首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Harrison PW  Kruger NJ 《Phytochemistry》2008,69(17):2920-2927
The aim of this study was to examine whether flux through the pathways of carbohydrate oxidation is accurately reflected in the pattern of 14CO2 release from positionally labelled [14C]substrates in conventional radiolabel feeding studies. Heterotrophic cell suspension cultures of Arabidopsis thaliana were used for this work. The presence of an alkaline trap to capture metabolically generated 14CO2 had no significant effect on the ratio of 14CO2 release from specifically labelled [14C]substrates, or on the metabolism of [U-14C]glucose by the cells. Although the amount of 14CO2 captured in a conventional time-course study was only about half of that released from a sample acidified at an equivalent time point, the ratios of 14CO2 released from different positionally labelled [14C]glucose and [1-14C]gluconate were the same in untreated and acidified samples. Less than 5% of radioactivity supplied to the growth medium as [14C]bicarbonate was incorporated into acid-stable compounds, and there was no evidence for appreciable reassimilation of 14CO2 generated intracellularly during oxidation of [1-14C]gluconate by the cells. It is concluded that the ratio of label captured from specifically labelled [14C]glucose is a valid and convenient measure of the relative rates of oxidation of the different positional carbon atoms within the supplied respiratory substrate. However, it is argued that failure to compensate for the incomplete absorption of 14CO2 by an alkaline trap may distort estimates of respiration that rely on an absolute measure of the amount of 14CO2 generated by metabolism.  相似文献   

2.
R Gilles 《Life sciences》1974,15(7):1363-1369
Isolated axons of Eriocheir sinensis show high ratios of 14CO2 production from glucose-1-14C to 14CO2 production from glucose-6-14C (ratio C1/C6). During osmotic stresses, there is a modification in 14CO production from glucose-6-14C as well as in the ratio C1/C6 while 14CO2 production from glucose-1-14C does not change significantly. These results are interpreted in terms of activity of oxidative and non-oxidative pathways of glucose metabolism.  相似文献   

3.
Abstract: Previous studies have shown that a reduction in the O2 tension of the blood from 120 torr to 57 torr (hypoxic hypoxia) decreases brain acetylcholine (ACh) synthesis. To determine if this decrease is due to a direct impairment of ACh metabolism or to an indirect effect mediated by other neurotransmitter systems, we studied ACh formation in rat brain slices and synaptosomes. At O2 tensions ranging from 760 to less than 1 torr, 14CO2 production and [14C]ACh synthesis from [U-14C]glucose, the levels of lactate and ATP, and the ATP/ADP ratio were determined. In slices, the first decreases were observed in the rate of 14CO2 production and [14C]ACh synthesis at an O2 tension of 152 torr. The ATP level started to decline at 53–38 torr, and a reduction in the ATP/ADP ratio was first found at and below 19 torr. Lactate formation was maximally stimulated at 38–19 torr. Synaptosomes responded differently than brain slices to reduced O2 tensions. In synaptosomes, 14CO2 production and [14C]ACh synthesis from [U-14C]glucose, the levels of lactate and ATP, and the ATP/ADP ratio were unaltered if a minimum O2 tension of 19 torr was maintained. Despite the difference in sensitivities to decreases in O2 levels, there is a curvilinear relationship between [U-14C]glucose decarboxylation and [14C]ACh synthesis at various O2 tensions for both tissue preparations with a high coefficient of determination (R2= 0.970). The difference in the metabolic sensitivity of slices and synaptosomes to a reduced O2 level may be explained by the greater distance O2 must diffuse in slices. The results are discussed in comparison with hypoxia in vivo.  相似文献   

