首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxidized phospholipids (OxPLs) are present on apolipoprotein (a) [apo(a)] and lipoprotein (a) [Lp(a)] but the determinants influencing their binding are not known. The presence of OxPLs on apo(a)/Lp(a) was evaluated in plasma from healthy humans, apes, monkeys, apo(a)/Lp(a) transgenic mice, lysine binding site (LBS) mutant apo(a)/Lp(a) mice with Asp55/57→Ala55/57 substitution of kringle (K)IV10)], and a variety of recombinant apo(a) [r-apo(a)] constructs. Using antibody E06, which binds the phosphocholine (PC) headgroup of OxPLs, Western and ELISA formats revealed that OxPLs were only present in apo(a) with an intact KIV10 LBS. Lipid extracts of purified human Lp(a) contained both E06- and nonE06-detectable OxPLs by tandem liquid chromatography-mass spectrometry (LC-MS/MS). Trypsin digestion of 17K r-apo(a) showed PC-containing OxPLs covalently bound to apo(a) fragments by LC-MS/MS that could be saponified by ammonium hydroxide. Interestingly, PC-containing OxPLs were also present in 17K r-apo(a) with Asp57→Ala57 substitution in KIV10 that lacked E06 immunoreactivity. In conclusion, E06- and nonE06-detectable OxPLs are present in the lipid phase of Lp(a) and covalently bound to apo(a). E06 immunoreactivity, reflecting pro-inflammatory OxPLs accessible to the immune system, is strongly influenced by KIV10 LBS and is unique to human apo(a), which may explain Lp(a)’s pro-atherogenic potential.  相似文献   

2.
Oxidized phospholipids (OxPLs) on apolipoprotein B-100 (apoB-100) particles are strongly associated with lipoprotein [a] (Lp[a]). In this study, we evaluated whether Lp[a] is preferentially the carrier of OxPL in human plasma. The content of OxPL on apoB-100 particles was measured with monoclonal antibody E06, which recognizes the phosphocholine (PC) headgroup of oxidized but not native phospholipids. To assess whether OxPLs were preferentially bound by Lp[a] as opposed to other lipoproteins, immunoprecipitation and ultracentrifugation experiments, in vitro transfer studies, and chemiluminescent ELISAs were performed. Immunoprecipitation of Lp[a] from human plasma with an apolipoprotein [a] (apo[a])-specific antibody demonstrated that more than 85% of E06 reactivity (i.e., OxPL) coimmunoprecipitated with Lp[a]. Ultracentrifugation experiments showed that nearly all OxPLs were found in fractions containing apo[a], as opposed to other apolipoproteins. In vitro transfer studies showed that oxidized LDL preferentially donates OxPLs to Lp[a], as opposed to LDL, in a time- and temperature-dependent manner, even in aqueous buffer. Approximately 50% of E06 immunoreactivity could be extracted from isolated Lp[a] following exposure of plasma to various lipid solvents. These data demonstrate that Lp[a] is the preferential carrier of PC-containing OxPL in human plasma. This unique property of Lp[a] suggests novel insights into its physiological function and mechanisms of atherogenicity.  相似文献   

3.
The chemokines monocyte chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-1alpha (MIP-1alpha) aid in directing leukocytes to specific locales within the brain and spinal cord during central nervous system inflammation. However, it remains unclear how these chemokines exert their actions across a vascular barrier, raising speculation that interaction with endothelial cells might be required. Therefore, experiments were performed to determine whether binding domains for these chemokines exist along the outer surface of brain microvessels, a feature that could potentially relay chemokine signals from brain to blood. Using a biotinylated chemokine binding assay with confocal microscopy and three-dimensional image reconstruction, spatially resolved binding sites for MCP-1 and MIP-alpha around human brain microvessels were revealed for the first time. Binding of labeled MCP-1 and MIP-1alpha could be inhibited by unlabeled homologous but not heterologous chemokine, and was independent of the presence of heparan sulfate, laminin, or collagen in the subendothelial matrix. This is the first evidence of specific and separate binding domains for MCP-1 and MIP-1alpha on the parenchymal surface of microvessels, and highlights the prospect that specific interactions of chemokines with microvascular elements influence the extent and course of central nervous system inflammation.  相似文献   

