首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Plaque assay is the method traditionally used to isolate and purify lytic viruses, to determine the viral titer and host range. Whereas most bacterioviruses are either temperate or lytic, the majority of known archeoviruses are not lytic (i.e. they are temperate or chronic). In view of the widespread occurrence of such viruses in extreme environments, we designed an original method, called the inverted spot test, to determine the host range and infectivity of viruses isolated from anaerobic hyperthermophilic and sulfur-reducing microorganisms. Here, we used this approach to prove for the first time the infectivity of Pyrococcus abyssi virus 1 (PAV1) and to confirm the host range of Thermococcus prieurii virus 1 (TPV1), the only two viruses isolated so far from any of the described marine hyperthermophilic archaea (Euryarchaeota phylum, Thermococcales order).  相似文献   

2.
Although it is generally assumed that mobile genetic elements facilitate the adaptation of microbial communities to environmental stresses, environmental data supporting this assumption are rare. In this study, river sediment samples taken from two mercury-polluted (A and B) and two nonpolluted or less-polluted (C and D) areas of the river Nura (Kazakhstan) were analyzed by PCR for the presence and abundance of mercury resistance genes and of broad-host-range plasmids. PCR-based detection revealed that mercury pollution corresponded to an increased abundance of mercury resistance genes and of IncP-1β replicon-specific sequences detected in total community DNA. The isolation of IncP-1β plasmids from contaminated sediments was attempted in order to determine whether they carry mercury resistance genes and thus contribute to an adaptation of bacterial populations to Hg pollution. We failed to detect IncP-1β plasmids in the genomic DNA of the cultured Hg-resistant bacterial isolates. However, without selection for mercury resistance, three different IncP-1β plasmids (pTP6, pTP7, and pTP8) were captured directly from contaminated sediment slurry in Cupriavidus necator JMP228 based on their ability to mobilize the IncQ plasmid pIE723. These plasmids hybridized with the merRTΔP probe and conferred Hg resistance to their host. A broad host range and high stability under conditions of nonselective growth were observed for pTP6 and pTP7. The full sequence of plasmid pTP6 was determined and revealed a backbone almost identical to that of the IncP-1β plasmids R751 and pB8. However, this is the first example of an IncP-1β plasmid which had acquired only a mercury resistance transposon but no antibiotic resistance or biodegradation genes. This transposon carries a rather complex set of mer genes and is inserted between Tra1 and Tra2.  相似文献   

3.
4.
Thermococcales (phylum Euryarchaeota) are model organisms for physiological and molecular studies of hyperthermophiles. Here we describe three new plasmids from Thermococcales that could provide new tools and model systems for genetic and molecular studies in Archaea. The plasmids pTN2 from Thermococcus nautilus sp. 30-1 and pP12-1 from Pyrococcus sp. 12-1 belong to the same family. They have similar size (∼12 kb) and share six genes, including homologues of genes encoded by the virus PAV1 from Pyrococcus abyssi. The plasmid pT26-2 from Thermococcus sp. 26-2 (21.5 kb), that corresponds to another plasmid family, encodes many proteins having homologues in virus-like elements integrated in several genomes of Thermococcales and Methanococcales. Our analyses confirm that viruses and plasmids are evolutionary related and co-evolve with their hosts. Whereas all plasmids previously isolated from Thermococcales replicate by the rolling circle mechanism, the three plasmids described here probably replicate by the theta mechanism. The plasmids pTN2 and pP12-1 encode a putative helicase of the SFI superfamily and a new family of DNA polymerase, whose activity was demonstrated in vitro, whereas pT26-2 encodes a putative new type of helicase. This strengthens the idea that plasmids and viruses are a reservoir of novel protein families involved in DNA replication.  相似文献   

5.

Hyperthermophilic microorganisms are an important asset in the toolkits of biotechnologists, biochemists and evolutionary biologists. The anaerobic archaeon, Thermococcus kodakarensis, has become one of the most useful hyperthermophilic model species, not least due to its natural competence and genetic tractability. Despite this, the range of genetic tools available for T. kodakarensis remains limited. Using sequencing and phylogenetic analyses, we determined that the rolling-circle replication origin of the cryptic mini-plasmid pTP2 from T. prieurii is suitable for plasmid replication in T. kodakarensis. Based on this replication origin, we present a novel series of replicative E. coliT. kodakarensis shuttle vectors. These shuttle vectors have been constructed with three different selectable markers, allowing selection in a range of T. kodakarensis backgrounds. Moreover, these pTP2-derived plasmids are compatible with the single-existing E. coliT. kodakarensis shuttle vector, pLC70. We show that both pTP2-derived and pLC70-derived plasmids replicate faithfully while cohabitating in T. kodakarensis cells. These plasmids open the door for new areas of research in plasmid segregation, DNA replication and gene expression.