4.
Glucose metabolism of healthy and tobacco mosaic virus-infected leaf-discs of Nicotiana tabocum L. var. Xanthi showing local-necrotic lesions was investigated using glucose-14C. Local lesion formation following inoculation with tobacco mosaic virus resulted in enhanced glucose metabolism reflected by an increased rate of release of 14CO2 from glucose-U-14C and greater incorporation of 14C into all cell fractions. When specifically labelled glucose was fed to healthy and tobacco mosaic virus infected leaves, the C6/C1 ratio (rate of release of 14CO2 from glucose-6-14C/rate of release of 14CO2 from glucose-l-14C) was similar for healthy and virus-infected leaves. The C6/C1 ratios recorded from 0.30 to 0.50 indicate that both the glycolytic and pentose phosphate pathways participate in glucose catobolism in healthy and virus-infected leaves. Although the C6/C1 ratio was the same as that of the healthy leaf the rate of release of 14CO2 from glucose-6-14C and glucose-1-14C was greatly increased in the virus-infected leaf. The increased glucose catabolism occurs by both glycolytic and pentose phosphate pathways in the virus-infected leaf.  相似文献   

5.
We demonstrate that allantoate is catabolized in soybean seedcoat extracts by an enzyme complex that has allantoate amidohydrolase and ureidoglycolate amidohydrolase activities. Soybean seedcoat extracts released 14CO2 from [ureido-14C]ureidoglycolate under conditions in which urease is not detectable. CO2 and glyoxylate are enzymically released in a one to one ratio indicating that ureidoglycolate amidohydrolase is the responsible activity. Ureidoglycolate amidohydrolase has a Km of 85 micromolar for ureidoglycolate. Glyoxylate and CO2 are enzymically released from allantoate at linear rates in a one to 2.3 ratio from 5 to 30 min. This ratio is consistent with the degradation of allantoate to two CO2 and one glyoxylate with approximately 23% of the allantoate degraded reacting with 2-mercaptoethanol to yield 2-hydroxyethylthio, 2′-ureido, acetate (RG Winkler, JC Polacco, DG Blevins, DD Randall 1985 Plant Physiol 79: 787-793). That [14C]urea production from [2,7-14C]allantoate is not detectable indicates that allantoate-dependent glyoxylate production is enzymic and not a result of nonenzymic hydrolysis of a ureido intermediate (nonenzymic hydrolysis releases urea). These results and those from intact tissue studies (RG Winkler DG Blevins, JC Polacco, DD Randall 1987 Plant Physiol 83: 585-591) suggest that soybeans have a second amidohydrolase reaction (ureidoglycolate amidohydrolase) that follows allantoate amidohydrolase in allantoate catabolism. The rate of 14CO2 release from [2,7-14C]allantoate is not reduced when the volume of the reaction mixture is increased, suggesting that the release of 14CO2 is not dependent on the accumulation of free intermediates. That [2,7-14C]allantoate dependent 14CO2 release is not proportionally diluted by unlabeled ureidoglycolate indicates that the reaction is carried out by an enzyme complex. This is the first report of ureidoglycolate amidohydrolase activity in any organism and the first in vitro demonstration in plants that the ureido-carbons of allantoate can be completely degraded to CO2 without a urea intermediate.  相似文献   

6.
Respiration studies in vitro, in which tissue slices were incubated with [1-14C]glucose or [6-14C]glucose and 14CO2 collected, resulted in C-1/C-6 14CO2 ratios that were higher in slices of tumor and newborn brain than in slices of adult brain. In adult brain, the C-1/C-6 14CO2 ratio averaged close to unity. In slices of tumor and newborn brain however, the mean C-1/C-6 ratio was greater than three. Addition of phenazine methosulfate (PMS) increased conversion of [1-14C]glucose to 14CO2 in slices of normal adult brain 5-fold, and in slices of newborn brain and tumor, approx 12-fold. Injection of animals with 6-aminonicotinamide (6-AN) decreased conversion of [1-14C]glucose in slices of normal brain 30% but decreased conversion in tumor slices by 80%. Evidence supports the presence of an active hexose monophosphate pathway (HMP) in tumors of the nervous system regulated in part by available NADP+ levels. Inhibition by 6-AN was more effective in tumors than in normal adult brain.  相似文献   