4.
Eotaxin selectively binds CC chemokine receptor (CCR) 3, whereas monocyte chemotactic protein (MCP)-3 binds CCR1, CCR2, and CCR3. To identify the functional determinants of the chemokines, we generated four reciprocal chimeric chemokines-M10E9, M22E21, E8M11, and E20M23-by shuffling the N-terminus and N-loop of eotaxin and MCP-3. M22E21 and E8M11, which shared the N-loop from MCP-3, bound to monocytes with high affinity, and activated monocytes. In contrast, M10E9 and E20M23, which lacked the N-loop, failed to bind and transduce monocyte responses, identifying the N-loop of MCP-3 as the selectivity determinant for CCR1/CCR2. A BIAcore assay with an N-terminal peptide of CCR3 (residues 1-35) revealed that all chimeras except E20M23 exhibited varying degrees of binding affinity with commensurate chemotaxis activity of eosinophils. Surprisingly, E20M23 could neither bind the CCR3 peptide nor activate eosinophils, despite having both N-terminal motifs from eotaxin. These results suggest that the two N-terminal motifs of eotaxin must cooperate with other regions to successfully bind and activate CCR3.  相似文献   

5.
The vicious cycle between hyperinsulinemia and insulin resistance results in the progression of atherosclerosis in the vessel wall. The complex interaction between hyperglycemia and lipoprotein abnormalities promotes the development of atherogenesis. In the early phase of atherosclerosis, macrophage-derived foam cells play an important role in vascular remodeling. Mechanistic target of rapamycin (mTOR) signaling pathway has been identified to play an essential role in the initiation, progression, and complication of atherosclerosis. Recently sestrin2, an antioxidant, was shown to modulate TOR activity and thereby regulating glucose and lipid metabolism. But the role of sestrin2 in monocyte activation is still not clearly understood. Hence, this study is focussed on investigating the role of sestrin2 in monocyte activation under hyperglycemic and dyslipidemic conditions. High-glucose and oxidized low-density lipoprotein (LDL) treatments mediated proinflammatory cytokine production (M1) with a concomitant decrease in the anti-inflammatory cytokine (M2) levels in human monocytic THP1 cells. Both glucose and oxidized LDL (OxLDL) in a dose and time-dependent manner increased the mTOR activation with a marked reduction in the levels of pAMPK and sestrin2 expression. Both high-glucose and OxLDL treatment increased foam cell formation and adhesion of THP1 cells to endothelial cells. Experiments employing activator or inhibitor of adenosine monophosphate kinase (AMPK) as well as overexpression or silencing of sestrin2 indicated that high-glucose mediated monocyte polarization and adhesion of monocytes to the endothelial cells were appeared to be programmed via sestrin2-AMPK-mTOR nexus. Our results evidently suggest that sestrin2 plays a major role in regulating monocyte activation via the AMPK–mTOR-pathway under diabetic and dyslipidemic conditions and also AMPK regulates sestrin2 in a feedback mechanism.  相似文献   

6.
Chemokine receptors are commonly post-translationally sulfated on tyrosine residues in their N-terminal regions, the initial site of binding to chemokine ligands. We have investigated the effect of tyrosine sulfation of the chemokine receptor CCR2 on its interactions with the chemokine monocyte chemoattractant protein-1 (MCP-1/CCL2). Inhibition of CCR2 sulfation, by growth of expressing cells in the presence of sodium chlorate, significantly reduced the potency for MCP-1 activation of CCR2. MCP-1 exists in equilibrium between monomeric and dimeric forms. The obligate monomeric mutant MCP-1(P8A) was similar to wild type MCP-1 in its ability to induce leukocyte recruitment in vivo, whereas the obligate dimeric mutant MCP-1(T10C) was less effective at inducing leukocyte recruitment in vivo. In two-dimensional NMR experiments, sulfated peptides derived from the N-terminal region of CCR2 bound to both the monomeric and dimeric forms of wild type MCP-1 and shifted the equilibrium to favor the monomeric form. Similarly, MCP-1(P8A) bound more tightly than MCP-1(T10C) to the CCR2-derived sulfopeptides. NMR chemical shift mapping using the MCP-1 mutants showed that the sulfated N-terminal region of CCR2 binds to the same region (N-loop and β3-strand) of both monomeric and dimeric MCP-1 but that binding to the dimeric form also influences the environment of chemokine N-terminal residues, which are involved in dimer formation. We conclude that interaction with the sulfated N terminus of CCR2 destabilizes the dimerization interface of inactive dimeric MCP-1, thus inducing dissociation to the active monomeric state.  相似文献   