  相似文献   

6.
Full-length proviral DNA of Fujinami sarcoma virus (FSV) of chickens was molecularly cloned and characterized. An analysis of FSV DNA integrated in mammalian cells showed that restriction endonuclease SacI has a single cleavage site on FSV DNA. Unintegrated closed circular FSV DNA obtained from newly infected cells was linearized by digestion with SacI and cloned into λgtWES·λB. The following three different molecules were isolated: FSV-1 (4.4 kilobases [kb]) and FSV-2 (4.7 kb), which appeared to be full-length FSV DNA molecules containing either one or two copies of the long terminal repeat structure, and FSV-3 (6 kb), which consisted of part FSV DNA and part DNA of unknown origin. An analysis of the structure of cloned FSV-1 and FSV-2 DNA molecules by restriction endonuclease mapping and hybridization with appropriate probes showed that about 2.6 kb of the FSV-unique sequence called FSV-fps is located in the middle of the FSV genome and is flanked by helper virus-derived sequences of about 1.3 kb at the 5′ end and 0.5 kb at the 3′ end. The long terminal repeats of FSV were found to have no cleavage site for either EcoRI or PvuI. Upon transfection, both FSV-1 DNA and FSV-2 DNA were able to transform mammalian fibroblasts. Four 32P-labeled DNA fragments derived from different portions of the FSV-fps sequence were used for hybridization to viral RNAs. We found that sequences within the 3′ half of the FSV-fps gene are homologous to RNAs of PRCII avian sarcoma virus and the Snyder-Theilen strain of feline sarcoma virus, both of which were previously shown to contain transforming genes related to FSV-fps. These results suggest that the 3′ portion of the FSV-fps sequence may be crucial for the transforming activity of fps-related oncogenic sequences.  相似文献   

7.
Transmission of avian influenza viruses from bird to human is a rare event even though avian influenza viruses infect the ciliated epithelium of human airways in vitro and ex vivo. Using an in vitro model of human ciliated airway epithelium (HAE), we demonstrate that while human and avian influenza viruses efficiently infect at temperatures of the human distal airways (37°C), avian, but not human, influenza viruses are restricted for infection at the cooler temperatures of the human proximal airways (32°C). These data support the hypothesis that avian influenza viruses, ordinarily adapted to the temperature of the avian enteric tract (40°C), rarely infect humans, in part due to differences in host airway regional temperatures. Previously, a critical residue at position 627 in the avian influenza virus polymerase subunit, PB2, was identified as conferring temperature-dependency in mammalian cells. Here, we use reverse genetics to show that avianization of residue 627 attenuates a human virus, but does not account for the different infection between 32°C and 37°C. To determine the mechanism of temperature restriction of avian influenza viruses in HAE at 32°C, we generated recombinant human influenza viruses in either the A/Victoria/3/75 (H3N2) or A/PR/8/34 (H1N1) genetic background that contained avian or avian-like glycoproteins. Two of these viruses, A/Victoria/3/75 with L226Q and S228G mutations in hemagglutinin (HA) and neuraminidase (NA) from A/Chick/Italy/1347/99 and A/PR/8/34 containing the H7 and N1 from A/Chick/Italy/1347/99, exhibited temperature restriction approaching that of wholly avian influenza viruses. These data suggest that influenza viruses bearing avian or avian-like surface glycoproteins have a reduced capacity to establish productive infection at the temperature of the human proximal airways. This temperature restriction may limit zoonotic transmission of avian influenza viruses and suggests that adaptation of avian influenza viruses to efficient infection at 32°C may represent a critical evolutionary step enabling human-to-human transmission.  相似文献   

