首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Gram-positive bacterium Cellulomonas fimi produces a large array of carbohydrate-active enzymes. Analysis of the collection of carbohydrate-active enzymes from the recent genome sequence of C. fimi ATCC 484 shows a large number of uncharacterized genes for glycoside hydrolase (GH) enzymes potentially involved in biomass utilization. To investigate the enzymatic activity of potential β-glucosidases in C. fimi, genes encoding several GH3 enzymes and one GH1 enzyme were cloned and recombinant proteins were expressed in Escherichia coli. Biochemical analysis of these proteins revealed that the enzymes exhibited different substrate specificities for para-nitrophenol-linked substrates (pNP), disaccharides, and oligosaccharides. Celf_2726 encoded a bifunctional enzyme with β-d-xylopyranosidase and α-l-arabinofuranosidase activities, based on pNP-linked substrates (CfXyl3A). Celf_0140 encoded a β-d-glucosidase with activity on β-1,3- and β-1,6-linked glucosyl disaccharides as well as pNP-β-Glc (CfBgl3A). Celf_0468 encoded a β-d-glucosidase with hydrolysis of pNP-β-Glc and hydrolysis/transglycosylation activities only on β-1,6-linked glucosyl disaccharide (CfBgl3B). Celf_3372 encoded a GH3 family member with broad aryl-β-d-glycosidase substrate specificity. Celf_2783 encoded the GH1 family member (CfBgl1), which was found to hydrolyze pNP-β-Glc/Fuc/Gal, as well as cellotetraose and cellopentaose. CfBgl1 also had good activity on β-1,2- and β-1,3-linked disaccharides but had only very weak activity on β-1,4/6-linked glucose.  相似文献   

2.
Carbohydrate-active enzymes are involved in the degradation, biosynthesis, and modification of carbohydrates and vary with the diversity of carbohydrates. The glycoside hydrolase (GH) family 31 is one of the most diverse families of carbohydrate-active enzymes, containing various enzymes that act on α-glycosides. However, the function of some GH31 groups remains unknown, as their enzymatic activity is difficult to estimate due to the low amino acid sequence similarity between characterized and uncharacterized members. Here, we performed a phylogenetic analysis and discovered a protein cluster (GH31_u1) sharing low sequence similarity with the reported GH31 enzymes. Within this cluster, we showed that a GH31_u1 protein from Lactococcus lactis (LlGH31_u1) and its fungal homolog demonstrated hydrolytic activities against nigerose [α-D-Glcp-(1→3)-D-Glc]. The kcat/Km values of LlGH31_u1 against kojibiose and maltose were 13% and 2.1% of that against nigerose, indicating that LlGH31_u1 has a higher specificity to the α-1,3 linkage of nigerose than other characterized GH31 enzymes, including eukaryotic enzymes. Furthermore, the three-dimensional structures of LlGH31_u1 determined using X-ray crystallography and cryogenic electron microscopy revealed that LlGH31_u1 forms a hexamer and has a C-terminal domain comprising four α-helices, suggesting that it contributes to hexamerization. Finally, crystal structures in complex with nigerooligosaccharides and kojibiose along with mutational analysis revealed the active site residues involved in substrate recognition in this enzyme. This study reports the first structure of a bacterial GH31 α-1,3-glucosidase and provides new insight into the substrate specificity of GH31 enzymes and the physiological functions of bacterial and fungal GH31_u1 members.  相似文献   

3.
Thiocyanate hydrolase is a newly found enzyme from Thiobacillus thioparus THI 115 that converts thiocyanate to carbonyl sulfide and ammonia (Y. Katayama, Y. Narahara, Y. Inoue, F. Amano, T. Kanagawa, and H. Kuraishi, J. Biol. Chem. 267:9170–9175, 1992). We have cloned and sequenced the scn genes that encode the three subunits of the enzyme. The scnB, scnA, and scnC genes, arrayed in this order, contained open reading frames encoding sequences of 157, 126, and 243 amino acid residues, respectively, for the β, α, and γ subunits, respectively. Each open reading frame was preceded by a typical Shine-Dalgarno sequence. The deduced amino-terminal peptide sequences for the three subunits were in fair agreement with the chemically determined sequences. The protein molecular mass calculated for each subunit was compatible with that determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. From a computer analysis, thiocyanate hydrolase showed significant homologies to bacterial nitrile hydratases known to convert nitrile to the corresponding amide, which is further hydrolyzed by amidase to form acid and ammonia. The two enzymes were homologous over regions corresponding to almost the entire coding regions of the genes: the β and α subunits of thiocyanate hydrolase were homologous to the amino- and carboxyl-terminal halves of the β subunit of nitrile hydratase, and the γ subunit of thiocyanate hydrolase was homologous to the α subunit of nitrile hydratase. Comparisons of the catalytic properties of the two homologous enzymes support the model for the reaction steps of thiocyanate hydrolase that was previously presented on the basis of biochemical analyses.  相似文献   

