首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The transient elevation of cytosolic free calcium concentration ([Ca2+]cyt) induced by cold stress is a well‐established phenomenon; however, the underlying mechanism remains elusive. Here, we report that the Ca2+‐permeable transporter ANNEXIN1 (AtANN1) mediates cold‐triggered Ca2+ influx and freezing tolerance in Arabidopsis thaliana. The loss of function of AtANN1 substantially impaired freezing tolerance, reducing the cold‐induced [Ca2+]cyt increase and upregulation of the cold‐responsive CBF and COR genes. Further analysis showed that the OST1/SnRK2.6 kinase interacted with and phosphorylated AtANN1, which consequently enhanced its Ca2+ transport activity, thereby potentiating Ca2+ signaling. Consistent with these results and freezing sensitivity of ost1 mutants, the cold‐induced [Ca2+]cyt elevation in the ost1‐3 mutant was reduced. Genetic analysis indicated that AtANN1 acts downstream of OST1 in responses to cold stress. Our data thus uncover a cascade linking OST1‐AtANN1 to cold‐induced Ca2+ signal generation, which activates the cold response and consequently enhances freezing tolerance in Arabidopsis.  相似文献   

2.
Specific cellular components have been identified to function in abscisic acid (ABA) regulation of stomatal apertures, including calcium, the cytoskeleton, and phosphatidic acid. In this study, the regulation and dynamic organization of microtubules during ABA-induced stomatal closure by phospholipase D (PLD) and its product PA were investigated. ABA induced microtubule depolymerization and stomatal closure in wide-type (WT) Arabidopsis, whereas these processes were impaired in PLD mutant (pldα1). The microtubule-disrupting drugs oryzalin or propyzamide induced microtubule depolymerization, but did not affect the stomatal aperture, whereas their co-treatment with ABA resulted in stomatal closure in both WT and pldα1. In contrast, the microtubule-stabilizing drug paclitaxel arrested ABA-induced microtubule depolymerization and inhibited ABA-induced stomatal closure in both WT and pldα1. In pldα1, ABA-induced cytoplasmic Ca2+ ([Ca2+]cyt) elevation was partially blocked, and exogenous Ca2+-induced microtubule depolymerization and stomatal closure were impaired. These results suggested that PLDα1 and PA regulate microtubular organization and Ca2+ increases during ABA-induced stomatal closing and that crosstalk among signaling lipid, Ca2+, and microtubules are essential for ABA signaling.  相似文献   

3.
Cation/proton exchangers (CAXs) are a class of secondary energised ion transporter that are being implicated in an increasing range of cellular and physiological functions. CAXs are primarily Ca2+ efflux transporters that mediate the sequestration of Ca2+ from the cytosol, usually into the vacuole. Some CAX isoforms have broad substrate specificity, providing the ability to transport trace metal ions such as Mn2+ and Cd2+, as well as Ca2+. In recent years, genomic analyses have begun to uncover the expansion of CAXs within the green lineage and their presence within non‐plant species. Although there appears to be significant conservation in tertiary structure of CAX proteins, there is diversity in function of CAXs between species and individual isoforms. For example, in halophytic plants, CAXs have been recruited to play a role in salt tolerance, while in metal hyperaccumulator plants CAXs are implicated in cadmium transport and tolerance. CAX proteins are involved in various abiotic stress response pathways, in some cases as a modulator of cytosolic Ca2+ signalling, but in some situations there is evidence of CAXs acting as a pH regulator. The metal transport and abiotic stress tolerance functions of CAXs make them attractive targets for biotechnology, whether to provide mineral nutrient biofortification or toxic metal bioremediation. The study of non‐plant CAXs may also provide insight into both conserved and novel transport mechanisms and functions.  相似文献   

4.
Plants need to adapt to various stress factors originating from the environment. Signal transduction pathways connecting the recognition of environmental cues and the initiation of appropriate downstream responses in plants often involve intracellular Ca2+ concentration changes. These changes must be deciphered into specific cellular signals. Calmodulin-like proteins, CMLs, act as Ca2+ sensors in plants and are known to be involved in various stress reactions. Here, we show that in Arabidopsis 2 different CMLs, AtCML37 and AtCML42 are antagonistically involved in drought stress response. Whereas a CML37 knock-out line, cml37, was highly susceptible to drought stress, CML42 knockout line, cml42, showed no obvious effect compared to wild type (WT) plants. Accordingly, the analysis of the phytohormone abscisic acid (ABA) revealed a significant reduction of ABA upon drought stress in cml37 plants, while in cml42 plants an increase of ABA was detected. Summarizing, our results show that both CML37 and CML42 are involved in drought stress response but show antagonistic effects.  相似文献   