8.
A novel single-stranded RNA (ssRNA) virus specifically infecting the bloom-forming diatom Rhizosolenia setigera (R. setigera RNA virus [RsRNAV]) was isolated from Ariake Sea, Japan. Viral replication occurred within the cytoplasm, and the virus particle was icosahedral, lacked a tail, and was 32 nm in diameter on average. The major nucleic acid extracted from the RsRNAV particles was an ssRNA molecule 11.2 kb in length, although smaller RNA molecules (0.6, 1.2, and 1.5 kb) were occasionally observed. The major structural proteins of RsRNAV were 41.5, 41.0, and 29.5 kDa. Inter- and intraspecies host specificity tests revealed that RsRNAV is not only species specific but also strain specific and that its intraspecies host specificity is diverse among virus clones. The latent period of RsRNAV was 2 days, and the burst sizes were 3,100 and 1,010 viruses per host cell when viruses were inoculated into the host culture at the exponential and stationary growth phases, respectively, at 15°C under a 12-h-12-h light-dark cycle of ca. 110 μmol of photons m−2 s−1 with cool white fluorescent illumination. To our knowledge, this is the first report describing the biological properties of a virus infecting a diatom. Further studies on RsRNAV will be helpful in understanding the ecological relationship between diatoms and viruses in nature.  相似文献   

9.
To identify cis-acting elements in the foamy virus (FV) RNA pregenome, we developed a transient-vector-production system based on cotransfection of indicator gene-bearing vector and gag-pol and env expression plasmids. Two elements which were critical for vector transfer were found and mapped approximately. The first element was located in the RU5 leader and the 5′ gag region (approximately up to position 650 of the viral RNA). The second element was located in an approximately 2-kb sequence in the 3′ pol region. Although small 5′ and 3′ deletions, as well as internal deletions of the latter element, were tolerated, both elements were found to be absolutely required for vector transfer. The functional characterization of the pol region-located cis-acting element revealed that it is essential for efficient incorporation or the stability of particle-associated virion RNA. Furthermore, virions derived from a vector lacking this sequence were found to be deficient in the cleavage of the Gag protein by the Pol precursor protease. Our results suggest that during the formation of infectious virions, complex interactions between FV Gag and Pol and the viral RNA take place.  相似文献   

10.

Background

Tsetse flies (Glossina sp.), the African trypanosome vectors, rely on anti-hemostatic compounds for efficient blood feeding. Despite their medical importance, very few salivary proteins have been characterized and functionally annotated.

Methodology/Principal Findings

Here we report on the functional characterisation of a 5′nucleotidase-related (5′Nuc) saliva protein of the tsetse fly Glossina morsitans morsitans. This protein is encoded by a 1668 bp cDNA corresponding at the genomic level with a single-copy 4 kb gene that is exclusively transcribed in the tsetse salivary gland tissue. The encoded 5′Nuc protein is a soluble 65 kDa glycosylated compound of tsetse saliva with a dual anti-hemostatic action that relies on its combined apyrase activity and fibrinogen receptor (GPIIb/IIIa) antagonistic properties. Experimental evidence is based on the biochemical and functional characterization of recombinant protein and on the successful silencing of the 5′nuc translation in the salivary gland by RNA interference (RNAi). Refolding of a 5′Nuc/SUMO-fusion protein yielded an active apyrase enzyme with Km and Vmax values of 43±4 µM and 684±49 nmol Pi/min×mg for ATPase and 49±11 µM and 177±37 nmol Pi/min×mg for the ADPase activity. In addition, recombinant 5′Nuc was found to bind to GPIIb/IIIa with an apparent KD of 92±25 nM. Consistent with these features, 5′Nuc potently inhibited ADP-induced thrombocyte aggregation and even caused disaggregation of ADP-triggered human platelets. The importance of 5′Nuc for the tsetse fly hematophagy was further illustrated by specific RNAi that reduced the anti-thrombotic activities in saliva by approximately 50% resulting in a disturbed blood feeding process.