4.
The gene for an enantioselective amidase was cloned from Rhodococcus erythropolis MP50, which utilizes various aromatic nitriles via a nitrile hydratase/amidase system as nitrogen sources. The gene encoded a protein of 525 amino acids which corresponded to a protein with a molecular mass of 55.5 kDa. The deduced complete amino acid sequence showed homology to other enantioselective amidases from different bacterial genera. The nucleotide sequence approximately 2.5 kb upstream and downstream of the amidase gene was determined, but no indications for a structural coupling of the amidase gene with the genes for a nitrile hydratase were found. The amidase gene was carried by an approximately 40-kb circular plasmid in R. erythropolis MP50. The amidase was heterologously expressed in Escherichia coli and shown to hydrolyze 2-phenylpropionamide, α-chlorophenylacetamide, and α-methoxyphenylacetamide with high enantioselectivity; mandeloamide and 2-methyl-3-phenylpropionamide were also converted, but only with reduced enantioselectivity. The recombinant E. coli strain which synthesized the amidase gene was shown to grow with organic amides as nitrogen sources. A comparison of the amidase activities observed with whole cells or cell extracts of the recombinant E. coli strain suggested that the transport of the amides into the cells becomes the rate-limiting step for amide hydrolysis in recombinant E. coli strains.  相似文献   

5.
The key enzymes for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) biosynthesis in haloarchaea have been identified except the β-ketothiolase(s), which condense two acetyl coenzyme A (acetyl-CoA) molecules to acetoacetyl-CoA, or one acetyl-CoA and one propionyl-CoA to 3-ketovaleryl-CoA. Whole-genome analysis has revealed eight potential β-ketothiolase genes in the haloarchaeon Haloferax mediterranei, among which the PHBV-specific BktB and PhaA were identified by gene knockout and complementation analysis. Unlike all known bacterial counterparts encoded by a single gene, the haloarchaeal PhaA that was involved in acetoacetyl-CoA generation, was composed of two different types of subunits (PhaAα and PhaAβ) and encoded by the cotranscribed HFX_1023 (phaAα) and HFX_1022 (phaAβ) genes. Similarly, the BktB that was involved in generation of acetoacetyl-CoA and 3-ketovaleryl-CoA, was also composed of two different types of subunits (BktBα and BktBβ) and encoded by cotranscribed HFX_6004 (bktBα) and HFX_6003 (bktBβ). BktBα and PhaAα were the catalytic subunits and determined substrate specificities of BktB and PhaA, respectively. Their catalytic triad “Ser-His-His” was distinct from the bacterial “Cys-His-Cys.” BktBβ and PhaAβ both contained an oligosaccharide-binding fold domain, which was essential for the β-ketothiolase activity. Interestingly, BktBβ and PhaAβ were functionally interchangeable, although PhaAβ preferred functioning with PhaAα. In addition, BktB showed biotechnological potential for the production of PHBV with the desired 3-hydroxyvalerate fraction in haloarchaea. This is the first report of the haloarchaeal type of PHBV-specific β-ketothiolases, which are distinct from their bacterial counterparts in both subunit composition and catalytic residues.  相似文献   