7.
Datta-Mannan A  Stone MJ 《Biochemistry》2004,43(46):14602-14611
The specificity of chemokine-receptor interactions plays a central role in the regulation of leukocyte migration in inflammatory responses. Herein, we describe a soluble mimic of CC chemokine receptor 2 (CCR2), dubbed CROSS-N(2)E3(2), which incorporates the N-terminal region (N) and third extracellular loop (E3) elements of CCR2 displayed on the surface of a soluble protein scaffold. CROSS-N(2)E3(2) binds to the CCR2 ligand monocyte chemoattractant protein-1 (MCP-1) with a dissociation equilibrium constant of 1.1 +/- 0.1 microM but does not bind to the cognate chemokines of the receptor CCR3 (eotaxin-1, -2, and -3). Similarly, a soluble analogue of CCR3 (CROSS(5)-N(3)E3(3)) binds to eotaxin-1, -2, and -3 but not to MCP-1. Thus, these receptor analogues have the same specificity as the natural receptors. Using soluble proteins containing N and E3 elements from different receptors (CROSS-N(2)E3(3) and CROSS-N(3)E3(2)), we demonstrate that both receptor elements are required for optimal binding to the cognate chemokines. In addition, we report the binding affinities of all four CROSS proteins to a panel of two wild-type and six chimeric chemokines. These complementation studies indicate the regions of the chemokines that interact with each element of the receptors, allowing us to deduce the orientations of the receptor extracellular elements relative to the bound chemokines.  相似文献   

8.
Chemokine-receptor interactions regulate leukocyte trafficking during inflammation. CC chemokines exist in equilibrium between monomeric and dimeric forms. Although the monomers can activate chemokine receptors, dimerization is required for leukocyte recruitment in vivo, and it remains controversial whether dimeric CC chemokines can bind and activate their receptors. We have developed an obligate dimeric mutant of the chemokine monocyte chemoattractant protein-1 (MCP-1) by substituting Thr(10) at the dimer interface with Cys. Biophysical analysis showed that MCP-1(T10C) forms a covalent dimer with similar structure to the wild type MCP-1 dimer. Initial cell-based assays indicated that MCP-1(T10C) could activate chemokine receptor CCR2 with potency reduced 1 to 2 orders of magnitude relative to wild type MCP-1. However, analysis of size exclusion chromatography fractions demonstrated that the observed activity was due to a small proportion of MCP-1(T10C) being monomeric and highly potent, whereas the majority dimeric form could neither bind nor activate CCR2 at concentrations up to 1 μM. These observations help to reconcile previous conflicting results and indicate that dimeric CC chemokines do not bind to their receptors with affinities approaching those of the corresponding monomeric chemokines.  相似文献   

9.
10.
The presence of binding sites for the beta chemokines monocyte chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-1alpha (MIP-1alpha) has recently been identified on human brain microvessels. We extend these findings in this report to reveal that such sites exemplify characteristics of the recognized major receptors for MCP-1 and MIP-1alpha: CCR2, and CCR1 and CCR5, respectively. Specifically, labeled MCP-1 binding to isolated brain microvessels was inhibited by unlabeled MCP-1 and MCP-3, the latter another CCR2 ligand, but not by MIP-1alpha. Inhibition of labeled MIP-1alpha binding was achieved with unlabeled MIP-1alpha and RANTES, the latter a beta chemokine that binds to both CCR1 and CCR5, but not by MCP-1. Labeled MIP-1alpha binding was also antagonized by unlabeled MCP-3, which is also recognized by CCR1, and MIP-1beta, which is a ligand for CCR5. Labeled MCP-1 and MIP-1alpha were further observed to be internalized within the endothelial cells of brain microvessels, following their binding to the microvascular surface at 37 degrees C. Additionally, exposure of microvessels to unlabeled MCP-1 or MIP-1alpha was accompanied by the initial loss and subsequent recovery of surface binding sites for these chemokines, which occurred on a time scale consistent with ligand-induced endocytosis and recycling. These collective features bear striking similarity to those that characterize interactions of MCP-1 and MIP-1alpha with their receptors on leukocytes and underscore the concept of cognate chemokine receptors on brain microvascular endothelium.  相似文献   

