共查询到20条相似文献,搜索用时 15 毫秒
1.
Bulken-Hoover JD Jackson WM Ji Y Volger JA Tuan RS Nesti LJ 《Molecular biotechnology》2012,51(2):128-136
Peripheral nerve damage frequently accompanies musculoskeletal trauma and repair of these nerves could be enhanced by the
targeted application of neurotrophic factors (NTFs), which are typically expressed by endogenous cells that support nerve
regeneration. Injured muscle tissues express NTFs to promote reinnervation as the tissue regenerates, but the source of these
factors from within the muscles is not fully understood. We have previously identified a population of mesenchymal progenitor
cells (MPCs) in traumatized muscle tissue with properties that support tissue regeneration, and our hypothesis was that MPCs
also secrete the NTFs that are associated with muscle tissue reinnervation. We determined that MPCs express genes associated
with neurogenic function and measured the protein-level expression of specific NTFs with known functions to support nerve
regeneration. We also demonstrated the effectiveness of a neurotrophic induction protocol to enhance the expression of the
NTFs, which suggests that the expression of these factors may be modulated by the cellular environment. Finally, neurotrophic
induction affected the expression of cell surface markers and proliferation rate of the MPCs. Our findings indicate that traumatized
muscle-derived MPCs may be useful as a therapeutic cell type to enhance peripheral nerve regeneration following musculoskeletal
injury. 相似文献
2.
目的 :通过重建端粒酶活性延长胎儿肌肉源间充质干细胞寿命 ,并对其成神经潜能进行研究 ,为组织工程神经修复提供种子细胞。方法 :将人端粒酶催化亚基 (hTERT)基因通过脂质体转染法导入胎儿肌肉源间充质干细胞 ,RT PCR检测hTERTmRNA的表达 ,TRAP PCR检测细胞端粒酶活性。用bFGF诱导已重建端粒酶活性的肌肉源间充质干细胞向神经细胞分化 ,免疫荧光及免疫印迹法检测分化情况。结果 :转染hTERT的胎儿肌肉源间充质干细胞能稳定表达端粒酶活性。转染后传 75代的细胞经bFGF诱导仍维持着自我更新及向神经细胞分化的潜能 ,且无恶性转化倾向。结论 :重建端粒酶活性可延长胎儿肌肉源间充质干细胞寿命并维持自我更新及成神经潜能 ,为建立组织工程标准细胞系提供了新的实验手段 相似文献
3.
4.
Taesup Cho Jae K. Ryu Changiz Taghibiglou Yuan Ge Allen W. Chan Lidong Liu Jie Lu James G. McLarnon Yu Tian Wang 《PloS one》2013,8(10)
Neural stem cell (NSC) replacement therapy is considered a promising cell replacement therapy for various neurodegenerative diseases. However, the low rate of NSC survival and neurogenesis currently limits its clinical potential. Here, we examined if hippocampal long-term potentiation (LTP), one of the most well characterized forms of synaptic plasticity, promotes neurogenesis by facilitating proliferation/survival and neuronal differentiation of NSCs. We found that the induction of hippocampal LTP significantly facilitates proliferation/survival and neuronal differentiation of both endogenous neural progenitor cells (NPCs) and exogenously transplanted NSCs in the hippocampus in rats. These effects were eliminated by preventing LTP induction by pharmacological blockade of the N-methyl-D-aspartate glutamate receptor (NMDAR) via systemic application of the receptor antagonist, 3-[(R)-2-carboxypiperazin-4-yl]-propyl-1-phosphonic acid (CPP). Moreover, using a NPC-neuron co-culture system, we were able to demonstrate that the LTP-promoted NPC neurogenesis is at least in part mediated by a LTP-increased neuronal release of brain-derived neurotrophic factor (BDNF) and its consequent activation of tropomysosin receptor kinase B (TrkB) receptors on NSCs. Our results indicate that LTP promotes the neurogenesis of both endogenous and exogenously transplanted NSCs in the brain. The study suggests that pre-conditioning of the host brain receiving area with a LTP-inducing deep brain stimulation protocol prior to NSC transplantation may increase the likelihood of success of using NSC transplantation as an effective cell therapy for various neurodegenerative diseases. 相似文献
5.
6.
