首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Ileal lesions in Crohn's disease (CD) patients are abnormally colonized by pathogenic adherent-invasive Escherichia coli (AIEC). AIEC bacteria are able to replicate within epithelial cells after lysis of the endocytic vacuole and within macrophages in a large vacuole. CD-associated polymorphisms in NOD2, ATG16L1 and IRGM affect bacterial autophagy, a crucial innate immunity mechanism. We previously determined that defects in autophagy impaired the ability of epithelial cells to control AIEC replication. AIEC behave differently within epithelial cells and macrophages and so we investigated the impact of defects in autophagy on AIEC intramacrophagic replication and pro-inflammatory cytokine response. AIEC bacteria induced the recruitment of the autophagy machinery at the site of phagocytosis, and functional autophagy limited AIEC intramacrophagic replication. Impaired ATG16L1, IRGM or NOD2 expression induced increased intramacrophagic AIEC and increased secretion of IL-6 and TNF-α in response to AIEC infection. In contrast, forced induction of autophagy decreased the numbers of intramacrophagic AIEC and pro-inflammatory cytokine release, even in a NOD2-deficient context. On the basis of our findings, we speculate that stimulating autophagy in CD patients would be a powerful therapeutic strategy to concomitantly restrain intracellular AIEC replication and slow down the inflammatory response.  相似文献   

2.
Invading bacteria are recognized, captured and killed by a specialized form of autophagy, called xenophagy. Recently, defects in xenophagy in Crohn’s disease (CD) have been implicated in the pathogenesis of human chronic inflammatory diseases of uncertain etiology of the gastrointestinal tract. We show here that pathogenic adherent-invasive Escherichia coli (AIEC) isolated from CD patients are able to adhere and invade neutrophils, which represent the first line of defense against bacteria. Of particular interest, AIEC infection of neutrophil-like PLB-985 cells blocked autophagy at the autolysosomal step, which allowed intracellular survival of bacteria and exacerbated interleukin-8 (IL-8) production. Interestingly, this block in autophagy correlated with the induction of autophagic cell death. Likewise, stimulation of autophagy by nutrient starvation or rapamycin treatment reduced intracellular AIEC survival and IL-8 production. Finally, treatment with an inhibitor of autophagy decreased cell death of AIEC-infected neutrophil-like PLB-985 cells. In conclusion, excessive autophagy in AIEC infection triggered cell death of neutrophils.  相似文献   

3.
The adherent-invasive Escherichia coli (AIEC) pathotype, which has been associated with Crohn's disease, shows similar traits to human and animal extraintestinal pathogenic E. coli (ExPEC) with respect to their phylogenetic origin and virulence gene profiles. Here, we demonstrate that animal ExPEC strains generally do not share the AIEC phenotype. In contrast, this phenotype is very frequent among animal intestinal pathogenic E. coli (InPEC) strains, particularly of feline and canine origin, that genetically resemble ExPEC. These results strengthen the particular identity and disease specificity of the AIEC pathotype and the putative role animals might play in the transmission of AIEC-like strains to humans.  相似文献   

4.
5.
Adherent-invasive Escherichia coli (AIEC) bacteria isolated from Crohn's disease patients are able to extensively replicate within macrophages in large vacuoles. The mechanism by which AIEC bacteria survive within phagocytic cells is unknown. This report describes the maturation of AIEC LF82-containing phagosomes within J774 macrophages. LF82-containing phagosomes traffic through the endocytic pathway as shown by the sequential acquisition and loss of EEA1 and Rab7 and by accumulation of Lamp-1, Lamp-2 and cathepsin D. We demonstrated that AIEC LF82-containing phagosomes mature into active phagolysosomes where bacteria are exposed to low pH and to the degradative activity of cathepsin D. Finally, we showed that an acidic environment is necessary for replication of AIEC LF82 bacteria within J774 macrophages. Thus, evidence is provided that AIEC LF82 bacteria do not escape from the endocytic pathway but undergo normal interaction with host endomembrane organelles and replicate within acidic and cathepsin D-positive vacuolar phagolysosomes.  相似文献   

