首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gou JY  Miller LM  Hou G  Yu XH  Chen XY  Liu CJ 《The Plant cell》2012,24(1):50-65
Pectin is a major component of the primary cell wall of higher plants. Some galacturonyl residues in the backbone of pectinaceous polysaccharides are often O-acetylated at the C-2 or C-3 position, and the resulting acetylesters change dynamically during the growth and development of plants. The processes involve both enzymatic acetylation and deacetylation. Through genomic sequence analysis, we identified a pectin acetylesterase (PAE1) from black cottonwood (Populus trichocarpa). Recombinant Pt PAE1 exhibited preferential activity in releasing the acetate moiety from sugar beet (Beta vulgaris) and potato (Solanum tuberosum) pectin in vitro. Overexpressing Pt PAE1 in tobacco (Nicotiana tabacum) decreased the level of acetyl esters of pectin but not of xylan. Deacetylation engendered differential changes in the composition and/or structure of cell wall polysaccharides that subsequently impaired the cellular elongation of floral styles and filaments, the germination of pollen grains, and the growth of pollen tubes. Consequently, plants overexpressing PAE1 exhibited severe male sterility. Furthermore, in contrast to the conventional view, PAE1-mediated deacetylation substantially lowered the digestibility of pectin. Our data suggest that pectin acetylesterase functions as an important structural regulator in planta by modulating the precise status of pectin acetylation to affect the remodeling and physiochemical properties of the cell wall's polysaccharides, thereby affecting cell extensibility.  相似文献   

2.
Rhamnogalacturonan acetylesterase, able to specifically hydrolyse the acetyl asters present in modified hairy (ramified) regions (MHR) of apple pectin, was identified. The enzyme removed about 70% of the total acetyl groups in MHR. This acetylesterase did not cause the release of acetyl groups from a range of other acetylated substrates, either synthetic or extracted from plants, including the acetylated smooth regions present in beet pectin. Pretreatment of pectic polysaccharides in order to remove arabinose side chains had no effect on the acetyl release, wor was an effect found on the rate or degree of acetyl release, when the purified acetylesterase was combined with pectolytic enzymes, pectin methylesterase or arabinanases. Correspondence to: A. G. J. Voragen  相似文献   

3.
The gelation of low-methoxyl pectin (LMP) induced by addition of Ca2+ was studied by measuring the storage modulus as a function of temperature during cooling. Samples with different molar masses were prepared by mechanical degradation. The effect of the molar mass and the pectin concentration on the gelation properties was investigated. The effect of partial amidation was studied by comparing LMP and partially amidated LMP with the same molar mass and degree of methylation. The results are compared to those from a model developed for Ca2+-induced pectin gelation, and good agreement is found except at low concentrations and low molar masses where the gels are weaker than predicted. At low concentrations intrachain bonding weakens the gel, while the presence of small pectin chains weakens the gel because it neutralizes binding sites on larger chains.  相似文献   

4.
The synergistic interaction between pectin and chitosan in aqueous acid solution and in the gel phase has been studied by oscillatory shear measurements. Mixtures of pectin and chitosan form thermoreversible gels over a broad composition range by lowering the temperature. The value of the gelation temperature depends on the composition of the mixture, with low values for mixtures with low pectin contents. For incipient gels, a power law can describe the frequency dependence of the complex viscosity, with power law exponents close to -1. The gel evolution of pectin-chitosan mixtures upon a temperature quench below the gel point has been studied. Evidence is provided for a relation between gelation and phase separation in the process of temperature-induced gelation of pectin-chitosan mixtures. A simple model is proposed to rationalize the gelation process in these systems.  相似文献   