6.
The in vitro production of chitinases and β-1,3-glucanases by Stachybotrys elegans, a mycoparasite of Rhizoctonia solani, was examined under various culture conditions, such as carbon and nitrogen sources, pH, and incubation period. Production of both enzymes was influenced by the carbon source incorporated into the medium and was stimulated by acidic pH and NaNO3. The activity of both enzymes was very low in culture filtrates from cells grown on glucose and sucrose compared with that detected on chitin (for chitinases) and cell wall fragments (for β-1,3-glucanases). Protein electrophoresis revealed that, depending on the carbon source used, different isoforms of chitinases and β-1,3-glucanases were detected. S. elegans culture filtrates, possessing β-1,3-glucanase and chitinase activities, were capable of degrading R. solani mycelium.  相似文献   

7.
The conversion of β-glutamate to β-glutamine by archaeal and bacterial glutamine synthetase (GS) enzymes has been examined. The GS from Methanohalophilus portucalensis (which was partially purified) is capable of catalyzing the amidation of this substrate with a rate sevenfold less than the rate obtained with α-glutamate. Recombinant GS from the archaea Methanococcus jannaschii and Archaeoglobus fulgidus were considerably more selective for α-glutamate than β-glutamate as a substrate. All the archaeal enzymes were much less selective than the two bacterial GS (from Escherichia coli and Bacillus subtilis), whose specific activities towards β-glutamate were much smaller than rates with the α-isomer. These results are discussed in light of the observation that β-glutamate is accumulated as an osmolyte in many archaea while β-glutamine (produced by glutamine synthetase) is used as an osmolyte only in M. portucalensis.  相似文献   

8.

Background

In the 1950s, Reed and coworkers discovered an enzyme activity in Streptococcus faecalis (Enterococcus faecalis) extracts that inactivated the Escherichia. coli and E. faecalis pyruvate dehydrogenase complexes through cleavage of the lipoamide bond. The enzyme that caused this lipoamidase activity remained unidentified until Jiang and Cronan discovered the gene encoding lipoamidase (Lpa) through the screening of an expression library. Subsequent cloning and characterization of the recombinant enzyme revealed that lipoamidase is an 80 kDa protein composed of an amidase domain containing a classic Ser-Ser-Lys catalytic triad and a carboxy-terminal domain of unknown function. Here, we show that the amidase domain can be used as an in vivo probe which specifically inactivates lipoylated enzymes.

Methodology/Principal Findings

We evaluated whether Lpa could function as an inducible probe of α-ketoacid dehydrogenase inactivation using E. coli as a model system. Lpa expression resulted in cleavage of lipoic acid from the three lipoylated proteins expressed in E. coli, but did not result in cleavage of biotin from the sole biotinylated protein, the biotin carboxyl carrier protein. When expressed in lipoylation deficient E. coli, Lpa is not toxic, indicating that Lpa does not interfere with any other critical metabolic pathways. When truncated to the amidase domain, Lpa retained lipoamidase activity without acquiring biotinidase activity, indicating that the carboxy-terminal domain is not essential for substrate recognition or function. Substitution of any of the three catalytic triad amino acids with alanine produced inactive Lpa proteins.

Conclusions/Significance

The enzyme lipoamidase is active against a broad range of lipoylated proteins in vivo, but does not affect the growth of lipoylation deficient E. coli. Lpa can be truncated to 60% of its original size with only a partial loss of activity, resulting in a smaller probe that can be used to study the effects of α-ketoacid dehydrogenase inactivation in vivo.  相似文献   

9.
Relation of glycosidases to bean hypocotyl growth   总被引:6,自引:5,他引:1       下载免费PDF全文
Nevins DJ 《Plant physiology》1970,46(3):458-462
The enzymes β-glucosidase, α-glucosidase, β-galactosidase, α-galactosidase, and β-xylosidase were detected in Phaseolus vulgaris L. var. Red Kidney bean hypocotyl tissue throughout the first 13 days of development with p-nitrophenyl glycosides as substrates. Activities of all enzymes except β-glucosidase declined as a function of increasing tissue age. In contrast, β-glucosidase activity increased rapidly 3 days after imbibition to a maximal activity at 5 days and then subsided to one-third the maximum by day 7. This activity peak immediately preceded the logarithmic phase of hypocotyl growth. This enzyme is strongly associated with cell walls during extraction, suggesting that it is wall-bound in situ. Various polysaccharide substrates were used to evaluate the specificity of this enzyme.  相似文献   