Conclusions/Significance

These data show that this 5′nucleotidase-related apyrase exhibits GPIIb/IIIa antagonistic properties and represents a key thromboregulatory compound of tsetse fly saliva.  相似文献   

11.
Extracellular vesicles (EVs) produced by a sulfur-reducing, hyperthermophilic archaeon, “Thermococcus onnurineus” NA1T, were purified and characterized. A maximum of four EV bands, showing buoyant densities between 1.1899 and 1.2828 g cm−3, were observed after CsCl ultracentrifugation. The two major EV bands, B (buoyant density at 25°C [ρ25] = 1.2434 g cm−3) and C (ρ25 = 1.2648 g cm−3), were separately purified and counted using a qNano particle analyzer. These EVs, showing different buoyant densities, were identically spherical in shape, and their sizes varied from 80 to 210 nm in diameter, with 120- and 190-nm sizes predominant. The average size of DNA packaged into EVs was about 14 kb. The DNA of the EVs in band C was sequenced and assembled. Mapping of the T. onnurineus NA1T EV (ToEV) DNA sequences onto the reference genome of the parent archaeon revealed that most genes of T. onnurineus NA1T were packaged into EVs, except for an ∼9.4-kb region from TON_0536 to TON_0544. The absence of this specific region of the genome in the EVs was confirmed from band B of the same culture and from bands B and C purified from a different batch culture. The presence of the 3′-terminal sequence and the absence of the 5′-terminal sequence of TON_0536 were repeatedly confirmed. On the basis of these results, we hypothesize that the unpackaged part of the T. onnurineus NA1T genome might be related to the process that delivers DNA into ToEVs and/or the mechanism generating the ToEVs themselves.  相似文献   

12.
13.
14.
In the Archaea only a handful of ribonucleases involved in RNA processing and degradation have been characterized. One potential group of archaeal ribonucleases are homologues of the bacterial RNase J family, which have a β-CASP metallo-β-lactamase fold. Here we show that β-CASP proteins encoded in the genomes of the hyperthermophilic Euryarchaeota Pyrococcus abyssi and Thermococcus kodakaraensis are processive exoribonucleases with a 5′ end dependence and a 5′ to 3′ directionality. We named these enzymes Pab-RNase J and Tk-RNase J, respectively. RNAs with 5′-monophosphate or 5′-hydroxyl ends are preferred substrates of Pab-RNase J, whereas circularized RNA is resistant to Pab-RNase J activity. Degradation of a 3′ end-labeled synthetic RNA in which an internal nucleoside is substituted by three ethylene glycol units generates intermediates demonstrating 5′ to 3′ directionality. The substitution of conserved residues in Pab-RNase J predicted to be involved in the coordination of metal ions demonstrates their importance for ribonuclease activity, although the detailed geometry of the catalytic site is likely to differ from bacterial RNase J. This is the first identification of a 5′-exoribonuclease encoded in the genomes of the Archaea. Phylogenetic analysis shows that euryarchaeal RNase J has been inherited vertically, suggesting an ancient origin predating the separation of the Bacteria and the Archaea.  相似文献   

15.
Metabolite-dependent conformational switching in RNA riboswitches is now widely accepted as a critical regulatory mechanism for gene expression in bacterial systems. More recently, similar gene regulation mechanisms have been found to be important for viral systems as well. One of the most abundant and best-studied systems is the tRNA-like structure (TLS) domain, which has been found to occur in many plant viruses spread across numerous genera. In this work, folding dynamics for the TLS domain of Brome Mosaic Virus have been investigated using single-molecule fluorescence resonance energy transfer techniques. In particular, burst fluorescence methods are exploited to observe metal-ion ([Mn+])-induced folding in freely diffusing RNA constructs resembling the minimal TLS element of brome mosaic virus RNA3. The results of these experiments reveal a complex equilibrium of at least three distinct populations. A stepwise, or consecutive, thermodynamic model for TLS folding is developed, which is in good agreement with the [Mn+]-dependent evolution of conformational populations and existing structural information in the literature. Specifically, this folding pathway explains the metal-ion dependent formation of a functional TLS domain from unfolded RNAs via two consecutive steps: 1) hybridization of a long-range stem interaction, followed by 2) formation of a 3′-terminal pseudoknot. These two conformational transitions are well described by stepwise dissociation constants for [Mg2+] (K1 = 328 ± 30 μM and K2 = 1092 ± 183 μM) and [Na+] (K1 = 74 ± 6 mM and K2 = 243 ± 52 mM)-induced folding. The proposed thermodynamic model is further supported by inhibition studies of the long-range stem interaction using a complementary DNA oligomer, which effectively shifts the dynamic equilibrium toward the unfolded conformation. Implications of this multistep conformational folding mechanism are discussed with regard to regulation of virus replication.  相似文献   