5.
A pectin lyase (PNL; EC 4.2.2.10) was isolated from culture filtrates of Pseudomonas fluorescens W51 and purified to apparent homogeneity. The enzyme catalyzed a random eliminative cleavage of pectin but not sodium polypectate, and it macerated plant tissue. The Mr of the PNL on sodium dodecyl sulfate-polyacrylamide gels was 32,000 +/- 1,000, and the isoelectric point was 9.4 as determined by isoelectric focusing. The enzyme was constitutively produced, since the highest yields were obtained when glycerol was used as a sole carbon source, and addition of pectin to the medium did not increase its production. Antibodies against purified PNL reacted in Western blots (immunoblots) with a pectate lyase (PLb) produced by Erwinia chrysanthemi EC16. The PNL appeared to be the only factor secreted into the culture medium by P. fluorescens W51 which macerated plant tissue and is probably involved in the soft rot disease caused by the bacterium.  相似文献   

6.
A rapid and simple method was developed, using perfusion chromatography media, to separate the fruit-specific pectin methylesterase (PME) isoform from the depolymerizing enzyme polygalacturonase (PG) and other contaminating pectinases present in a commercial tomato enzyme preparation. Pectinase activities were adsorbed onto a Poros HS (a strong cation exchanger) column in 20 M HEPES buffer at pH 7.5. The fruit-specific PME was eluted from the column with 80 mM NaCl, followed by a step to 300 mM NaCl to elute PG activity. Rechromatography of the PME activity peak with a linear gradient further resolved two PME isoenzymes and removed residual traces of PG activity. The PG activity peak was further treated with lectin affinity chromatography to provide purified PG enzyme, which was separated from a salt-dependent PME (tentatively identified as a "ubiquitous-type" isoform), and a pectin acetylesterase. The later enzyme has not been reported previously in tomato. This method provides monocomponent enzymes that will be useful for studying enzyme mechanisms and for modifying pectin structure and functional properties.  相似文献   

7.
8.
Previously reported results obtained for the elastoviscous properties of some thermoreversible gels formed from anionic polysaccharides (high methoxyl pectin, furcellaran and κ-carrageenan) and also gelatin and maltodextrin are discussed and some conclusions about the structure of the gels are presented.The rate at which the relaxation processes take place in the gel is independent of the polymer concentration suggesting that the gels are structurally inhomogeneous.If the helical conformation of the individual macromolecule is stable the standard enthalpy change on crosslink breakdown is less than 45 kJ mol?1. A relatively small decrease in standard enthalpy is sufficient for network stability because of the low standard entropy loss on gelation which is typical of semi-rigid chain polymers. If, however, the helical conformation is unstable the gelation process is cooperative and the standard enthalpy change on crosslink breakdown exceeds 200 kJ mol?1.  相似文献   

9.
The kinetic behavior during gel formation and the microstructure of 0.75% high methoxyl (HM) pectin gels in 60% sucrose have been investigated by oscillatory measurements and transmission electron microscopy for three comparable citrus pectin samples differing in their degree of blockiness (DB). Ca2+ addition at pH 3.0 resulted in faster gel formation and a lower storage modulus after 3 h for gels of the blockwise pectin A. For gels of the randomly esterified pectin B, the Ca2+ addition resulted in faster gel formation and a higher storage modulus at pH 3.0. At pH 3.5, both pectins A and B were reinforced by the addition of Ca2+. In the absence of Ca2+, the shortest gelation time was obtained for the sample with the highest DB. Microstructural characterization of the gel network, 4 and 20 h after gel preparation, showed no visible changes on a nanometer scale. The microstructure of pectins A and B without Ca2+ was similar, whereas the presence of Ca2+ in pectin A resulted in an inhomogeneous structure.  相似文献   