5.
Rice gene Oryza sativa Drought Stress Response-1 (OsDSR-1) was one of the genes identified to be responsive to drought stress in the panicle of rice at booting and heading stages by both microarray and quantitative real-time PCR analyses. OsDSR-1 encodes a putative calcium-binding protein, and its overexpression in Arabidopsis rendered transgenic plants to produce much shorter lateral roots (LRs) than wild-type (WT) plants in the medium supplemented with abscisic acid (ABA), suggesting that OsDSR-1 may act as a positive regulator during the process of ABA inhibition of LR development. No significant difference was observed in the total LR length between WT and transgenic plants in the media with the increase of only osmotic stress caused by NaCl, LiCl, and mannitol, while transgenic Arabidopsis seedlings appeared to produce larger root systems with longer total LR lengths under high-potassium conditions than WT seedlings. Further analysis showed that external Ca2+ was required for the production of larger root systems, indicating that the promotion by OsDSR-1 of the LR development of transgenic Arabidopsis seemed to occur in a Ca2+-dependent manner under high-potassium conditions. We propose that OsDSR-1 may function as a calcium sensor of the signal transduction pathway controlling the LR development under high-potassium conditions.  相似文献   

6.
The first tuber mustard calmodulin-like (CML) gene BjAAR1 (Brassica juncea var. tumida Tsen et Lee Abiotic stress and Abscisic acid (ABA) Responsive gene 1) was cloned and characterized. The protein encoded by BjAAR1 contains four predicted Ca2+ binding sites (EF-hand motif) and its recombinant protein can bind Ca2+ in vitro. qRT-PCR showed that the expression level of BjAAR1 was rather high in non-swollen stem of tuber mustard and largely reduced in swollen stem. Expression of BjAAR1 enhanced ABA- and stress-induced gene expression in Arabidopsis (Arabidopsis thaliana). Transgenic plants also exhibited hypersensitivity to NaCl, mannitol, and ABA during the seed germination and post-germination stages. ABA biosynthesis inhibitor, norflurazon (NF), rescued hypersensitivity phenotype of transgenic plants to NaCl and mannitol, indicating that BjAAR1 functions in multiple abiotic stresses response through ABA-dependent process.  相似文献   

7.
The individual and interactive role of calcium and abscisic acid (ABA) in amelioration of water stress simulated by polyethylene glycol (PEG) 6000 was investigated in two contrasting wheat genotypes. PEG solution (osmotic potential –1.5 MPa) was applied to 10-d-old seedlings growing under controlled conditions and changes in photosynthetic rate, activities of ribulose-1,5-bisphosphate carboxylase and phosphoenolpyruvate carboxylase, water potential and stomatal conductance were observed in the presence of 0.1 mM ABA, 5 mM calcium chloride, 1 mM verapamil (Ca2+ channel blocker), and 1 mM fluridone (inhibitor of ABA biosynthesis). ABA and calcium chloride ameliorated the effects of water stress and the combination of the two was more effective. The two genotypes varied for their sensitivity to ABA and Ca2+ under stress. As was evident from application of their inhibitors, ABA caused more alleviation in C 306 (drought tolerant) while HD 2380 (drought susceptible) was more sensitive to Ca2+.  相似文献   

8.
9.
Li Yang  Gary J. Stephens   《Cell calcium》2009,46(4):248-256
Voltage-dependent Ca2+ channels (VDCCs) have emerged as targets to treat neuropathic pain; however, amongst VDCCs, the precise role of the CaV2.3 subtype in nociception remains unproven. Here, we investigate the effects of partial sciatic nerve ligation (PSNL) on Ca2+ currents in small/medium diameter dorsal root ganglia (DRG) neurones isolated from CaV2.3(−/−) knock-out and wild-type (WT) mice. DRG neurones from CaV2.3(−/−) mice had significantly reduced sensitivity to SNX-482 versus WT mice. DRGs from CaV2.3(−/−) mice also had increased sensitivity to the CaV2.2 VDCC blocker ω-conotoxin. In WT mice, PSNL caused a significant increase in ω-conotoxin-sensitivity and a reduction in SNX-482-sensitivity. In CaV2.3(−/−) mice, PSNL caused a significant reduction in ω-conotoxin-sensitivity and an increase in nifedipine sensitivity. PSNL-induced changes in Ca2+ current were not accompanied by effects on voltage-dependence of activation in either CaV2.3(−/−) or WT mice. These data suggest that CaV2.3 subunits contribute, but do not fully underlie, drug-resistant (R-type) Ca2+ current in these cells. In WT mice, PSNL caused adaptive changes in CaV2.2- and CaV2.3-mediated Ca2+ currents, supporting roles for these VDCCs in nociception during neuropathy. In CaV2.3(−/−) mice, PSNL-induced changes in CaV1 and CaV2.2 Ca2+ current, consistent with alternative adaptive mechanisms occurring in the absence of CaV2.3 subunits.  相似文献   