6.
Microbial translocation has been linked to systemic immune activation in HIV-1 disease, yet mechanisms by which microbes may contribute to HIV-associated intestinal pathogenesis are poorly understood. Importantly, our understanding of the impact of translocating commensal intestinal bacteria on mucosal-associated T cell responses in the context of ongoing viral replication that occurs early in HIV-1 infection is limited. We previously identified commensal Escherichia coli-reactive Th1 and Th17 cells in normal human intestinal lamina propria (LP). In this article, we established an ex vivo assay to investigate the interactions between Th cell subsets in primary human LP mononuclear cells (LPMCs), commensal E. coli, and CCR5-tropic HIV-1(Bal). Addition of heat-killed E. coli to HIV-1-exposed LPMCs resulted in increases in HIV-1 replication, CD4 T cell activation and infection, and IL-17 and IFN-γ production. Conversely, purified LPS derived from commensal E. coli did not enhance CD4 T cell infection. E. coli exposure induced greater proliferation of LPMC Th17 than Th1 cells. Th17 cells were more permissive to infection than Th1 cells in HIV-1-exposed LPMC cultures, and Th17 cell infection frequencies significantly increased in the presence of E. coli. The E. coli-associated enhancement of infection was dependent on the presence of CD11c(+) LP dendritic cells and, in part, on MHC class II-restricted Ag presentation. These results highlight a potential role for translocating microbes in impacting mucosal HIV-1 pathogenesis during early infection by increasing HIV-1 replication and infection of intestinal Th1 and Th17 cells.  相似文献   

7.
8.
Ileal lesions in Crohn's disease (CD) patients are colonized by pathogenic adherent-invasive Escherichia coli (AIEC) able to adhere to and invade intestinal epithelial cells (IEC), and to survive within macrophages. The interaction of AIEC with IEC depends on bacterial factors mainly type 1 pili, flagella, and outer membrane proteins. In humans, proteases can act as host defence mechanisms to counteract bacterial colonization. The protease meprin, composed of multimeric complexes of the two subunits alpha and beta, is abundantly expressed in IECs. Decreased levels of this protease correlate with the severity of the inflammation in patients with inflammatory bowel disease. The aim of the present study was to analyze the ability of meprin to modulate the interaction of AIEC with IECs. In patients with ileal CD we observed decreased levels of meprins, in particular that of meprin β. Dose-dependent inhibition of the abilities of AIEC strain LF82 to adhere to and invade intestinal epithelial T84 cells was observed when bacteria were pre-treated with both exogenous meprin α and meprin β. Dose-dependent proteolytic degradation of type 1 pili was observed in the presence of active meprins, but not with heat-inactivated meprins, and pretreatment of AIEC bacteria with meprins impaired their ability to bind mannosylated host receptors and led to decreased secretion of the pro-inflammatory cytokine IL-8 by infected T84 cells. Thus, decreased levels of protective meprins as observed in CD patients may contribute to increased AIEC colonization.  相似文献   

9.
10.
11.
Adherent-invasive Escherichia coli (AIEC) have been shown to be highly associated with ileal Crohn's disease (CD). AIEC survive within infected macrophages, residing within the phagolysosomal compartment where they take advantage of the low pH to replicate extensively. We investigated whether, like the tuberculous bacillus which also persists within macrophages, AIEC LF82 induces the formation of granulomas, which are a common histopathological feature of CD. For this purpose, we have taken advantage of an in vitro model of human granulomas that we recently developed, based on blood-derived mononuclear cells. We demonstrated that AIEC LF82 induces aggregation of infected macrophages, fusion of some of them to form multinucleated giant cells and subsequent recruitment of lymphocytes. Light microscopy and scanning electron microscopy analysis of the cell aggregates confirmed their granuloma features. This was further confirmed by histological analysis of granuloma sections. Noteworthy, this phenomenon can be reproduced by soluble protein extracts of AIEC LF82 coated onto beads. Although the cell aggregates not completely mimic natural CD-associated granulomas, they are very similar to early stages of epithelioid granulomas.  相似文献   