10.
The effects of tabtoxinine-β-lactam (T-β-L) on nitrate uptake and glutamine synthetase (GS) and nitrate reductase (NR) activities in roots of Avena sativa seedlings were determined. Seven-day-old oat seedlings placed in a 10 mm KNO3 and 0.5 mm T-β-L solution for 24 hours took up T-β-L and lost approximately 90% of their root GS activity. [3H]-T-β-L taken up by roots of seven-day-old oat seedlings was associated with GS immunoprecipitated from the extract of these roots. Total nitrate uptake and in vivo NR activity were decreased approximately 50% in the T-β-L treated roots. However, T-β-L uptake did not affect the induction phases of nitrate uptake or reduction, nor did it inhibit in vitro NR activity. Thus, the decrease in nitrate uptake and reduction is a secondary effect of T-β-L action. Roots of seven-day-old oat seedlings were inoculated with Pseudomonas syringae pv tabaci (Tox+) and the pathogen population in the rhizosphere was estimated by dilution plate count; 6 × 1013 bacteria were recovered after 3 days, as compared to the original inoculation with 7 × 109 bacteria, indicating a significant growth of the pathogen in the rhizosphere. The bacteria recovered from the rhizosphere caused chlorosis in tobacco leaves and produced T-β-L in culture; 1 × 1014 bacteria were recovered from roots of seedlings inoculated with P. syringae pv tabaci (Tox−) using the same inoculation and assay procedure as for the pv tabaci (Tox+). Extracts of surface-sterilized roots previously inoculated with P. syringae pv tabaci (Tox+) did not produce viable bacterial cultures when plated out on a complete medium. Oat seedlings growing in sand culture and inoculated with P. syringae pv tabaci (Tox+) had developed chlorosis, and root GS activity had declined to less than 10% of controls after 3 days. Conversely, seedlings inoculated with P. syringae pv tabaci (Tox−) never developed chlorosis and maintained normal levels of GS activity. All oat plants inoculated with P. syringae pv tabaci (Tox+) died within 7 days after inoculation as compared to the plants inoculated with P. syringae pv tabaci (Tox−) which grew to maturity.  相似文献   

11.
FlgJ is a glycoside hydrolase (GH) enzyme belonging to the Carbohydrate Active enZyme (CAZy) family GH73. It facilitates passage of the bacterial flagellum through the peptidoglycan (PG) layer by cleaving the β-1,4 glycosidic bond between N-acetylglucosamine and N-acetylmuramic acid sugars that comprise the glycan strands of PG. Here we describe the crystal structure of the GH domain of FlgJ from bacterial pathogen Salmonella typhimurium (StFlgJ). Interestingly, the active site of StFlgJ was blocked by the C-terminal α-helix of a neighbouring symmetry mate and a β-hairpin containing the putative catalytic glutamic acid residue Glu223 was poorly resolved and could not be completely modeled into the electron density, suggesting it is flexible. Previous reports have shown that the GH73 enzyme Auto from Listeria monocytogenes is inhibited by an N-terminal α-helix that may occlude the active site in similar fashion. To investigate if the C-terminus of StFlgJ inhibits GH activity, the glycolytic activity of StFlgJ was assessed with and without the C-terminal α-helix. The GH activity of StFlgJ was unaffected by the presence or absence of the α-helix, suggesting it is not involved in regulating activity. Removal of the C-terminal α-helix did, however, allow a crystal structure of the domain to be obtained where the flexible β-hairpin containing residue Glu223 was entirely resolved. The β-hairpin was positioned such that the active site groove was fully solvent-exposed, placing Glu223 nearly 21.6 Å away from the putative general acid/base residue Glu184, which is too far apart for these two residues to coordinate glycosidic bond hydrolysis. The mobile nature of the StFlgJ β-hairpin is consistent with structural studies of related GH73 enzymes, suggesting that a dynamic active site may be common to many GH73 enzymes, in which the active site opens to capture substrate and then closes to correctly orient active site residues for catalysis.  相似文献   

12.

Background

Turf soil bacterial isolate Delftia sp. VM4 can degrade exogenous N-acyl homoserine lactone (AHL), hence it effectively attenuates the virulence of bacterial soft rot pathogen Pectobacterium carotovorum subsp. carotovorum strain BR1 (Pcc BR1) as a consequence of quorum sensing inhibition.