10.
The second messenger NAADP triggers Ca2+ release from endo-lysosomes. Although two-pore channels (TPCs) have been proposed to be regulated by NAADP, recent studies have challenged this. By generating the first mouse line with demonstrable absence of both Tpcn1 and Tpcn2 expression (Tpcn1/2−/−), we show that the loss of endogenous TPCs abolished NAADP-dependent Ca2+ responses as assessed by single-cell Ca2+ imaging or patch-clamp of single endo-lysosomes. In contrast, currents stimulated by PI(3,5)P2 were only partially dependent on TPCs. In Tpcn1/2−/− cells, NAADP sensitivity was restored by re-expressing wild-type TPCs, but not by mutant versions with impaired Ca2+-permeability, nor by TRPML1. Another mouse line formerly reported as TPC-null likely expresses truncated TPCs, but we now show that these truncated proteins still support NAADP-induced Ca2+ release. High-affinity [32P]NAADP binding still occurs in Tpcn1/2−/− tissue, suggesting that NAADP regulation is conferred by an accessory protein. Altogether, our data establish TPCs as Ca2+-permeable channels indispensable for NAADP signalling.  相似文献   

11.

Introduction

Acid-sensing ion channel 3 (ASIC3) is expressed in synoviocytes, activated by decreases in pH, and reduces inflammation in animal models of inflammatory arthritis. The purpose of the current study was to characterize potential mechanisms underlying the control of inflammation by ASIC3 in fibroblast-like synoviocytes (FLS).

Methods

Experiments were performed in cultured FLS from wild-type (WT) and ASIC3-/- mice, ASIC1-/- mice, and people with rheumatoid arthritis. We assessed the effects of acidic pH with and without interleukin-1β on FLS and the role of ASICs in modulating intracellular calcium [Ca2+]i, mitogen activated kinase (MAP kinase) expression, and cell death. [Ca2+]i was assessed by fluorescent calcium imaging, MAP kinases were measured by Western Blots; ASIC, cytokine and protease mRNA expression were measured by quantitative PCR and cell death was measured with a LIVE/DEAD assay.

Results

Acidic pH increased [Ca2+]i and decreased p-ERK expression in WT FLS; these effects were significantly smaller in ASIC3-/- FLS and were prevented by blockade of [Ca2+]i. Blockade of protein phosphatase 2A (PP2A) prevented the pH-induced decreases in p-ERK. In WT FLS, IL-1β increases ASIC3 mRNA, and when combined with acidic pH enhances [Ca2+]i, p-ERK, IL-6 and metalloprotienase mRNA, and cell death. Inhibitors of [Ca2+]i and ERK prevented cell death induced by pH 6.0 in combination with IL-1β in WT FLS.

Conclusions

Decreased pH activates ASIC3 resulting in increased [Ca2+]i, and decreased p-ERK. Under inflammatory conditions, acidic pH results in enhanced [Ca2+]i and phosphorylation of extracellular signal-regulated kinase that leads to cell death. Thus, activation of ASIC3 on FLS by acidic pH from an inflamed joint could limit synovial proliferation resulting in reduced accumulation of inflammatory mediators and subsequent joint damage.  相似文献   