11.
12.
13.
The chemokine receptor 2 (CCR2) directs migration of monocytes and has been proposed to be a drug target for chronic inflammatory diseases. INCB3344 was first published as a small molecule nanomolar inhibitor of rodent CCR2. Here, we show that INCB3344 can also bind human CCR2 (hCCR2) with high affinity, having a dissociation constant (Kd) of approximately 5 nM. The binding of the compound to the receptor is rapid and reversible. INCB3344 potently inhibits hCCR2 binding of monocyte chemoattractant protein-1 (MCP-1) and MCP-1-induced signaling and function in hCCR2-expressing cells, including ERK phosphorylation and chemotaxis, and is competitive against MCP-1 in vitro. INCB3344 also blocks MCP-1 binding to monocytes in human whole blood, with potency consistent with in vitro studies. The whole blood binding assay described here can be used for monitoring pharmacodynamic activity of CCR2 antagonists in both preclinical models and in the clinic.  相似文献   

14.
Chemokines are involved in recruitment and activation of hematopoietic cells at sites of infection and inflammation. The M3 gene of gammaHV68, a gamma-2 herpesvirus that infects and establishes a lifelong latent infection and chronic vasculitis in mice, encodes an abundant secreted protein during productive infection. The M3 gene is located in a region of the genome that is transcribed during latency. We report here that the M3 protein is a high-affinity broad-spectrum chemokine scavenger. The M3 protein bound the CC chemokines human regulated upon activation of normal T-cell expressed and secreted (RANTES), murine macrophage inflammatory protein 1alpha (MIP-1alpha), and murine monocyte chemoattractant protein 1 (MCP-1), as well as the human CXC chemokine interleukin-8, the murine C chemokine lymphotactin, and the murine CX(3)C chemokine fractalkine with high affinity (K(d) = 1. 6 to 18.7 nM). M3 protein chemokine binding was selective, since the protein did not bind seven other CXC chemokines (K(d) > 1 microM). Furthermore, the M3 protein abolished calcium signaling in response to murine MIP-1alpha and murine MCP-1 and not to murine KC or human stromal cell-derived factor 1 (SDF-1), consistent with the binding data. The M3 protein was also capable of blocking the function of human CC and CXC chemokines, indicating the potential for therapeutic applications. Since the M3 protein lacks homology to known chemokines, chemokine receptors, or chemokine binding proteins, these studies suggest a novel herpesvirus mechanism of immune evasion.  相似文献   

15.
PURPOSE OF REVIEW: To review emerging data on the relationship between lipoprotein(a) and oxidized phospholipids. RECENT FINDINGS: We have recently proposed that a unique physiological role of lipoprotein(a) may be to bind and transport proinflammatory oxidized phospholipids and that this interaction may mediate a common biological influence on cardiovascular disease. In a large series of clinical studies performed to date, a very strong correlation was found between plasma levels of lipoprotein(a) and the content of oxidized phospholipids on apolipoprotein B-100 particles (OxPL/apoB), measured by monoclonal antibody E06, which binds the phosphocholine head group of oxidized phospholipids but not native phospholipids. The correlation of OxPL/apoB to lipoprotein(a) is very strong in individuals with small apolipoprotein(a) isoforms (r = approximately 0.95) and modest in individuals with large isoforms (r = approximately 0.60). In-vitro studies have demonstrated that the vast majority of oxidized phospholipids detected by E06 are bound to lipoprotein(a) in human plasma. A similarly strong association with oxidized phospholipids was also documented in transgenic mice overexpressing lipoprotein(a), even in mice not fed atherogenic diets or with overt atherosclerosis. SUMMARY: A better understanding of the ability of human lipoprotein(a) to bind oxidized phospholipids may allow clinically important insights into the role of oxidized phospholipids and lipoprotein(a) in human atherogenesis and cardiovascular disease and may provide novel diagnostic tools and therapeutic interventions aimed at measuring and treating elevated levels of OxPL/apoB and lipoprotein(a).  相似文献   

