resistance to plant disease. Stem rot caused by the fungus Sclerotinia sclerotiorum in Brassica napus causes severe losses in its production. To date, there is no information about the effect of the lignin monomer ratio on the resistance to S. sclerotiorum in B. napus. Four dominantly expressed ferulate-5-hydroxylase genes were concertedly knocked out by CRISPR/Cas9 in B. napus, and three mutant lines were generated. The S/G lignin compositional ratio was decreased compared to that of the wild type based on the results of M?ule staining and 2D-NMR profiling in KO-7. The resistance to S. sclerotiorum in stems and leaves increased for the three f5h mutant lines compared with WT. Furthermore, we found that the stem strength of f5h mutant lines was significantly increased. Overall, we demonstrate for the first time that decreasing the S/G ratio by knocking out of the F5H gene improves S. sclerotiorum resistance in B. napus and increases stem strength.  相似文献   

4.
5.
Sclerotinia stem rot (SSR) caused by Sclerotinia sclerotiorum is a devastating disease of rapeseed (Brassica napus L.). To date, the genetic mechanisms of rapeseed’ interactions with S. sclerotiorum are not fully understood, and molecular‐based breeding is still the most effective control strategy for this disease. Here, Arabidopsis thaliana GDSL1 was characterized as an extracellular GDSL lipase gene functioning in Sclerotinia resistance. Loss of AtGDSL1 function resulted in enhanced susceptibility to S. sclerotiorum. Conversely, overexpression of AtGDSL1 in B. napus enhanced resistance, which was associated with increased reactive oxygen species (ROS) and salicylic acid (SA) levels, and reduced jasmonic acid levels. In addition, AtGDSL1 can cause an increase in lipid precursor phosphatidic acid levels, which may lead to the activation of downstream ROS/SA defence‐related pathways. However, the rapeseed BnGDSL1 with highest sequence similarity to AtGDSL1 had no effect on SSR resistance. A candidate gene association study revealed that only one AtGDSL1 homolog from rapeseed, BnaC07g35650D (BnGLIP1), significantly contributed to resistance traits in a natural B. napus population, and the resistance function was also confirmed by a transient expression assay in tobacco leaves. Moreover, genomic analyses revealed that BnGLIP1 locus was embedded in a selected region associated with SSR resistance during the breeding process, and its elite allele type belonged to a minor allele in the population. Thus, BnGLIP1 is the functional equivalent of AtGDSL1 and has a broad application in rapeseed S. sclerotiorum‐resistance breeding.  相似文献   

6.
Sclerotinia rot is a fungal disease caused by Sclerotinia sclerotiorum (Lib.) de Bary, which has severely reduced rapeseed production worldwide. Polygalacturonase-inhibiting proteins (PIGPs) inhibit the activity of polygalacturonases, which are secreted during fungal infection in plants. This study investigated the function of the polygalacturonase-inhibitor gene 2 (PGIP2) in sclerotinia rot resistance. The PGIP2 was successfully expressed in a prokaryotic system, and recombinant PGIP2 protein, purified after enterokinase treatment to remove tag peptide, inhibited S. sclerotiorum PG activity in vitro. PGIP2 was overexpressed in the susceptible Brassica napus cultivar 98c40 via Agrobacterium-mediated transformation. After inoculation with S. sclerotiorum mycelia, the transgenic rapeseed demonstrated greatly reduced leaf damage, as compared with their non-transgenic plants. Therefore, the PGIP2 encodes a functional protein and would be a candidate gene for enhancing Sclerotinia rot resistance.  相似文献   

7.
Rapeseed (Brassica napus L.) is one of the most important economic crops worldwide, and Sclerotinia sclerotiorum is the most dangerous disease that affects its yield greatly. Lipid transfer protein (LTP) has broad-spectrum anti-bacterial and fungal activities. In this study, B. napus was transformed using Agrobacterium tumefaciens harboring the plasmid-containing LTP gene to study its possible capability of increasing plant’s resistance. First, we optimized the petiole genetic transformation system by adjusting the days of explants, bacterial concentrations, ratio of hormones, and cultivating condition. Second, we obtained 8 positive plants by PGR analysis of T0 generation. The PGR results of T1 generation were positive, indicating that the LTP gene had been integrated into B. napus. Third, T1 transgenic plants inoculated by detached leaves with mycelia of S. sclerotiorum showed better disease resistance than non-transformants. Oxalic acid belongs to secondary metabolites of S. sclerotiorum, and several studies have demonstrated that the resistance of rapeseed to oxalic acid is significantly consistent with its resistance to S. sclerotiorum. The result from the seed germination assay showed that when T1 seeds were exposed to oxalic acid stress, their germination rate was evidently higher than that of non-transformant seeds. In addition, we measured some physiological changes in T1 plants and control plants under oxalic acid stress. The results showed that T1 transgenic plants had lower malondialdehyde (MDA) content, higher super oxide dismutase (SOD), and peroxidase (POD) activities than non-transformants, whereas disease resistance was related to low MDA content and high SOD and POD activities.  相似文献   