12.
The present study investigated whether, depending on the abscisic acid (ABA) concentration, phospholipase C (PLC) would be implicated within a Ca2+ mobilizing pathway that would regulate stomatal aperture under standard watering conditions. Among Al sensitive mutants the als1-1 mutant of Arabidopsis thaliana (L.) Heynh. (Columbia-4 ecotype) was selected for a pharmacological approach of stomatal closing in leaf epidermal peels induced by 3, 20 or 30 μM ABA. Comparison with the wild type (WT) revealed that, exclusively in the als1-1 mutant, the stomatal response to 3 or 20 μM ABA was inhibited by about 40 %, whereas the stomatal response to 30 μM ABA and the wilting response to drought were unaffected. In WT, the Ca2+ buffer EGTA and the PLC inhibitor, 1-[6-[[17β-3-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,5-dione (U73122), specifically inhibited by about 70 and 40 %, respectively, the response to 3 or 20 μM ABA, while the Ca2+ buffer 1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid (BAPTA) inhibited by about 70 % the response to 3, 20 or 30 μM ABA. EGTA, BAPTA and U73122 did not inhibit the part of the response to 3 or 20 μM ABA that was unaffected by the als1-1 mutation. Together, these results showed that ABA closes the stomata through two different Ca2+ mobilizing pathways. Since PLC could be indirectly deactivated in the als1-1 mutant, these results might suggest that, under sufficient water supply, PLC-mediated Ca2+ mobilization is needed for the regulation of stomatal aperture by endogenous ABA resting at concentrations below a drought-specific threshold value.  相似文献   

13.
The changes of cytosolic Ca2+ fluorescence intensity and the activities of calcium channel of primary maize root tip cells induced by PEG6000 or abscisic acid(ABA) were studied by both confocal techniques and the whole-cell patch clamping in this study. The Ca2+ fluorescence intensity increased while treated with PEG or ABA within 10 min, illuminating that Ca2+ participated in the process of ABA signal transduction. For further proving the mechanism and origin of cytosolic Ca2+ increase induced by PEG treatments, N,N,N′,N′-tetraacetic acid (EGTA), Verapamil (VP) and Trifluoperazine (TFP) were added to the PEG solution in the experiments separately. The results showed that Ca2+ fluorescence intensity induced by PEG was suppressed by both EGTA and VP obviously in the root tip cells. The Ca2+ fluorescence intensity of plants changed after the addition of CaM inhibitor TFP while subjected to osmotic stress, which seemed to show that CaM participated in the process of signal transduction of osmotic stress too. The mechanism about it is unknown today. Further, a hyperpolarization-activated calcium permeable channel was recorded in plasma membrane of maize root tip cells. The Ca2+ current (ICa) intensity increased remarkably after PEG treatment, and the open voltage of the calcium conductance increased. Similar changes could be observed after ABA treatment, but the channel opened earlier and the current intensity was stronger than that of PEG treatment. The activation of calcium channel initiated by PEG strongly was inhibited by EGTA, VP or TFP respectively. The results revealed that Ca2+ participated in the signals transduction process of osmotic stress, and the cytosolic free Ca2+ increase by osmotic stress mainly came from the extracellular, and some came from the release of cytoplasmic calcium pool.  相似文献   

14.
Cation/H+ exchangers (CAXs) are membrane proteins that transport Ca2+ and other cations using the H+ gradient generated by H+-ATPase or H+-pyrophosphatase. This study reports the characterization of CAX2 from Puccinellia tenuiflora with respect to molecular and functional properties. PutCAX2 was cloned from a cDNA library of P. tenuiflora seedlings. The expression of PutCAX2 in shoots and roots was induced by Ca2+ and Ba2+ treatments. A green fluorescent protein (GFP) marker revealed that PutCAX2 was located on the endoplasmic reticulum (ER) membrane. Four yeast transformants were created using GFP fusion PutCAX2 and truncated PutCAX2s, and their growth in the presence of various cations (Fe3+, Al3+, Mn2+, Cu2+, Co2+, Ni2+, Mg2+, Zn2+, Na+, Li+, Ca2+, and Ba2+) was analyzed. The N-terminally truncated PutCAX2 (GFP-ΔNPutCAX2) and the N and C-terminally truncated PutCAX2 (GFP-ΔNCPutCAX2) transformants grew well in the presence of 100 and 150 mM Ca2+ or 8 and 20 mM Ba2+, whereas the GFP-PutCAX2 and C-terminally truncated PutCAX2 (GFP-ΔCPutCAX2) transformants did not show any tolerance to Ca2+ or Ba2+. The Ba2+ content in whole yeast cells expressing GFP-ΔNPutCAX2 or GFP-ΔNCPutCAX2 was lower than that in other yeast transformants. Moreover, the efflux experiment showed that the Ba2+ efflux rate of yeast cells expressing GFP-ΔNPutCAX2 and GFP-ΔNCPutCAX2 was higher than that of other yeast cells. To our knowledge, this is the first report on the molecular and functional characterization of a novel ER-localized CAX protein from a wild halophyte plant; the results suggest that the N-terminus of PutCAX2 acts as an auto-inhibitory domain, which affects the Ca2+ and Ba2+ tolerance of yeast.  相似文献   