Methodology/Principal Findings

Isolated Delftia sp. VM4 can grow in minimal medium supplemented with AHL as a sole source of carbon and energy. It also possesses the ability to degrade various AHL molecules in a short time interval. Delftia sp. VM4 suppresses AHL accumulation and the production of virulence determinant enzymes by Pcc BR1 without interference of the growth during co-culture cultivation. The quorum quenching activity was lost after the treatment with trypsin and proteinase K. The protein with quorum quenching activity was purified by three step process. Matrix assisted laser desorption/ionization-time of flight (MALDI-TOF) and Mass spectrometry (MS/MS) analysis revealed that the AHL degrading enzyme (82 kDa) demonstrates homology with the NCBI database hypothetical protein (Daci_4366) of D. acidovorans SPH-1. The purified AHL acylase of Delftia sp. VM4 demonstrated optimum activity at 20–40°C and pH 6.2 as well as AHL acylase type mode of action. It possesses similarity with an α/β-hydrolase fold protein, which makes it unique among the known AHL acylases with domains of the N-terminal nucleophile (Ntn)-hydrolase superfamily. In addition, the kinetic and thermodynamic parameters for hydrolysis of the different AHL substrates by purified AHL-acylase were estimated. Here we present the studies that investigate the mode of action and kinetics of AHL-degradation by purified AHL acylase from Delftia sp. VM4.

Significance

We characterized an AHL-inactivating enzyme from Delftia sp. VM4, identified as AHL acylase showing distinctive similarity with α/β-hydrolase fold protein, described its biochemical and thermodynamic properties for the first time and revealed its potential application as an anti-virulence agent against bacterial soft rot pathogen Pectobacterium carotovorum subsp. carotovorum based on quorum quenching mechanism.  相似文献   

13.
A molecular screening approach was developed in order to amplify the genomic region that codes for the α- and β-subunits of the nitrile hydratase (NHase) enzyme in rhodococci. Specific PCR primers were designed for the NHase genes from a collection of nitrile-degrading actinomycetes, but amplification was successful only with strains identified as Rhodococcus erythropolis. A hydratase PCR product was also obtained from R. erythropolis DSM 43066T, which did not grow on nitriles. Southern hybridization of other members of the nitrile-degrading bacterial collection resulted in no positive signals other than those for the R. erythropolis strains used as positive controls. PCR-restriction fragment length polymorphism-single-strand conformational polymorphism (PRS) analysis of the hydratases in the R. erythropolis strains revealed unique patterns that mostly correlated with distinct geographical sites of origin. Representative NHases were sequenced, and they exhibited more than 92.4% similarity to previously described NHases. The phylogenetic analysis and deduced amino acid sequences suggested that the novel R. erythropolis enzymes belonged to the iron-type NHase family. Some different residues in the translated sequences were located near the residues involved in the stabilization of the NHase active site, suggesting that the substitutions could be responsible for the different enzyme activities and substrate specificities observed previously in this group of actinomycetes. A similar molecular screening analysis of the amidase gene was performed, and a correlation between the PRS patterns and the geographical origins identical to the correlation found for the NHase gene was obtained, suggesting that there was coevolution of the two enzymes in R. erythropolis. Our findings indicate that the NHase and amidase genes present in geographically distinct R. erythropolis strains are not globally mixed.  相似文献   

14.
Adenylation enzymes play important roles in the biosynthesis and degradation of primary and secondary metabolites. Mechanistic insights into the recognition of α-amino acid substrates have been obtained for α-amino acid adenylation enzymes. The Asp residue is invariant and is essential for the stabilization of the α-amino group of the substrate. In contrast, the β-amino acid recognition mechanism of adenylation enzymes is still unclear despite the importance of β-amino acid activation for the biosynthesis of various natural products. Herein, we report the crystal structure of the stand-alone adenylation enzyme VinN, which specifically activates (2S,3S)-3-methylaspartate (3-MeAsp) in vicenistatin biosynthesis. VinN has an overall structure similar to that of other adenylation enzymes. The structure of the complex with 3-MeAsp revealed that a conserved Asp230 residue is used in the recognition of the β-amino group of 3-MeAsp similar to α-amino acid adenylation enzymes. A mutational analysis and structural comparison with α-amino acid adenylation enzymes showed that the substrate-binding pocket of VinN has a unique architecture to accommodate 3-MeAsp as a β-amino acid substrate. Thus, the VinN structure allows the first visualization of the interaction of an adenylation enzyme with a β-amino acid and provides new mechanistic insights into the selective recognition of β-amino acids in this family of enzymes.  相似文献   