7.
On incubation of the callus tissue ofDaucus carota L. in solutions of glucose-6-14C and -1-14C the distribution of radioactivity in the molecule of endogenous glucose will change and the ratio of activities of liberated14CO2 (C6/C1) will rise The limits of possible changes of specific activity of14CO2 and of the C6/C1 ratio were calculated with respect to the observed randomization and it was shown that the mutual exchange of carbon atoms in the molecules is not the decisive cause of the rise of the ratio. The specific radioactivity of14C in CO2 is as much as 12 times higher than that of endogenous glucose and fructose and about twice as high as the theoretical maximum. This might indicate that in addition to the cytoplasmic fraction of glucose the callus cells contain a fraction of low metabolic activity, most likely in the vacuoles, that could account for some of the increase of the C6/C1 value. The main reason for the changes in the C6/C1 ratio is envisaged in the establishment of isotopic equilibrium between the pentose cycle and glycolysis and other metabolic systems, in particular via triose phosphates, the radioactivity of which can greatly affect the C6/C1 ratio, as was shown in a model experiment.  相似文献   

8.
Abstract

On the metabolism of ethanol in the Pea stem tissues. — The average concentration of ethanol in the growing part of the etiolated pea internodes is of the order of 10-3M. Previous work showed that auxin at growth promoting concentration markedly lowers this level in the excised internodes. This finding prompted a series of investigations on C14 labeled ethanol utilization in this material.

The capacity of the segments to metabolize ethanol is remarkable: with an external ethanol concentration 5X10-3M the C14 labeled CO2 originated from 1-C14 ethanol accounted for about 10% of total CO2 produced during the first hour of treatment. Moreover, an amount of ethanol about 10 fold higher that that dissimilated to CO2 was metabolized to various yet unidentified compounds. The ratio between the contribution of ethanol to CO2 and that to other metabolites appeared maximal in the first period after feeding the labeled compound. This ratio was significantly higher then that found for 6-C14 glucose.

These preliminary results suggest the possibility that ethanol produced in glycolysis could represent an interesting metabolite in an anabolic pathway different from the one leading from pyruvate to the Krebs cycle acids.  相似文献   

9.
Benzylaminopurine (BA) caused an enhancement of chlorophyll and protein content and a reduced elongation of primary barley leaves. BA did not change the rhythmic pattern of14CO2 fixation and activities of RuBP carboxylase, RuBP oxygenase, glycolate oxidase and phosphoglycolate phosphatase, but the enzyme activities were enhanced and the level of14CO2 fixation was reduced. Light/dark14CO2 evolution ratio was affeoted by BA only in older leaves. BA acts sequentially on the activities of photosynthetic and photorespiratory enzymes.  相似文献   

10.
The effect of NO3 ?:NH4 + ratio (14:1, 9:6, 7.5:7.5, 1:14, total 15 mmol/L N) in the nutrient solution on biomass, root morphology, and C and N metabolism parameter in hydroponically grown oilseed rape (Brassica napus L.) was evaluated. The dry weights of leaves and roots were significantly largest at the equal NO3 ?:NH4 + ratio (7.5:7.5) compared with those of high NO3 ?:NH4 + ratio (14:1) or low NO3 ?:NH4 + ratio (1:14). Additionally, low NO3 ?:NH4 + ratio (1:14) reduced total root length and root surface area compared with the equal NO3 ?:NH4 + ratio (7.5:7.5), while high NO3 ?:NH4 + ratio (14:1) did not show any significant effect on root morphology except average diameter. The maximum of chlorophyll a, chlorophyll b and carotenoid were obtained under 7.5:7.5 treatment, whereas the maximum of the leaf net photosynthetic (P n), stomatal conductance (G s) and transpiration rate (T r) were increased with increase in NH4 + concentration in the nutrient solution. The activity of nitrate reductase (NR) showed a significant difference at different NO3 ?:NH4 + ratios and ranged 9:6 > 7.5:7.5 > 14:1 > 1:14, whereas the range of soluble sugar and soluble protein was 7.5:7.5 > 1:14 > 9:6 > 14:1. Our study reveals that oilseed rape growth is greater under 7.5:7.5 treatment than that under three other treatments. Oilseed rape growth at high or low NO3 ?:NH4 + ratios was inhibited by decreased pigments, NR activity, soluble sugar, and soluble protein, whereas subdued root growth should be apprehended considerate under high NH4 + condition.  相似文献   