10.
The microstructure, kinetics of gelation, and rheological properties have been investigated for gels of nonamidated pectin (C30), amidated pectin (G), and saponified pectin (sG) at different pH values, both with and without sucrose. The low-methoxyl (LM) pectin gels were characterized in the presence of Ca(2+) by oscillatory measurements and transmission electron microscopy (TEM). The appearance of the gel microstructure varied with the pH, the gel structure being sparse and aggregated at pH 3 but dense and somewhat entangled at pH 7. During gel formation of pectins G and C30 at pH 3 there was a rapid increase in G' initially followed by a small increase with time. At pH 7 G' increased very rapidly at first but then remained constant. The presence of sucrose influenced neither the kinetic behavior nor the microstructure of the gels but strongly increased the storage modulus. Pectins G and C30 showed large variations in G' at pH values 3, 4, 5, and 7 in the presence of sucrose, and the maximum in G' in the samples occurred at different pH values. Due to its high Ca(2+) sensitivity, pectin sG had a storage modulus that was about 50 times higher than that of its mother pectin G at pH 7.  相似文献   

11.
For the first time, a pectin lyase (poly(methoxygalacturonide)lyase; EC 4.2.2.10) from a member of the generus Penicillium was isolated, purified to homogeneity and characterized. The monomeric enzyme from Penicillium italicum CECT 2294 culture filtrates showed a molecular mass of 34 kDa after SDS-electrophoresis in polyacrylamide gradient gels, and the isoelectric point was 8.6 as determined by isoelectric focusing. The optimum pH (9.0), the high pH and temperature stabilities, the ability to degrade pectins from different sources and with a wide range of degrees of esterification (from 37% to 86%) as well as the importance of this type of biocatalysts in the food industry make this enzyme an interesting subject of study.  相似文献   

12.
High methoxy pectin was submitted to various amounts of a fungal pectin methylesterase (PME) from Aspergillus aculeatus and of a plant PME from orange in the presence of calcium. The systems were characterized by rheological means during the gelation process. By the way of in situ demethoxylation with low amount of orange PME, it was possible to gel pectin from the beginning of the reaction although its high degree of methylation around 70. To understand this unusual properties, the behaviour of the two enzymes was investigated in pectic gels and in solution through the analysis of content and distribution of the remaining methyl esters. In the gel, the degree of methylation decreased slowly with orange PME and rapidly with Aspergillus PME. The degree of methylation and degree of blockiness after treatment with each PME in solution or in gels were slightly different. Possible explanations for this are evolving visco-elastic properties, including gel formation or influence of calcium on the enzyme–substrate complex.  相似文献   

13.
Direct measurement of acetylesterase in living protist cells   总被引:3,自引:0,他引:3       下载免费PDF全文
The fluorogenic acetylesterase (acetic ester hydrolase EC 3.1.1.6.) substrate, fluorescein diacetate, was used to measure enzyme activity in living protist cells. The visual enzyme assay was done by monitoring fluorochromasia by fluorescent microscopy. Quantitative fluorogenic assays were done by measuring the evolved fluorescein in a fluorometer. Of 59 strains of bacteria, 35 were fluorochromatically positive. Eight of the fluorochromatically negative strains were fluorogenically positive. Of 22 strains of slime molds and fungi, all were fluorochromatically positive. Three out of 12 different algae were fluorochromatically positive. Several unidentified protozoa were also fluorochromatically positive. Four out of six protozoa were fluorochromatically positive. Structures of special interest showing acetylesterase activity were: the growing hyphal tips of fungi, the vacuolated areas of yeast and protozoa, newly formed bacterial spores or immature fungal spores, "mesosome-like" bodies in Bacillus megaterium, and the cell membrane and nuclear region of green algae. Yeast protoplasts and bacterial protoplasts and spheroplasts were fluorochromatically positive when derived from positive cells and negative when derived from negative cells. There was no correlation between the possession of a capsule and acetylesterase activity. There was no effect on the viability of bacterial cells incubated in the presence of fluorescein diacetate. Paraoxon inhibited bacterial and yeast enzyme at 10(-5)m. Eserine (10(-5)m) and Paraoxon (10(-7)m) inhibited B. megaterium enzyme. Sodium acetate at 10(-2)m did not inhibit bacterial enzyme. The implications of these findings on the location and expression of esterase activity in living cells are discussed.  相似文献   