16.
Chemokines mediate their diverse activities through G protein-coupled receptors. The human homolog of the bovine orphan receptor PPR1 shares significant similarity to chemokine receptors. Transfection of this receptor into murine L1.2 cells resulted in responsiveness to monocyte chemoattractant protein (MCP)-4, MCP-2, and MCP-1 in chemotaxis assays. Binding studies with radiolabeled MCP-4 demonstrated a single high affinity binding site with an IC(50) of 0.14 nM. As shown by competition binding, other members of the MCP family also recognized this receptor. MCP-2 was the next most potent ligand, with an IC(50) of 0.45 nM. Surprisingly, eotaxin (IC(50) = 6.7 nM) and MCP-3 (IC(50) = 4.1 nM) bind with greater affinity than MCP-1 (IC(50) = 10.7 nM) but only act as agonists in chemotaxis assays at 100-fold higher concentrations. Because of high affinity binding and functional chemotactic responses, we have termed this receptor CCR11. The gene for CCR11 was localized to human chromosome 3q22, which is distinct from most CC chemokine receptor genes at 3p21. Northern blot hybridization was used to identify CCR11 expression in heart, small intestine, and lung. Thus CCR11 shares functional similarity to CCR2 because it recognizes members of the MCP family, but CCR11 has a distinct expression pattern.  相似文献   

17.
Studies were undertaken to investigate potential interactions among plasma lipoproteins. Techniques used were low density lipoprotein2 (LDL2)-ligand blotting of plasma lipoproteins separated by nondenaturing 2.5-15% gradient gel electrophoresis, ligand binding of plasma lipoproteins by affinity chromatography with either LDL2 or lipoprotein(a) (Lp(a)) as ligands, and agarose lipoprotein electrophoresis. Ligand blotting showed that LDL2 can bind to Lp(a). When apolipoprotein(a) was removed from Lp(a) by reduction and ultracentrifugation, no interaction between LDL2 and reduced Lp(a) was detected by ligand blotting. Ligand binding showed that LDL2-Sepharose 4B columns bound plasma lipoproteins containing apolipoproteins(a), B, and other apolipoproteins. The Lp(a)-Sepharose column bound lipoproteins containing apolipoprotein B and other apolipoproteins. Furthermore, the Lp(a) ligand column bound more lipoprotein lipid than the LDL2 ligand column, with the Lp(a) ligand column having a greater affinity for triglyceride-rich lipoproteins. Lipoprotein electrophoresis of a mixture of LDL2 and Lp(a) demonstrated a single band with a mobility intermediate between that of LDL2 and Lp(a). Chemical modification of the lysine residues of apolipoprotein B (apoB) by either acetylation or acetoacetylation prevented or diminished the interaction of LDL2 with Lp(a), as shown by both agarose electrophoresis and ligand blotting using modified LDL2. Moreover, removal of the acetoacetyl group from the lysine residues of apoB by hydroxylamine reestablished the interaction of LDL2 with Lp(a). On the other hand, blocking of--SH groups of apoB by iodoacetamide failed to show any effect on the interaction between LDL2 and Lp(a). Based on these observations, it was concluded that Lp(a) interacts with LDL2 and other apoB-containing lipoproteins which are enriched in triglyceride; this interaction is due to the presence of apolipoprotein(a) and involves lysine residues of apoB interacting with the plasminogen-like domains (kringle 4) of apolipoprotein(a). Such results suggest that Lp(a) may be involved in triglyceride-rich lipoprotein metabolism, could form transient associations with apoB-containing lipoproteins in the vascular compartment, and alter the intake by the high affinity apoB, E receptor pathway.  相似文献   