16.
The possible effect of virus adaptation to different transmission routes on virus stability in the environment is not well known. In this study we have compared the stabilities of three viruses within the Bunyaviridae family: the rodent-borne Hantavirus Hantaan virus (HTNV), the sand fly-borne Phlebovirus sandfly fever Sicilian virus (SFSV), and the tick-borne Nairovirus Crimean-Congo hemorrhagic fever virus (CCHFV). These viruses differ in their transmission routes: SFSV and CCHFV are vector borne, whereas HTNV is spread directly between its hosts, and to humans, via the environment. We studied whether these viruses differed regarding stability when kept outside of the host. Viral survival was analyzed at different time points upon exposure to different temperatures (4°C, 20°C, and 37°C) and drying at 20°C. We observed clearly different stabilities under wet conditions, particularly at 4°C, where infectious SFSV, HTNV, and CCHFV were detectable after 528, 96, and 15 days, respectively. All three viruses were equally sensitive to drying, as shown by drying on aluminum discs. Furthermore, HTNV and SFSV partially survived for 2 min in 30% ethanol, whereas CCHFV did not. Electron microscopy images of HTNV, SSFSV, and CCHFV stored at 37°C until infectivity was lost still showed the occurrence of virions, but with abnormal shapes and densities compared to those of the nonincubated samples. In conclusion, our study points out important differences in ex vivo stability among viruses within the Bunyaviridae family.  相似文献   

17.
18.
β-Alanine is a precursor for coenzyme A (CoA) biosynthesis and is a substrate for the bacterial/eukaryotic pantothenate synthetase and archaeal phosphopantothenate synthetase. β-Alanine is synthesized through various enzymes/pathways in bacteria and eukaryotes, including the direct decarboxylation of Asp by aspartate 1-decarboxylase (ADC), the degradation of pyrimidine, or the oxidation of polyamines. However, in most archaea, homologs of these enzymes are not present; thus, the mechanisms of β-alanine biosynthesis remain unclear. Here, we performed a biochemical and genetic study on a glutamate decarboxylase (GAD) homolog encoded by TK1814 from the hyperthermophilic archaeon Thermococcus kodakarensis. GADs are distributed in all three domains of life, generally catalyzing the decarboxylation of Glu to γ-aminobutyrate (GABA). The recombinant TK1814 protein displayed not only GAD activity but also ADC activity using pyridoxal 5′-phosphate as a cofactor. Kinetic studies revealed that the TK1814 protein prefers Asp as its substrate rather than Glu, with nearly a 20-fold difference in catalytic efficiency. Gene disruption of TK1814 resulted in a strain that could not grow in standard medium. Addition of β-alanine, 4′-phosphopantothenate, or CoA complemented the growth defect, whereas GABA could not. Our results provide genetic evidence that TK1814 functions as an ADC in T. kodakarensis, providing the β-alanine necessary for CoA biosynthesis. The results also suggest that the GAD activity of TK1814 is not necessary for growth, at least under the conditions applied in this study. TK1814 homologs are distributed in a wide range of archaea and may be responsible for β-alanine biosynthesis in these organisms.  相似文献   

19.
20.
A novel thermoacidophilic pullulan-hydrolyzing enzyme (PUL) from hyperthermophilic archaeon Thermococcus kodakarensis (TK-PUL) that efficiently hydrolyzes starch under industrial conditions in the absence of any additional metal ions was cloned and characterized. TK-PUL possessed both pullulanase and α-amylase activities. The highest activities were observed at 95 to 100°C. Although the enzyme was active over a broad pH range (3.0 to 8.5), the pH optima for both activities were 3.5 in acetate buffer and 4.2 in citrate buffer. TK-PUL was stable for several hours at 90°C. Its half-life at 100°C was 45 min when incubated either at pH 6.5 or 8.5. The Km value toward pullulan was 2 mg ml−1, with a Vmax of 109 U mg−1. Metal ions were not required for the activity and stability of recombinant TK-PUL. The enzyme was able to hydrolyze both α-1,6 and α-1,4 glycosidic linkages in pullulan. The most preferred substrate, after pullulan, was γ-cyclodextrin, which is a novel feature for this type of enzyme. Additionally, the enzyme hydrolyzed a variety of polysaccharides, including starch, glycogen, dextrin, amylose, amylopectin, and cyclodextrins (α, β, and γ), mainly into maltose. A unique feature of TK-PUL was the ability to hydrolyze maltotriose into maltose and glucose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号