Tissues and organs in vivo are under a hypoxic condition; that is, the oxygen tension is typically much lower than in ambient air. However, the effects of such a hypoxic condition on tendon stem cells, a recently identified tendon cell, remain incompletely defined. In cell culture experiments, we subjected human tendon stem cells (hTSCs) to a hypoxic condition with 5% O2, while subjecting control cells to a normaxic condition with 20% O2. We found that hTSCs at 5% O2 had significantly greater cell proliferation than those at 20% O2. Moreover, the expression of two stem cell marker genes, Nanog and Oct-4, was upregulated in the cells cultured in 5% O2. Finally, in cultures under 5% O2, more hTSCs expressed the stem cell markers nucleostemin, Oct-4, Nanog and SSEA-4. In an in vivo experiment, we found that when both cell groups were implanted with tendon-derived matrix, more tendon-like structures formed in the 5% O2 treated hTSCs than in 20% O2 treated hTSCs. Additionally, when both cell groups were implanted with Matrigel, the 5% O2 treated hTSCs showed more extensive formation of fatty, cartilage-like and bone-like tissues than the 20% O2 treated cells. Together, the findings of this study show that oxygen tension is a niche factor that regulates the stemness of hTSCs, and that less oxygen is better for maintaining hTSCs in culture and expanding them for cell therapy of tendon injuries. 相似文献
7.
该文应作者要求已撤稿。肺动脉平滑肌细胞(PASMCs)的迁移和增殖是肺动脉重塑进而造成肺动脉高压的主要病理基础。水通道蛋白1(AQP1)具有促进上皮细胞、内皮细胞迁移的作用,但机制不清。由于AQP1也表达于血管平滑肌细胞,推测AQP1可能参与缺氧诱导的PASMCs增殖及迁移。通过PCR和免疫印迹分析,检测AQP的表达以及缺氧对AQP表达水平的影响,并通过细胞迁移以及增殖实验观察AQP1在缺氧诱导的PASMCs迁移与增殖中的作用。AQP1在PASMCs和主动脉平滑肌细胞(AoSMCs)均表达,但缺氧只增加PASMCs中AQP1的表达,以及促进PASMCs的迁移与增殖。敲除AQP1可抑制PASMCs的增殖以及缺氧诱导的细胞增殖和迁移。过表达AQP1促进PASMCs的增殖和迁移。缺氧促进β联蛋白在PASMCs内的表达。敲除β联蛋白后,抑制AdAQP1所介导的PASMCs迁移与增殖。这些结果表明,缺氧可促进AQP1在肺动脉内的表达,AQP1可通过β联蛋白对PASMCs的增殖和迁移进行调节。 相似文献
8.
血小板生成素基因在体内的表达及对造血祖细胞增殖活性的影响 总被引:2,自引:0,他引:2
探讨了从肌肉组织植入的人血小板生成素(TPO)基因在小鼠体内的表达规律,以及对造血祖细胞增殖活性的影响.基因在导入后的24小时内就开始转录,先于血小板、血液TPO浓度、及造血祖细胞的变化.所表达的TPO在血液中的聚积可持续4周以上.巨核祖细胞,粒系祖细胞都出现2周左右的增殖增长,长于血小板计数的升高,但红系祖细胞的变化不明显.这些结果显示,基因治疗过程中血小板计数等变化源于TPO的表达及刺激,而在此期间一些调控机制被激活,对血小板形成的平衡发挥作用. 相似文献
9.
Insulin like growth factor-1 (IGF-1) plays an important role in the proliferation and differentiation of neural progenitor
cells. The effects of IGF-1 can be regulated by insulin like growth factor binding protein-3 (IGFBP-3) which can either inhibit
or stimulate the proliferation of cells depending on the expression of proteases that can release IGF-1 from IGF1-IGFBP3 complex.
Although IGF-1 is essential for the development of brain, both IGFBP-3 and IGF-1 are elevated in the brains of children younger
than 6 months of age. Likewise, IGFBP-3 is also upregulated following cerebral ischemia and hypoxia. However, the role of
IGFBP-3 in neurogenesis is not clear. Using an in vitro culture system of rat neural progenitor cells, we demonstrate that
IGFBP-3 specifically regulates the IGF-1 mediated neural progenitor cell proliferation via down regulation of phopho-Akt,
and cyclin D1. In addition, IGFBP-3 also decreased the content of nestin in the neural progenitor cells indicating its potential
role in neurogenesis. 相似文献
10.
目的:探究GATA1在胰腺癌肿瘤干细胞形成中的功能和作用机制。方法:通过流式细胞术检测GATA1对胰腺癌肿瘤干细胞形成的影响;通过实时荧光定量PCR和Western印迹筛选和验证GATA1下游的干性基因;通过双萤光素酶报告基因实验和染色质免疫共沉淀明确GATA1的调控机制。结果:GATA1过表达细胞株中肿瘤干细胞含量增加;GATA1上调NANOG的mRNA和蛋白表达水平;GATA1可以增强NANOG启动子的活性;GATA1结合在NANOG启动子-527^-524bp处的GATA序列。结论:GATA1可以通过结合在NANOG启动子上激活其转录,促进胰腺癌肿瘤干细胞的形成。 相似文献
11.