18.
Increased expression of endothelial adhesion molecules, high levels of the monocyte chemoattractant protein-1 (MCP-1) and enhanced VLA4 integrin/VCAM-1 and CCR-2/MCP-1 interactions are initial steps in vascular inflammation. We sought to determine whether relaxin, a potent vasodilatory and anti-fibrotic agent, mitigates these early events compromising endothelial integrity. The effect of relaxin coincubation on the TNF-α-stimulated expression of the adhesion molecules VCAM-1, ICAM-1 and E-selectin; the MCP-1 expression by human umbilical vein endothelial cells (HUVEC) and human aortic smooth muscle cells (HAoSMC); as well as on direct monocyte–endothelium cell adhesion was quantified by ELISA or adhesion assay. CCR-2 and PECAM expression on HUVEC and THP-1 monocytes was investigated by FACS analysis. Relaxin treatment suppressed significantly TNF-α-induced upregulation of VCAM-1 and PECAM, CCR-2, and MCP-1 levels and direct monocyte adhesion to HUVEC. Our findings identify relaxin as a promising inhibitory factor in early vascular inflammation. By attenuating the upregulation of VCAM-1, key adhesion molecule in early vascular inflammation, and of MCP-1, a chemokine pivotal to monocyte recruitment, relaxin decreased initial monocyte–endothelium contact. This may be of relevance for the prevention and treatment of atherosclerosis and of other pro-inflammatory states.  相似文献   

19.
Low-fat diets have been shown to increase plasma concentrations of lipoprotein(a) [Lp(a)], a preferential lipoprotein carrier of oxidized phospholipids (OxPLs) in plasma, as well as small dense LDL particles. We sought to determine whether increases in plasma Lp(a) induced by a low-fat high-carbohydrate (LFHC) diet are related to changes in OxPL and LDL subclasses. We studied 63 healthy subjects after 4 weeks of consuming, in random order, a high-fat low-carbohydrate (HFLC) diet and a LFHC diet. Plasma concentrations of Lp(a) (P < 0.01), OxPL/apolipoprotein (apo)B (P < 0.005), and OxPL-apo(a) (P < 0.05) were significantly higher on the LFHC diet compared with the HFLC diet whereas LDL peak particle size was significantly smaller (P < 0.0001). Diet-induced changes in Lp(a) were strongly correlated with changes in OxPL/apoB (P < 0.0001). The increases in plasma Lp(a) levels after the LFHC diet were also correlated with decreases in medium LDL particles (P < 0.01) and increases in very small LDL particles (P < 0.05). These results demonstrate that induction of increased levels of Lp(a) by an LFHC diet is associated with increases in OxPLs and with changes in LDL subclass distribution that may reflect altered metabolism of Lp(a) particles.  相似文献   

20.
Phosphocholine as a pattern recognition ligand for CD36   总被引:1,自引:0,他引:1  
We have previously shown that CD36 recognizes oxidation products of phospholipids on oxidized LDL (OxLDL) such as 1-palmitoyl-2-(5'-oxovaleroyl)-sn-glycero-3-phosphocholine (POVPC). The current study was designed to examine whether the phosphocholine (PC) headgroup in POVPC constitutes an obligatory binding target for CD36. To examine the contribution of PC in the binding of POVPC to CD36, we used well-defined synthetic oxidized phospholipids (OxPLs) cross-linked to BSA or to a hexapeptide. The OxPL adducts were then tested for their ability to bind to CD36-transfected cells and for their ability to inhibit OxLDL binding to CD36. Both POVPC-BSA and POVPC-peptide adducts were high-affinity ligands for CD36 and potent inhibitors of OxLDL binding. Enzymatic removal of the entire PC moiety of the POVPC-peptide, or of the choline headgroup alone, as well as substitution of the choline headgroup by ethanolamine abrogated the inhibitory activity of POVPC. Interestingly, PC by itself or cross-linked to BSA did not show any intrinsic competition activity. In conclusion, our data demonstrate that the PC headgroup of OxPL alone is sufficient for binding to CD36, but only if presented in the correct conformation as in OxPL of OxLDL or as in POVPC-peptide adducts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号