15.
Over 1.5 billion people lack the skeletal muscle fast-twitch fibre protein α-actinin-3 due to homozygosity for a common null polymorphism (R577X) in the ACTN3 gene. α-Actinin-3 deficiency is detrimental to sprint performance in elite athletes and beneficial to endurance activities. In the human genome, it is very difficult to find single-gene loss-of-function variants that bear signatures of positive selection, yet intriguingly, the ACTN3 null variant has undergone strong positive selection during recent evolution, appearing to provide a survival advantage where food resources are scarce and climate is cold. We have previously demonstrated that α-actinin-3 deficiency in the Actn3 KO mouse results in a shift in fast-twitch fibres towards oxidative metabolism, which would be more “energy efficient” in famine, and beneficial to endurance performance. Prolonged exposure to cold can also induce changes in skeletal muscle similar to those observed with endurance training, and changes in Ca2+ handling by the sarcoplasmic reticulum (SR) are a key factor underlying these adaptations. On this basis, we explored the effects of α-actinin-3 deficiency on Ca2+ kinetics in single flexor digitorum brevis muscle fibres from Actn3 KO mice, using the Ca2+-sensitive dye fura-2. Compared to wild-type, fibres of Actn3 KO mice showed: (i) an increased rate of decay of the twitch transient; (ii) a fourfold increase in the rate of SR Ca2+ leak; (iii) a threefold increase in the rate of SR Ca2+ pumping; and (iv) enhanced maintenance of tetanic Ca2+ during fatigue. The SR Ca2+ pump, SERCA1, and the Ca2+-binding proteins, calsequestrin and sarcalumenin, showed markedly increased expression in muscles of KO mice. Together, these changes in Ca2+ handling in the absence of α-actinin-3 are consistent with cold acclimatisation and thermogenesis, and offer an additional explanation for the positive selection of the ACTN3 577X null allele in populations living in cold environments during recent evolution.  相似文献   

16.
The neuronal calcium sensor proteins GCAPs (guanylate cyclase activating proteins) switch between Ca2+-free and Ca2+-bound conformational states and confer calcium sensitivity to guanylate cyclase at retinal photoreceptor cells. They play a fundamental role in light adaptation by coupling the rate of cGMP synthesis to the intracellular concentration of calcium. Mutations in GCAPs lead to blindness. The importance of functional EF-hands in GCAP1 for photoreceptor cell integrity has been well established. Mutations in GCAP1 that diminish its Ca2+ binding affinity lead to cell damage by causing unabated cGMP synthesis and accumulation of toxic levels of free cGMP and Ca2+. We here investigate the relevance of GCAP2 functional EF-hands for photoreceptor cell integrity. By characterizing transgenic mice expressing a mutant form of GCAP2 with all EF-hands inactivated (EFGCAP2), we show that GCAP2 locked in its Ca2+-free conformation leads to a rapid retinal degeneration that is not due to unabated cGMP synthesis. We unveil that when locked in its Ca2+-free conformation in vivo, GCAP2 is phosphorylated at Ser201 and results in phospho-dependent binding to the chaperone 14-3-3 and retention at the inner segment and proximal cell compartments. Accumulation of phosphorylated EFGCAP2 at the inner segment results in severe toxicity. We show that in wildtype mice under physiological conditions, 50% of GCAP2 is phosphorylated correlating with the 50% of the protein being retained at the inner segment. Raising mice under constant light exposure, however, drastically increases the retention of GCAP2 in its Ca2+-free form at the inner segment. This study identifies a new mechanism governing GCAP2 subcellular distribution in vivo, closely related to disease. It also identifies a pathway by which a sustained reduction in intracellular free Ca2+ could result in photoreceptor damage, relevant for light damage and for those genetic disorders resulting in “equivalent-light” scenarios.  相似文献   

17.
18.

Introduction

The possible role of UCP2 in modulating mitochondrial Ca2+-uptake (mCa2+-uptake) via the mitochondrial calcium uniporter (MCU) is highly controversial.

Methods

Thus, we analyzed mCa2+-uptake in isolated cardiac mitochondria, MCU single-channel activity in cardiac mitoplasts, dual Ca2+-transients from mitochondrial ((Ca2+)m) and intracellular compartment ((Ca2+)c) in the whole-cell configuration in cardiomyocytes of wild-type (WT) and UCP2-/- mice.