David L. Stocum 《Developmental neurobiology》2019,79(5):468-478
Nerves, in conjunction with the apical epidermal cap (AEC), play an important role in the proliferation of the mesenchymal progenitor cells comprising the blastema of regenerating urodele amphibian limbs. Reinnervation after amputation requires factors supplied by the forming blastema, and neurotrophic factors must be present at or above a quantitative threshold for mitosis of the blastema cells. The AEC forms independently of nerves, but requires nerves to be maintained. Urodele limb buds are independent of nerves for regeneration, but innervation imposes a regenerative requirement for nerve factors on their cells as they differentiate. There are three main ideas on the functional relationship between nerves, AEC, and blastema cells: (1) nerves and AEC produce factors with different roles in maintaining progenitor status and mitosis; (2) the AEC produces the factors that promote blastema cell mitosis, but requires nerves to express them; (3) blastema cells, nerves, and AEC all produce the same factor(s) that additively attain the required threshold for mitosis. 相似文献
12.
Bathri N. Vajravelu Kyung U. Hong Tareq Al-Maqtari Pengxiao Cao Matthew C. L. Keith Marcin Wysoczynski Zhao John Joseph B. Moore IV Roberto Bolli 《PloS one》2015,10(10)
A recent phase I clinical trial (SCIPIO) has shown that autologous c-kit+ cardiac progenitor cells (CPCs) improve cardiac function and quality of life when transplanted into patients with ischemic heart disease. Although c-kit is widely used as a marker of resident CPCs, its role in the regulation of the cellular characteristics of CPCs remains unknown. We hypothesized that c-kit plays a role in the survival, growth, and migration of CPCs. To test this hypothesis, human CPCs were grown under stress conditions in the presence or absence of SCF, and the effects of SCF-mediated activation of c-kit on CPC survival/growth and migration were measured. SCF treatment led to a significant increase in cell survival and a reduction in cell death under serum depletion conditions. In addition, SCF significantly promoted CPC migration in vitro. Furthermore, the pro-survival and pro-migratory effects of SCF were augmented by c-kit overexpression and abrogated by c-kit inhibition with imatinib. Mechanistically, c-kit activation in CPCs led to activation of the PI3K and the MAPK pathways. With the use of specific inhibitors, we confirmed that the SCF/c-kit-dependent survival and chemotaxis of CPCs are dependent on both pathways. Taken together, our findings suggest that c-kit promotes the survival/growth and migration of human CPCs cultured ex vivo via the activation of PI3K and MAPK pathways. These results imply that the efficiency of CPC homing to the injury site as well as their survival after transplantation may be improved by modulating the activity of c-kit. 相似文献
13.
Dandan Liang Lixiao Zhen Tianyou Yuan Jian Huang Fangfei Deng Wuyahan Hong Zhang Lei Pan Yi Liu Erlinda The Zuoren Yu Weidong Zhu Yuzhen Zhang Li Li Luying Peng Jun Li Yi-Han Chen 《PloS one》2014,9(7)
microRNAs (miRNAs) play essential roles in cardiogenesis. The altered expression of miRNAs can result in cardiac malformations by inducing abnormalities in the behavior of cardiac cells. However, the role of miR-10a in the regulation of cardiomyocyte progenitor cells (CMPCs) remains undetermined. In the present study, we found that up- or down-regulation of miR-10a inhibited or promoted the proliferation of human CMPCs, respectively, without affecting their differentiation toward cardiomyocytes. miR-10a bound to GATA6 directly and reduced GATA6 expression. Over-expression of GATA6 greatly attenuated the miR-10a-mediated inhibitory effect on the proliferation of human CMPCs. Thus, our results indicate that miR-10a could effectively modulate the proliferation of human CMPCs by targeting GATA6. The finding provides novel insights into the potency of miR-10a during heart development. 相似文献
14.
Hee Ra Park Kyoung Hye Kong Byung Pal Yu Mark P. Mattson Jaewon Lee 《The Journal of biological chemistry》2012,287(51):42588-42600
Resveratrol is a phytoalexin and natural phenol that is present at relatively high concentrations in peanuts and red grapes and wine. Based upon studies of yeast and invertebrate models, it has been proposed that ingestion of resveratrol may also have anti-aging actions in mammals including humans. It has been suggested that resveratrol exerts its beneficial effects on health by activating the same cellular signaling pathways that are activated by dietary energy restriction (DR). Some studies have reported therapeutic actions of resveratrol in animal models of metabolic and neurodegenerative disorders. However, the effects of resveratrol on cell, tissue and organ function in healthy subjects are largely unknown. In the present study, we evaluated the potential effects of resveratrol on the proliferation and survival of neural progenitor cells (NPCs) in culture, and in the hippocampus of healthy young adult mice. Resveratrol reduced the proliferation of cultured mouse multi-potent NPCs, and activated AMP-activated protein kinase (AMPK), in a concentration-dependent manner. Administration of resveratrol to mice (1–10 mg/kg) resulted in activation of AMPK, and reduced the proliferation and survival of NPCs in the dentate gyrus of the hippocampus. Resveratrol down-regulated the levels of the phosphorylated form of cyclic AMP response element-binding protein (pCREB) and brain-derived neurotrophic factor (BDNF) in the hippocampus. Finally, resveratrol-treated mice exhibited deficits in hippocampus-dependent spatial learning and memory. Our findings suggest that resveratrol, unlike DR, adversely affects hippocampal neurogenesis and cognitive function by a mechanism involving activation of AMPK and suppression of CREB and BDNF signaling. 相似文献
15.