12.
Adherent-invasive Escherichia coli (AIEC) are abnormally predominant on Crohn''s disease (CD) ileal mucosa. AIEC reference strain LF82 adheres to ileal enterocytes via the common type 1 pili adhesin FimH and recognizes CEACAM6 receptors abnormally expressed on CD ileal epithelial cells. The fimH genes of 45 AIEC and 47 non-AIEC strains were sequenced. The phylogenetic tree based on fimH DNA sequences indicated that AIEC strains predominantly express FimH with amino acid mutations of a recent evolutionary origin - a typical signature of pathoadaptive changes of bacterial pathogens. Point mutations in FimH, some of a unique AIEC-associated nature, confer AIEC bacteria a significantly higher ability to adhere to CEACAM-expressing T84 intestinal epithelial cells. Moreover, in the LF82 strain, the replacement of fimH LF82 (expressing FimH with an AIEC-associated mutation) with fimH K12 (expressing FimH of commensal E. coli K12) decreased the ability of bacteria to persist and to induce severe colitis and gut inflammation in infected CEABAC10 transgenic mice expressing human CEACAM receptors. Our results highlight a mechanism of AIEC virulence evolution that involves selection of amino acid mutations in the common bacterial traits, such as FimH protein, and leads to the development of chronic inflammatory bowel disease (IBD) in a genetically susceptible host. The analysis of fimH SNPs may be a useful method to predict the potential virulence of E. coli isolated from IBD patients for diagnostic or epidemiological studies and to identify new strategies for therapeutic intervention to block the interaction between AIEC and gut mucosa in the early stages of IBD.  相似文献   

13.
Ileal lesions of 36.4% of patients with Crohn's disease (CD), an inflammatory bowel disease in humans, are colonized by pathogenic adherent-invasive Escherichia coli (AIEC), and high levels of antibodies directed against E. coli OmpC are present in 37-55% of CD patients. We therefore investigated the expression of OmpC and its role in the interaction of CD-associated adherent-invasive E. coli strain LF82 with intestinal epithelial cells. High osmolarity induced a significant increase in the ability of LF82 bacteria to interact with Intestine-407 cells, which correlates with increased OmpC expression. Deletion of ompC gene markedly decreased the adhesion and invasion levels of the corresponding mutant. A LF82-DeltaompR mutant impaired in OmpC and OmpF expression, showed decreased adhesion and invasion, and unlike a K-12-negative OmpR mutant did not express flagella and type 1 pili. Interestingly, the wild-type phenotype was restored when OmpC or OmpF expression was induced in the LF82-DeltaompR mutant. Overexpression of RpoE in the LF82-DeltaompR isogenic mutant restored a full wild-type phenotype without restoring OmpC expression. Increased expression of RpoE was observed in wild-type strain LF82 at high osmolarity. Hence, the role of OmpC in the AIEC LF82 adhesion and invasion is indirect and involves the sigma(E) regulatory pathway.  相似文献   

14.

Background  

Crohn's disease (CD) is a high morbidity chronic inflammatory disorder of unknown aetiology. Adherent-invasive Escherichia coli (AIEC) has been recently implicated in the origin and perpetuation of CD. Because bacterial biofilms in the gut mucosa are suspected to play a role in CD and biofilm formation is a feature of certain pathogenic E. coli strains, we compared the biofilm formation capacity of 27 AIEC and 38 non-AIEC strains isolated from the intestinal mucosa. Biofilm formation capacity was then contrasted with the AIEC phenotype, the serotype, the phylotype, and the presence of virulence genes.  相似文献   