14.
Most structures of neutral lipases and esterases have been found to adopt the common alpha/beta hydrolase fold and contain a catalytic Ser-His-Asp triad. Some variation occurs in both the overall protein fold and in the location of the catalytic triad, and in some enzymes the role of the aspartate residue is replaced by a main-chain carbonyl oxygen atom. Here, we report the crystal structure of pectin methylesterase that has neither the common alpha/beta hydrolase fold nor the common catalytic triad. The structure of the Erwinia chrysanthemi enzyme was solved by multiple isomorphous replacement and refined at 2.4 A to a conventional crystallographic R-factor of 17.9 % (R(free) 21.1 %). This is the first structure of a pectin methylesterase and reveals the enzyme to comprise a right-handed parallel beta-helix as seen in the pectinolytic enzymes pectate lyase, pectin lyase, polygalacturonase and rhamnogalacturonase, and unlike the alpha/beta hydrolase fold of rhamnogalacturonan acetylesterase with which it shares esterase activity. Pectin methylesterase has no significant sequence similarity with any protein of known structure. Sequence conservation among the pectin methylesterases has been mapped onto the structure and reveals that the active site comprises two aspartate residues and an arginine residue. These proposed catalytic residues, located on the solvent-accessible surface of the parallel beta-helix and in a cleft formed by external loops, are at a location similar to that of the active site and substrate-binding cleft of pectate lyase. The structure of pectin methylesterase is an example of a new family of esterases.  相似文献   

15.
16.
Two enzymes have been isolated from Candida bogoriensis which catalyze the hydrolysis of 13-sophorosyloxydocosanoic acid (Glc2HDA) esters obtained from this organism. The 6',6"-diacetyl derivative of Glc2HDA (Ac2Glc2HDA) is hydrolyzed by an acetylesterase (EC 3.1.1.6) which has been purified 1300-fold. The acetylesterase has a molecular weight of 35,000 estimated from gel filtration, and is much more active with p-nitrophenyl acetate than with the acetylated glycolipid. The rate of hydrolysis increases with Ac2Glc2HDA concentration until a plateau is reached at a concentration of about 40 muM, near the critical micelle concentration of this glycolipid. These kinetic data are interpreted as an enzyme specificity for the monomeric, but not the micellar form of the glycolipid. The acetylesterase is inhibited by 0.1 to 10 mM diisopropyl fluorophosphate, 5 mM p-hydroxymercuribenzoate, and 5 mM N-ethylmaleimide, but only slightly by 5 mM iodoacetamide. The methyl ester of Ac2Glc2HDA is hydrolyzed by at least two carboxylesterases (EC 3.1.1) which differ in size according to gel filtration. Their molecular weights are estimated as 140,000 for carboxyesterase A and 40,000 for carboxyesterase B. Both carboxylesterases were purified over 20-fold, and carboxylesterase A was characterized further. Carboxylesterase A activity was inhibited completely by 0.1 to 10 mM diisopropyl fluorophosphate and by 10 mM p-hydroxymercuribenzoate, but only slightly by lower concentrations of p-hydroxymercuribenzoate or by N-ethylmaleimide or iodoacetamide. The carboxylesterase A preparation also acted as a thioesterase with palmityl-CoA (palmityl-CoA hydrolase, EC 3.1.2.2), showing the following approximate relative activities: palmityl-CoA, 100; octanoyl-CoA, 90; methyl Glc2HD, 22; butyryl-CoA, 18; methyl AcGlc2HD, 15; methyl Ac2Glc2HD, 10; and acetyl-CoA, O. Methyl Ac2Glc2HD showed some substrate inhibition at higher concentrations, but neither methyl Ac2Glc2HD nor palmityl-CoA approached enzyme saturation until well above their critical micelle concentrations, indicating hydrolysis of the micellar substrate was occurring. The carboxylesterase and palmityl-CoA hydrolase activities were destroyed in a parallel fashion by heat denaturation, and each substrate inhibited the action of the preparation on the other substrate, but the preparation has not been purified sufficiently to establish with certainty that both activities reside in the same protein.  相似文献   