15.
β-Alanine is a precursor for coenzyme A (CoA) biosynthesis and is a substrate for the bacterial/eukaryotic pantothenate synthetase and archaeal phosphopantothenate synthetase. β-Alanine is synthesized through various enzymes/pathways in bacteria and eukaryotes, including the direct decarboxylation of Asp by aspartate 1-decarboxylase (ADC), the degradation of pyrimidine, or the oxidation of polyamines. However, in most archaea, homologs of these enzymes are not present; thus, the mechanisms of β-alanine biosynthesis remain unclear. Here, we performed a biochemical and genetic study on a glutamate decarboxylase (GAD) homolog encoded by TK1814 from the hyperthermophilic archaeon Thermococcus kodakarensis. GADs are distributed in all three domains of life, generally catalyzing the decarboxylation of Glu to γ-aminobutyrate (GABA). The recombinant TK1814 protein displayed not only GAD activity but also ADC activity using pyridoxal 5′-phosphate as a cofactor. Kinetic studies revealed that the TK1814 protein prefers Asp as its substrate rather than Glu, with nearly a 20-fold difference in catalytic efficiency. Gene disruption of TK1814 resulted in a strain that could not grow in standard medium. Addition of β-alanine, 4′-phosphopantothenate, or CoA complemented the growth defect, whereas GABA could not. Our results provide genetic evidence that TK1814 functions as an ADC in T. kodakarensis, providing the β-alanine necessary for CoA biosynthesis. The results also suggest that the GAD activity of TK1814 is not necessary for growth, at least under the conditions applied in this study. TK1814 homologs are distributed in a wide range of archaea and may be responsible for β-alanine biosynthesis in these organisms.  相似文献   

16.
The production of trimethylamine (TMA) from quaternary amines such as l-carnitine or γ-butyrobetaine (4-(trimethylammonio)butanoate) by gut microbial enzymes has been linked to heart disease. This has led to interest in enzymes of the gut microbiome that might ameliorate net TMA production, such as members of the MttB superfamily of proteins, which can demethylate TMA (e.g., MttB) or l-carnitine (e.g., MtcB). Here, we show that the human gut acetogen Eubacterium limosum demethylates γ-butyrobetaine and produces MtyB, a previously uncharacterized MttB superfamily member catalyzing the demethylation of γ-butyrobetaine. Proteomic analyses of E. limosum grown on either γ-butyrobetaine or dl-lactate were employed to identify candidate proteins underlying catabolic demethylation of the growth substrate. Three proteins were significantly elevated in abundance in γ-butyrobetaine-grown cells: MtyB, MtqC (a corrinoid-binding protein), and MtqA (a corrinoid:tetrahydrofolate methyltransferase). Together, these proteins act as a γ-butyrobetaine:tetrahydrofolate methyltransferase system, forming a key intermediate of acetogenesis. Recombinant MtyB acts as a γ-butyrobetaine:MtqC methyltransferase but cannot methylate free cobalamin cofactor. MtyB is very similar to MtcB, the carnitine methyltransferase, but neither was detectable in cells grown on carnitine nor was detectable in cells grown with γ-butyrobetaine. Both quaternary amines are substrates for either enzyme, but kinetic analysis revealed that, in comparison to MtcB, MtyB has a lower apparent Km for γ-butyrobetaine and higher apparent Vmax, providing a rationale for MtyB abundance in γ-butyrobetaine-grown cells. As TMA is readily produced from γ-butyrobetaine, organisms with MtyB-like proteins may provide a means to lower levels of TMA and proatherogenic TMA-N-oxide via precursor competition.  相似文献   

