首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
TAK1 (transforming growth factor-beta-activated kinase 1), a mitogen-activated protein kinase kinase kinase, is activated by various cytokines, including interleukin-1 (IL-1). However, the precise regulation for TAK1 activation at the molecular level is still not fully understood. Here we report that dual phosphorylation of Thr-178 and Thr-184 residues within the kinase activation loop of TAK1 is essential for TAK1-mediated NFkappaB and AP-1 activation. Once co-overexpressed with TAB1, TAK1 mutant with alanine substitution of these two residues fails to activate IKKbeta-mediated NFkappaB and JNK-mediated AP-1, whereas TAK1 mutant with replacement of these two sites with acidic residues acts like the TAK1 wild type. Consistently, TAK1 mutant with alanine substitution of these two residues severely inhibits IL-1-induced NFkappaB and AP-1 activities, whereas TAK1 mutant with replacement of these two sites with acidic residues slightly enhances IL-1-induced NFkappaB and AP-1 activities compared with the TAK1 wild-type. IL-1 induces the phosphorylation of endogenous TAK1 at Thr-178 and Thr-184. Reconstitution of TAK1-deficient mouse embryo fibroblast cells with wild-type TAK1 or a TAK1 mutant containing threonine 178 and 184 to alanine mutations revealed the importance of these two sites in IL-1-mediated IKK-NFkappaB and JNK-AP-1 activation as well as IL-1-induced IL-6 gene expression. Our finding is the first report that substitution of key serine/threonine residues with acidic residues mimics the phosphorylated state of TAK1 and renders TAK1 active during its induced activation.  相似文献   

3.
4.
Signaling pathways mediated by tumor necrosis factor alpha   总被引:6,自引:0,他引:6  
  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
Although astrocytes are well known to respond to the pro-inflammatory cytokine, interleukin-1 (IL-1), the receptor and post-receptor mechanisms that mediate IL-1 effects in this cell type are complex and need further investigation. Using electrophoretic mobility shift assay (EMSA), we show that IL-1beta-induced NFkappaB activation in primary culture of mouse astrocytes is mediated by the interaction of this cytokine with the IL-1 type I receptor/IL-1 receptor accessory protein complex, as demonstrated by the ability of blocking monoclonal antibodies against these receptors to attenuate NFkappaB activation. In addition to NFkappaB activation, IL-1beta is also able to phosphorylate Akt, as demonstrated by Western blot. The observation that addition of wortmanin, that specifically blocks Akt phosphorylation, also attenuates NFkappaB activation can be interpreted that Akt phosphorylation interacts with IL-1 signaling pathways. Furthermore, anti-inflammatory cytokines such as IL-4 and IL-10 that block IL-1b-induced NFkappaB activation also attenuate IL-1beta-induced Akt phosphorylation, despite the fact that IL-4 and IL-10 in isolation induced Akt phosphorylation. All these findings point to an interaction between Akt and NFkappaB-dependent IL-1 signaling in the primary culture of astrocytes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号