8.
9.
10.
This study was conducted to isolate endophytic fungi from oilseed rape (Brassica napus), to identify the fungal endophytes based on morphology and ITS (ITS1-5.8S rDNA-ITS2) sequences, and to evaluate their efficacy in suppression of the plant pathogenic fungi Sclerotinia sclerotiorum and Botrytis cinerea. Selected endophytic fungal isolates were further tested for promoting growth of oilseed rape in potting experiments. A total of 97 endophytic fungal isolates were obtained from roots (35), stems (49) and leaves (13) of B. napus. Forty fungal species were identified and most species (80%) belong to Ascomycota. The species composition is highly diversified with Simpson’s diversity index reaching 0.959. Alternaria alternata is the dominant species accounting for 12.4% of the isolates. Twenty-four isolates exhibited antifungal activity against S. sclerotiorum in dual cultures on potato dextrose agar forming inhibition zones of 3–17 mm in width. The culture filtrates of Aspergillus flavipes CanS-34A, Chaetomium globosum CanS-73, Clonostachys rosea CanS-43 and Leptosphaeria biglobosa CanS-51 in potato dextrose broth exhibited consistent and effective suppression of oilseed rape leaf blight caused by S. sclerotiorum. Fusarium oxysporum CanR-46 was detected capable of production of volatile organic compounds highly inhibitory to S. sclerotiorum and B. cinerea. Moreover, A. alternata CanL-18, Fusarium tricinctum CanR-70 and CanR-71r, and L. biglobosa CanS-51 exhibited growth-promoting effects on oilseed rape. These results suggest that B. napus harbors diversified endophytic fungi, from which potential biocontrol agents against S. sclerotiorum and B. cinerea, and for promoting growth of B. napus can be screened.  相似文献   

11.
Stem rot caused by Sclerotinia sclerotiorum in many important dicotyledonous crops, including oilseed rape (Brassica napus), is one of the most devastating fungal diseases and imposes huge yield loss each year worldwide. Currently, breeding for Sclerotinia resistance in B. napus, as in other crops, can only rely on germplasms with quantitative resistance genes. Thus, the identification of quantitative trait locus (QTL) for S. sclerotiorum resistance/tolerance in this crop holds immediate promise for the genetic improvement of the disease resistance. In this study, ten QTLs for stem resistance (SR) at the mature plant stage and three QTLs for leaf resistance (LR) at the seedling stage in multiple environments were mapped on nine linkage groups (LGs) of a whole genome map for B. napus constructed with SSR markers. Two major QTLs, LRA9 on LG A9 and SRC6 on LG C6, were repeatedly detected across all environments and explained 8.54–15.86% and 29.01%–32.61% of the phenotypic variations, respectively. Genotypes containing resistant SRC6 or LRA9 allele showed a significant reduction in disease lesion after pathogen infection. Comparative mapping with Arabidopsis and data mining from previous gene profiling experiments identified that the Arabidopsis homologous gene of IGMT5 (At1g76790) was related to the SRC6 locus. Four copies of the IGMT5 gene in B. napus were isolated through homologous cloning, among which, only BnaC.IGMT5.a showed a polymorphism between parental lines and can be associated with the SRC6. Furthermore, two parental lines exhibited a differential expression pattern of the BnaC.IGMT5.a gene in responding to pathogen inoculation. Thus, our data suggested that BnaC.IGMT5.a was very likely a candidate gene of this major resistance QTL.  相似文献   

12.
13.
Trichoderma spp. are known for their biocontrol activity against several plant pathogens. A specific isolate of Trichoderma harzianum, 303/02, has the potential to inhibit the growth of Sclerotinia sclerotiorum, an important agent involved in several crop diseases. In this study, the interaction between T. harzianum 303/02 and mycelia, sclerotia and apothecia of S. sclerotiorum was studied by scanning electron microscopy. RT-qPCR was used to examine the expression of 11 genes potentially involved in biocontrol. T. harzianum 303/02 parasitizes S. sclerotiorum by forming branches that coil around the hyphae. The fungus multiplied abundantly at the sclerotia and apothecia surface, forming a dense mycelium that penetrated the inner surface of these structures. The levels of gene expression varied according to the type of structure with which T. harzianum was interacting. The data also showed the presence of synergistic action between the cell-wall degrading enzymes.  相似文献   