11.
Hexose monophosphate pathway in synapses   总被引:5,自引:4,他引:1  
Abstract— Synaptosomes isolated from rat cerebral cortex converted [l-14C]glucose more rapidly than [6-24C]glucose to ,14CO2. The ratio of C-l: C-6 in 14CO2 was 3-9, thus suggesting that the hexose monophosphate shunt (HMP) pathway was functional in synapses in vitro. When changes in the ratio of C-l: C-6 in 14CO2 were used as an index of shunt activity, glucose oxidation by this route was stimulated by electron acceptors as well as by neurohormones, including norepinephrine, acetylcholine and serotonin. Brain mince also exhibited a C-l: C-6 ratio of 3-2 when short (15 min) incubations were employed. Negative results previously reported are attributable to prolonged incubation during which depletion of NADP or randomization of the labelled carbons in radioactive glucose could have occurred. Our experiments excluded the incorporation of glucose into macromolecules as a specific role for the hexose monophosphate pathway. The generation of NADPH for numerous metabolic reactions including the maintenance of membrane SH groups and the oxidation and hydroxylation reactions may represent the functions of the hexose monophosphate in synaptosomes and account for its stimulation by neurohormones.  相似文献   

12.
A 1 μM solution of ammoniates [ZnCu(NH3)n]2+(CO3)2− was inserted into a cut shoot of flax with the transpiration stream of water. Analysis of the 14C content after 14CO2 assimilation by the shoot showed that ammoniates increased radioactive label contents in the tissues (especially in the young leaves and stem). In the leaves the higher sucrose to hexoses ratio, an increased radioactivity of glycerate and malate and decreased incorporation of 14C into oligosaccharides and pigments were observed. These effects were more pronounced in the young leaves. Spraying of plants with 20 mM solution resulted in an increase of plant height and leaf number.  相似文献   

13.
In pancreatic islets prepared from either normal or GK rats and incubated at either low (2.8 mM) or high (16.7 mM) D-glucose concentration, the labelling of both lipids and their glycerol moiety is higher in the presence of D-[1-14C]glucose than D-[6-14C]glucose. The rise in D-glucose concentration augments the labelling of lipids, the paired 14C/3H ratio found in islets exposed to both D-[1-14C]glucose or D-[6-14C]glucose and D-[3-3H]glucose being even slightly higher at 16.7 mM D-glucose than that found, under otherwise identical conditions, at 2.8 mM D-glucose. Such a paired ratio exceeds unity in islets exposed to D-[1-14C]glucose. The labelling of islet lipids by D-[6-14C]glucose is about 30 times lower than the generation of acidic metabolites from the same tracer. These findings indicate (i) that the labelling of islet lipids accounts for only a minor fraction of D-glucose catabolism in pancreatic islets, (ii) a greater escape to L-glycerol-3-phosphate of glycerone-3-phosphate generated from the C1-C2-C3 moiety of D-glucose than D-glyceraldehyde-3-phosphate produced from the C4-C5-C6 moiety of the hexose, (iii) that only a limited amount of [3-3H]glycerone 3-phosphate generated from D-[3-3H]glucose is detritiated at the triose phosphate isomerase level before being converted to L-glycerol-3-phosphate, and (iv) that a rise in D-glucose concentration results in an increased labelling of islet lipids, this phenomenon being somewhat more pronounced in the case of D-[1-14C]glucose or D-[6-14C]glucose rather than D-[3-3H]glucose.  相似文献   