Results

Isolated mitochondria showed a Ru360 sensitive mCa2+-uptake, which was significantly decreased in UCP2-/- (229.4±30.8 FU vs. 146.3±23.4 FU, P<0.05). Single-channel registrations confirmed a Ru360 sensitive voltage-gated Ca2+-channel in mitoplasts, i.e. mCa1, showing a reduced single-channel activity in UCP2-/- (Po,total: 0.34±0.05% vs. 0.07±0.01%, P<0.05). In UCP2-/- cardiomyocytes (Ca2+)m was decreased (0.050±0.009 FU vs. 0.021±0.005 FU, P<0.05) while (Ca2+)c was unchanged (0.032±0.002 FU vs. 0.028±0.004 FU, P>0.05) and transsarcolemmal Ca2+-influx was inhibited suggesting a possible compensatory mechanism. Additionally, we observed an inhibitory effect of ATP on mCa2+-uptake in WT mitoplasts and (Ca2+)m of cardiomyocytes leading to an increase of (Ca2+)c while no ATP dependent effect was observed in UCP2-/-.

Conclusion

Our results indicate regulatory effects of UCP2 on mCa2+-uptake. Furthermore, we propose, that previously described inhibitory effects on MCU by ATP may be mediated via UCP2 resulting in changes of excitation contraction coupling.  相似文献   

19.
The present study investigated whether Ca2+ mobilization independent of phosphoinositide-specific phospholipase C (PI-PLC) would delay wilting in Arabidopsis thaliana (L.) Heynh. cv. Columbia through mediating stomatal closure at abscisic acid (ABA) concentrations rising beyond a drought-specific threshold value. In wild type (WT) epidermis, the PI-PLC inhibitor (U73122) affected the stomatal response to 20 μM ABA but not to 30 μM ABA. Disruption in GTP-binding protein ά subunit 1 (GPA1) affected the stomatal response to 30 μM ABA, but not to 20 μM ABA. In the gpa1-4 mutant, the inhibitory effects of the Ca2+ buffer, 1,2-bis(0-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid (BAPTA), the inactive mastoparan analogue, mas17 and the antagonist of cyclic ADP-ribose synthesis, nicotinamide, were differentially attenuated on 30 μM ABA-induced stomatal closure. By contrast, the NADPH oxidase atrbohD/F double mutation fully suppressed inhibition of 20 μM ABA-induced stomatal closure by BAPTA or U73122 as well as inhibition of 30 μM ABA-induced stomatal closure by BAPTA, mas17 or nicotinamide. On the contrary, The Al resistant alr-104 mutation modulated ABA-induced stomatal closure by a stimulatory effect of U73122 and an increased sensitivity to mas17, nicotinamide and BAPTA. Compared to WT, the atrbohD/F double mutant was more hypersensitive than the gpa1-4 mutant to wilting under the tested water stress conditions, whereas wilting was delayed in the alr-104 mutant. Since the atrbohD/F mutation breaks down ABA-induced Ca2+ signalling through fully preventing apoplastic Ca2+ to enter into the guard cells, these results showed that a putative guard cell GPA1-dependent ADP-ribosyl cyclase activity should contribute to drought tolerance within PI-PLC-independent-Ca2+-mediated ABA signalling.  相似文献   

20.
Lee S  Lee EJ  Yang EJ  Lee JE  Park AR  Song WH  Park OK 《The Plant cell》2004,16(6):1378-1391
Comparative proteomic analysis of the Arabidopsis thaliana root microsomal fraction was performed to identify novel components of salt stress signaling. Among the salt-responsive microsomal proteins, two spots that increased upon salt treatment on a two-dimensional gel were identified as the same protein, designated annexin 1 (AnnAt1). Annexins comprise a multigene family of Ca2+-dependent membrane binding proteins and have been extensively studied in animal cells. AnnAt1 is strongly expressed in root but rarely in flower tissue. In this study, the results suggest that salt stress induces translocation from the cytosol to the membrane and potential turnover of existing protein. This process is blocked by EGTA treatment, implying that AnnAt1 functions in stress response are tightly associated with Ca2+. T-DNA insertion mutants of annAt1 and a different isoform, annAt4, displayed hypersensitivity to osmotic stress and abscisic acid (ABA) during germination and early seedling growth. The results collectively suggest that AnnAt1 and AnnAt4 play important roles in osmotic stress and ABA signaling in a Ca2+-dependent manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号