14.
Canola (Brassica napus L.) is an agriculturally and economically important crop in Canada, and its growth and yield are frequently influenced by fungal pathogens. Sclerotinia sclerotiorum is among those fungal pathogens and causes stem rot disease in B. napus whereas it has been reported that Brassica carinata is moderately tolerant to S. sclerotiorum. Jasmonic acid/ethylene (JA/ET) and salicylic acid (SA) are phytohormones that are known to be involved in plant disease responses. To investigate the defense signaling cascades involved in the interaction of B. napus and B. carinata with S. sclerotiorum, we examined the expression of five orthologs of B. napus genes involved in JA/ET or SA signaling pathways using quantitative RT-PCR. Our results indicated that there are differences in the timing of JA/ET and SA signaling pathways between B. napus and B. carinata. Our results in these two Brassica species also support previous observations that necrotrophic pathogens trigger JA/ET signaling in response to infection. Finally, we observed that transgenic canola expressing 1-aminocyclopropane-1-carboxylate-deaminase producing low levels of ET was relatively more susceptible to S. sclerotiorum than its wild-type counterpart, suggesting that ET inhibits S. sclerotiorum-induced symptom development.  相似文献   

15.
16.
Field resistances against Sclerotinia rot (SR) (Sclerotinia sclerotiorum) were determined in 52 Chinese genotypes of Brassica oleracea var. capitata, 14 Indian Brassica juncea genotypes carrying wild weedy Brassicaceae introgression(s) and four carrying B‐genome introgression, 22 Australian commercial Brassica napus varieties, and 12 B. napus and B. juncea genotypes of known resistance. All plants were individually inoculated by securing an agar disc from a culture of S. sclerotiorum growing on a glucose‐rich medium to the stem above the second internode with Parafilm tape. Mean stem lesion length across tested genotypes ranged from <1 to >68 mm. While there was considerable diversity within the germplasm sets from each country, overall, 65% of the B. oleracea var. capitata genotypes from China showed the highest levels of stem resistance, a level comparable with the highest resistance ever recorded for oilseed B. napus or B. juncea from China or Australia. One Indian B. juncea line carrying weedy introgression displayed a significant level of both stem and leaf resistance. However, the vast majority of commercial Australian oilseed B. napus varieties fell within the most susceptible 40% of genotypes tested for stem disease. There was no correlation between expressions of stem versus leaf resistance, suggesting their independent inheritance. A few Chinese B. oleracea var. capitata genotypes that expressed combined extremely high‐level stem (≤1 mm length) and leaf (≤0.5 mean number of infections/plant) resistance will be particularly significant for developing new SR‐resistant horticultural and oilseed Brassica varieties.  相似文献   

17.
Sclerotinia sclerotiorum is a devastating pathogen that infects a broad range of host plants. The mechanism underlying plant defence against fungal invasion is still not well characterized. Here, we report that ANGUSTIFOLIA (AN), a CtBP family member, plays a role in the defence against S. sclerotiorum attack. Arabidopsis an mutants exhibited stronger resistance to S. sclerotiorum at the early stage of infection than wild-type plants. Accordingly, an mutants exhibited stronger activation of pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) responses, including mitogen-activated protein kinase activation, reactive oxygen species accumulation, callose deposition, and the expression of PTI-responsive genes, upon treatment with PAMPs/microbe-associated molecular patterns. Moreover, Arabidopsis lines overexpressing AN were more susceptible to S. sclerotiorum and showed defective PTI responses. Our luminometry, bimolecular fluorescence complementation, coimmunoprecipitation, and in vitro pull-down assays indicate that AN interacts with allene oxide cyclases (AOC), essential enzymes involved in jasmonic acid (JA) biosynthesis, negatively regulating JA biosynthesis in response to S. sclerotiorum infection. This work reveals AN is a negative regulator of the AOC-mediated JA signalling pathway and PTI activation.  相似文献   

18.
19.
Dong X  Ji R  Guo X  Foster SJ  Chen H  Dong C  Liu Y  Hu Q  Liu S 《Planta》2008,228(2):331-340
Sclerotinia sclerotiorum causes a highly destructive disease in oilseed rape (Brassica napus). Oxalic acid (OA) secreted by the pathogen is a key pathogenicity factor. Oxalate oxidase (OXO) can oxidize OA into CO2 and H2O2. In this study, we show that transgenic oilseed rape (sixth generation lines) constitutively expressing wheat (Triticum aestivum) OXO displays considerably increased OXO activity and enhanced resistance to S. sclerotiorum (with up to 90.2 and 88.4% disease reductions compared with the untransformed parent line and a resistant control, respectively). Upon application of exogenous OA, the pH values in transgenic plants were maintained at levels slightly lower than 5.58 measured prior to OA treatment, whereas the pH values in untransformed plants decreased rapidly and were markedly lower than 5.63 measured prior to OA treatment. Following pathogen inoculation, H2O2 levels were higher in transgenic plants than in untransformed plants. These results indicate that the enhanced resistance of the OXO transgenic oilseed rape to Sclerotinia is probably mediated by OA detoxification. We believe that enhancing the OA metabolism of oilseed rape in this way will be an effective strategy for improving resistance to S. sclerotiorum. Xiangbai Dong and Ruiqin Ji contributed equally to this paper.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号