14.
Barley, Panicum milioides and Panicum maximum were exposed to 14CO2 near their photosynthetic CO2 compensation points and their respective 14C-products were determined. In short exposure times Panicum maximum had 100% of its 14C in malate and aspartate whereas Panicum milioides and barley had 16 and 3% of their respective 14C in C4 organic acids. Near the respective CO2 compensation points a linear relationship occurs in plotting the ratio of glycine, serine, and glycerate to C4 organic acids. The ratio of ribulose 1,5-bisphosphate oxygenase to phosphoenolpyruvate carboxylase is linear with their CO2 compensation points. The photosynthetic CO2 compensation point apparently is controlled by the activity of enzymes producing photorespiration metabolites and the activity of phospheonolpyruvate carboxylase.  相似文献   

15.
Abstract Recent emphasis on residue management in sustainable agriculture highlights the importance of elucidating the mechanisms of microbial degradation of cellulose. Cellulose decomposition and its associated microbial dynamics in soil were investigated in incubation experiments. Population dynamics of actinomycetes, bacteria, and fungi were monitored by direct counts. Populations of oligotrophic bacteria in cellulose-amended soil were determined by plate count using a low C medium containing 4 mg C liter−1 agar, and copiotrophs using a high C medium. Cumulative 14CO2 evolution from 14C-labeled cellulose was best described by a multiphasic curve in a 28-day incubation experiment. The initial phase of decomposition was attributed mainly to the activity of bacterial populations with a low oligotroph-to-copiotroph ratio, and the second phase mainly to fungal populations. An increase in oligotroph-to-copiotroph ratio coincided with the emergence of a rapid 14CO2 evolution stage. Streptomycin reduced 14CO2 evolution during the first phase and prompted earlier emergence of the second phase, compared to the control. Cycloheximide initially promoted 14CO2 evolution but subsequently had a lasting negative effect on 14CO2 evolution. Cycloheximide addition significantly increased bacterial biomass and resulted in substantially stronger oscillation of active bacterial populations, whereas it initially reduced, and then stimulated, active fungal biomass. The observed changes in 14CO2 evolution could not be explained by observed shifts in fungal and bacterial biomass, probably because functional groups of fungi and bacteria could not be distinguished. However, it was suggested that oligotrophic bacteria prompted activation of cellulolytic enzumes in fungi and played an important role in leading to fungal dominance of cellulose decomposition. Received: 2 October 1995; Accepted: 10 February 1996  相似文献   

16.
Tomany MJ  Kent SS 《Plant physiology》1986,80(4):1055-1058
When ribulose-1,5-bisphosphate carboxylase is assayed under N2 using [3H]ribulose 1,5-bisphosphate and 14CO2, [3H]3-phosphoglycerate and [14C]3-phosphoglycerate are produced in nonstoichiometric amounts in a ratio which approaches 7 at low concentrations of CO2 (2 micromolar) assuming a 1:1 ratio at Vmax (280 micromolar). The log of the molar ratio varies as a linear function of log[CO2]. Nonstoichiometry could be explained by CO2 contaminatio of the reactants or tritium contamination of the products. However, the magnitude of CO2 contamination required (18 ± 4 micromolar) is far in excess of controlled CO2 (<0.1 micromolar), and the required tritium contaminant would have to vary from 30 to 85% of the purified 3-phosphoglycerate at the 58 and 2 micromolar CO2 assay levels, respectively. This contrasts with detectable tritium contamination which is only 1 to 4% and correctable. Nonstoichiometry is evident using either 1 or 5 labeled [3H]ribulose 1,5-bisphosphate. When 3-phosphoglycerate is reisolated as glycerate the 3H/14C ratio remains unchanged.  相似文献   

17.
Chollet R 《Plant physiology》1978,61(6):929-932
Preincubation of illuminated tobacco (Nicotiana tabacum L.) leaf disks in glycidate (2,3-epoxypropionate) or glyoxylate inhibited photorespiration by about 40% as determined by the ratio of 14CO2 evolved into CO2-free air in light and in darkness. However, under identical preincubation conditions used for the light/dark 14C assays, the compounds failed to reduce photorespiration or stimulate net photosynthesis in tobacco leaf disks based on other CO2 exchange parameters, including the CO2 compensation concentration in 21% O2, the inhibitory effect of 21% O2 on net photosynthesis in 360 microliters per liter of CO2 and the rate of net photosynthetic 14CO2 uptake in air.