17.
The aim of this study was to analyze the structural and functional changes occurring in a polychlorinated-biphenyl (PCB)-contaminated soil ecosystem after the introduction of a suitable host plant for rhizoremediation (Salix viminalis). We have studied the populations and phylogenetic distribution of key bacterial groups (Alpha- and Betaproteobacteria, Acidobacteria, and Actinobacteria) and the genes encoding iron-sulfur protein α (ISPα) subunits of the toluene/biphenyl dioxygenases in soil and rhizosphere by screening gene libraries using temperature gradient gel electrophoresis. The results, based on the analysis of 415 clones grouped into 133 operational taxonomic units that were sequence analyzed (>128 kbp), show that the rhizospheric bacterial community which evolved from the native soil community during the development of the root system was distinct from the soil community for all groups studied except for the Actinobacteria. Proteobacteria were enriched in the rhizosphere and dominated both in rhizosphere and soil. There was a higher than expected abundance of Betaproteobacteria in the native and in the planted PCB-polluted soil. The ISPα sequences retrieved indicate a high degree of catabolic and phylogenetic diversity. Many sequences clustered with biphenyl dioxygenase sequences from gram-negative bacteria. A distinct cluster that was composed of sequences from this study, some previously described environmental sequences, and a putative ISPα from Sphingomonas wittichii RW1 seems to contain greater diversity than the presently recognized toluene/biphenyl dioxygenase subfamily. Moreover, the rhizosphere selected for two ISPα sequences that accounted for almost 60% of the gene library and were very similar to sequences harbored by Pseudomonas species.  相似文献   

18.
The specificity of Bacillus stearothermophilus TRS40 neopullulanase toward amylose and amylopectin was analyzed. Although this neopullulanase completely hydrolyzed amylose to produce maltose as the main product, it scarcely hydrolyzed amylopectin. The molecular mass of amylopectin was decreased by only one order of magnitude, from approximately 108 to 107 Da. Furthermore, this neopullulanase selectively hydrolyzed amylose when starch was used as a substrate. This phenomenon, efficient hydrolysis of amylose but not amylopectin, was also observed with cyclomaltodextrinase from alkaliphilic Bacillus sp. strain A2-5a and maltogenic amylase from Bacillus licheniformis ATCC 27811. These three enzymes hydrolyzed cyclomaltodextrins and amylose much faster than pullulan. Other amylolytic enzymes, such as bacterial saccharifying α-amylase, bacterial liquefying α-amylase, β-amylase, and neopullulanase from Bacillus megaterium, did not exhibit this distinct substrate specificity at all, i.e., the preference of amylose to amylopectin.  相似文献   

19.
The Bacillus subtilis 168 autolytic glycosidase degrades Micrococcus lysodeikticus cells or cell walls, whereas the B. subtilis autolytic amidase does not. The criteria used to establish this fact included: the determination of chemical bonds broken, heat-inactivated kinetics, pH dependence curves, and the physical separation of glycosidase from amidase. The physical separation involved LiCl elution from two different ion-exchange materials, walls from B. subtilis 168 strain βAO, and walls from mutant strain βA173 derived from strain βAO. No evidence was obtained for B. subtilis vegetative bacteria making any more autolysins than one autolytic amidase and one autolytic glycosidase.  相似文献   

20.
Peptidoglycan hydrolases are key enzymes in bacterial cell wall homeostasis. Understanding the substrate specificity and biochemical activity of peptidoglycan hydrolases in Mycobacterium tuberculosis is of special interest as it can aid in the development of new cell wall targeting therapeutics. In this study, we report biochemical and structural characterization of the mycobacterial N-acetylmuramyl-l-alanine amidase, Rv3717. The crystal structure of Rv3717 in complex with a dipeptide product shows that, compared with previously characterized peptidoglycan amidases, the enzyme contains an extra disulfide-bonded β-hairpin adjacent to the active site. The structure of two intermediates in assembly reveal that Zn2+ binding rearranges active site residues, and disulfide formation promotes folding of the β-hairpin. Although Zn2+ is required for hydrolysis of muramyl dipeptide, disulfide oxidation is not required for activity on this substrate. The orientation of the product in the active site suggests a role for a conserved glutamate (Glu-200) in catalysis; mutation of this residue abolishes activity. The product binds at the head of a closed tunnel, and the enzyme showed no activity on polymerized peptidoglycan. These results point to a potential role for Rv3717 in peptidoglycan fragment recycling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号