17.
Turbidity, swelling, and rheological features of semidilute systems of pectin in methanol-water media of different composition have been investigated. By increasing the percentage of methanol in the mixture, the thermodynamic properties of the pectin/methanol/water system become poorer, as shown by increasing turbidity and decreasing swelling. Effects of oscillatory and steady shear flows on intermolecular associations and gelation of pectin in methanol/water mixtures are reported. The effects of methanol concentration on the growth and structure of shear-induced gels, stabilized through hydrogen bonds, are analyzed. Steady shear measurements on these systems reveal shear thickening at low shear rates and disruption of intermolecular associative junctions at high shear rates.  相似文献   

18.
AIMS: Lachnospira multiparus belongs to the main rumen pectinolytic bacteria. Its carbohydrate metabolism was studied in growth experiments on laboratory fermenters, and using assays of activities of enzymes involved in pectin fermentation. METHODS AND RESULTS: The type strain of this species and two substrates were used. Lachnospira multiparus ATCC 19207 grew on pectin and glucose at a similar rate and had no preference for one or the other substrate. Pectin-grown cultures, however, produced significantly more acetate and less formate, lactate, ethanol, hydrogen, cell dry matter and protein than corresponding cultures grown on glucose. Extracellular exopectate lyase (EC 4.2.2.9) was the principal enzyme degrading the pectin macromolecule. Cell extracts possessed 2-keto-3- deoxy-6-phosphogluconate aldolase (EC 4.1.2.14) and fructosediphosphate aldolase (EC 4.1.2.13) activity. The former enzyme catalyses the final reaction in the Entner-Doudoroff pathway; the latter is the key enzyme of glycolysis and the pentose phosphate pathway. CONCLUSION: These results are consistent with the assumption that acidic products of pectin degradation are catabolized via a modified Entner-Doudoroff pathway. Phosphogluconate was not metabolized by cell extracts of the strain studied. SIGNIFICANCE AND IMPACT OF THE STUDY: This suggests that the conventional Entner-Doudoroff pathway of glucose utilization does not operate in this bacterium, presumably because of the lack of 6-phosphogluconate dehydrase (EC 4.2.1.12) activity.  相似文献   

19.
A new enzyme preparation of fungal pectin lyase (EC 4.2.2.10) was shown to be useful for the production of cranberry juice and clarification of apple juice in the food industry. A comparative study showed that the preparation of pectin lyase is competitive with commercial pectinase products. The molecular weight of homogeneous pectin lyase was 38 kDa. Properties of the homogeneous enzyme were studied. This enzyme was most efficient in removing highly esterified pectin.  相似文献   

20.
During the transition from primary wall formation to secondary thickening there is a marked shift in the synthesis of pectin, hemicellulose and cellulose. The activities of the enzymes [UDP-D-galactose 4-epimerase (EC 5.1.3.2)8 UDP-l-arabinose 4-epimerase (EC 5.1.3.5), UDP-D-glucose dehydrogenase (EC 1.1.1.22) and UDP-D--glucuronate decarboxylase (EC 4.1.1.35)] were measured in cambial cells, differentiating xylem cells and differentiated xylem cells isolated from sycamore and poplar trees, and phloem cells from poplar. At the final stage of the differentiation of cambium to xylem there was a decrease in activity of the enzymes directly involved in producing the soluble precursors of pectin (DUP-D-galactose 4-epimerase and UDP-L-arabinose 4-epimerase and an increase in those producing the precursors of hemicellulose (UDP-D-glucose dehydrogenase and UDP-D-glucuronate decarboxylase). These results strongly suggest ahat the changes were correlated with the differences observed in the chemical composition of the wall during development. The changes found in the catalytic activity of the enzymes of nucleoside diphosphate sugar interconversion exert a coarse control over the synthesis of pectin and hemicelluloses. The tissues at all stages of development contained the necessary enzyme activities to produce all the precursors of pectin and hemicellulose, even at the final stage of differentiation when no pectin was formed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号