The effects of both glycidate and glyoxylate on the 14C assay are inconsistent with other measures of photorespiratory CO2 exchange in tobacco leaf disks, and thus these data question the validity of the light to dark ratio of 14CO2 efflux as an assay for relative rates of photorespiration (Zelitch 1968, Plant Physiol 43: 1829-1837). The results of this study specifically indicate that neither glycidate nor glyoxylate reduces photorespiration or stimulates net photosynthesis by tobacco leaf disks under physiological conditions of pO2 and pCO2, contrary to previous reports.

  相似文献   

18.
Summary Carbon distribution from substrates to products in Clostridium acetobutylicum ATCC 824 was investigated by adding 14C-labeled substrates as tracers. Comparison of carbon conversion between chloramphenicol (CAP)-treated and untreated cultures was also studied. The percentage of 14C recovery in butanol, acetone and ethanol from uniformly labeled [14C]glucose was increased by 17, 25 and 30%, respectively, after CAP addition. The incorporation of 14C in solvents from 14C-labeled acetate and butyrate was also increased by the antibiotic treatment. A total 14C recovery of 12% in all the products from added [14C]Na2CO3 indicates significant heterotrophic CO2 fixation in this microorganism. The ratio of carbon in butanol derived from glucose, acetate and butyrate was about 71:6:18, and this ratio was unchanged by CAP treatment.This paper represents contribution No. 2685 of the Rhode Island Agricultural Experimental StationCorrespondence to: R. W. Traxler  相似文献   

19.
[U-14C]Glucose, added carrier-free to sludge from a thermophilic anaerobic bioreactor being fed a lignocellulose waste, was rapidly turned over with less than one-third of the original radiolabel remaining as glucose after 5 s of incubation. The primary labeled products found were [14C]acetate and 14CO2, which were in a ratio near 2:1. Further incubation resulted in the disappearance of [14C]acetate and the appearance of an equivalent amount of label as 14CH4 and 14CO2. No significant production of [14C]propionate, butyrate, lactate, or ethanol was detected from [14C]glucose, even if these potential intermediates (unlabeled) were added to the sludge at a concentration of 1 mM to trap any label entering their pools. Addition of 0.8 atm (80 kPa) of H2 to the headspace over sludge resulted in some accumulation of [14C]lactate and a corresponding decrease in [14C]acetate produced from [14C]glucose. Production of [14C]propionate, butyrate and ethanol were still not significant in the presence of H2. Incubation of sludge for 1 h in the presence of hydrogen resulted in increases in the lactate and formate concentrations, but not those of propionate, butyrate, or ethanol. These results demonstrate that glucose was metabolized directly to acetate, CO2, and H2 by the microbial populations in the bioreactor with little carbon from glucose flowing through other intermediates, indicating a high degree of coupling between glucose fermentation and hydrogen uptake. The short-term response of these microbial populations to elevated H2 partial pressures was to increase lactate production.  相似文献   

20.
R. A. Kennedy  W. M. Laetsch 《Planta》1973,115(2):113-124
Summary The photosynthetic products of Portulaca oleracea differ greatly depending on leaf age and length of exposure to 14CO2. Mature leaves of P. oleracea fix 14CO2 primarily into organic and amino acids during a 10-s exposure period. Less than 2% of the 14CO2 fixed appears in phosphorylated compounds. In contrast, incorporation into amino acids can account for over 60% of the total 14CO2 fixed by young leaves in an equal time period, and incorporation into alanine alone can account for up to one half of this amount. Senescent leaves display a quantitative shift of primary products toward phosphorylated compounds with a concomitant reduction of the label residing in malate and asparate. About 8 times more phosphoglyceric acid is produced in senescent leaves than in mature leaves. The aspartate/ malate ratio is not constant and depends on the length of time the leaves are exposed to 14CO2 and the age of the leaves under study. It appears as if the stage of leaf development is one of the most important factors determining the operation of a particular enzyme system in C4 plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号