16.
Dafna Willner Ayelet Cohen-Yeshurun Alexander Avidan Vladislav Ozersky Esther Shohami Ronen R. Leker 《PloS one》2014,9(7)
Background
Chronic morphine treatment inhibits neural progenitor cell (NPC) progression and negatively effects hippocampal neurogenesis. However, the effect of acute opioid treatment on cell development and its influence on NPC differentiation and proliferation in vitro is unknown. We aim to investigate the effect of a single, short term exposure of morphine on the proliferation, differentiation and apoptosis of NPCs and the mechanism involved.Methods
Cell cultures from 14-day mouse embryos were exposed to different concentrations of morphine and its antagonist naloxone for 24 hours and proliferation, differentiation and apoptosis were studied. Proliferating cells were labeled with bromodeoxyuridine (BrdU) and cell fate was studied with immunocytochemistry.Results
Cells treated with morphine demonstrated decreased BrdU expression with increased morphine concentrations. Analysis of double-labeled cells showed a decrease in cells co-stained for BrdU with nestin and an increase in cells co-stained with BrdU and neuron-specific class III β-tubuline (TUJ1) in a dose dependent manner. Furthermore, a significant increase in caspase-3 activity was observed in the nestin- positive cells. Addition of naloxone to morphine-treated NPCs reversed the anti-proliferative and pro-apoptotic effects of morphine.Conclusions
Short term morphine exposure induced inhibition of NPC proliferation and increased active caspase-3 expression in a dose dependent manner. Morphine induces neuronal and glial differentiation and decreases the expression of nestin- positive cells. These effects were reversed with the addition of the opioid antagonist naloxone. Our results demonstrate the effects of short term morphine administration on the proliferation and differentiation of NPCs and imply a mu-receptor mechanism in the regulation of NPC survival. 相似文献17.
目的:研究转录因子WSTF对肺癌细胞增殖和侵袭作用的影响。方法:采用慢病毒介导的基因转染方法建立A549细胞WSTF高表达细胞系A549-WSTF和空质粒对照细胞系A549-control。细胞增殖实验和克隆形成实验观察ING5过表达对肺癌A549细胞增殖能力的影响;Trans-well迁移实验和侵袭实验观察WSTF对肺癌细胞迁移和侵袭能力的影响。结果:Western blot验证A549-WSTF细胞WSTF蛋白水平显著高于对照细胞A549-control,P=0.0004。WSTF高表达明显促进了肺癌细胞的增殖能力(1-4天P值分别为0.002、0.0004、0.0002和3.21×10-5)和克隆形成能力(P=0.004);WSTF过表达还显著促进了肺癌细胞从trans-well小室迁移到下室的作用,其OD570值分别为0.626±0.013(A549-WSTF)和0.322±0.010(A549-control),P=2.37×10-5;WSTF还促进肺癌细胞穿透基质胶迁移到下室,其OD570值分别为0.600±0.027(A549-WSTF)和0.333±0.017(A549-control),P=0.0004。结论:WSTF可以促进肺癌细胞的增殖和侵袭能力而发挥促癌作用。 相似文献
18.
19.
Na He Zejian Wang Yin Wang Hanlin Shen Ming Yin 《Cellular and molecular neurobiology》2013,33(8):1149-1157
Neural stem/progenitor cells (NSPCs) of the subgranular zone have been implicated in cognitive processes, which represent a potentially important source of regenerative medicine for the treatment of neurodegenerative diseases such as Alzheimer’s disease (AD). In our previous studies, ZY-1, a novel nicotinic analog, improved cognitive function in transgenic mice model of AD. However, the effect of ZY-1 on the NSPCs remains unclear. Here, we show that ZY-1 significantly increased proliferation and migration of NSPCs, but failed to affect NSPCs differentiation in vitro. Furthermore, during the proliferative period, ZY-1 enhanced intracellular reactive oxygen species (ROS) levels. Meanwhile, ZY-1 also inhibited the levels of Aβ42-induced ROS. Our data indicate that ZY-1 regulates adult hippocampal neurogenesis in vitro, at least partly due to modulating intracellular ROS levels. These results, taken together with those of our previous studies, suggest that ZY-1 might have a potential therapeutic effect for the treatment of AD. 相似文献