15.
16.
Adherent–invasive Escherichia coli (AIEC) is a pathogen isolated from the ileum of patients with Crohn disease. IFNγ is a key mediator of immunity, which regulates inflammatory responses to microbial infections. Previously, we showed enterohemorrhagic E. coli prevents STAT1 activation. The aim of this study was to determine whether activation of STAT1 by IFNγ was prevented by AIEC infection, and to define the mechanisms used. Human epithelial cells were infected with three different AIEC strains or other pathogenic and commensal E. coli strains. Following infection, cells were stimulated with IFNγ, and STAT1 activation was monitored by immunoblotting. Our data show that live AIEC with active protein synthesis machinery is able to prevent IFNγ‐mediated STAT1 phosphorylation, and that a secreted factor may be involved. We conclude that the suppression of epithelial cell STAT1 signal transduction by AIEC strains isolated from patients with Crohn disease represents a novel mechanism by which the pathogen evades host immune responses to the infection.  相似文献   

17.
Genomes of prokaryotes differ significantly in size and DNA composition. Escherichia coli is considered a model organism to analyze the processes involved in bacterial genome evolution, as the species comprises numerous pathogenic and commensal variants. Pathogenic and nonpathogenic E. coli strains differ in the presence and absence of additional DNA elements contributing to specific virulence traits and also in the presence and absence of additional genetic information. To analyze the genetic diversity of pathogenic and commensal E. coli isolates, a whole-genome approach was applied. Using DNA arrays, the presence of all translatable open reading frames (ORFs) of nonpathogenic E. coli K-12 strain MG1655 was investigated in 26 E. coli isolates, including various extraintestinal and intestinal pathogenic E. coli isolates, 3 pathogenicity island deletion mutants, and commensal and laboratory strains. Additionally, the presence of virulence-associated genes of E. coli was determined using a DNA "pathoarray" developed in our laboratory. The frequency and distributional pattern of genomic variations vary widely in different E. coli strains. Up to 10% of the E. coli K-12-specific ORFs were not detectable in the genomes of the different strains. DNA sequences described for extraintestinal or intestinal pathogenic E. coli are more frequently detectable in isolates of the same origin than in other pathotypes. Several genes coding for virulence or fitness factors are also present in commensal E. coli isolates. Based on these results, the conserved E. coli core genome is estimated to consist of at least 3,100 translatable ORFs. The absence of K-12-specific ORFs was detectable in all chromosomal regions. These data demonstrate the great genome heterogeneity and genetic diversity among E. coli strains and underline the fact that both the acquisition and deletion of DNA elements are important processes involved in the evolution of prokaryotes.  相似文献   

18.
Adherent invasive Escherichia coli (AIEC) have been implicated as a causative agent of Crohn’s disease (CD) due to their isolation from the intestines of CD sufferers and their ability to persist in macrophages inducing granulomas. The rapid intracellular multiplication of AIEC sets it apart from other enteric pathogens such as Salmonella Typhimurium which after limited replication induce programmed cell death (PCD). Understanding the response of infected cells to the increased AIEC bacterial load and associated metabolic stress may offer insights into AIEC pathogenesis and its association with CD. Here we show that AIEC persistence within macrophages and dendritic cells is facilitated by increased proteasomal degradation of caspase-3. In addition S-nitrosylation of pro- and active forms of caspase-3, which can inhibit the enzymes activity, is increased in AIEC infected macrophages. This S-nitrosylated caspase-3 was seen to accumulate upon inhibition of the proteasome indicating an additional role for S-nitrosylation in inducing caspase-3 degradation in a manner independent of ubiquitination. In addition to the autophagic genetic defects that are linked to CD, this delay in apoptosis mediated in AIEC infected cells through increased degradation of caspase-3, may be an essential factor in its prolonged persistence in CD patients.  相似文献   

19.
To investigate if the characteristics of human intestinal Escherichia coli are changing with the environment of the host, we studied intestinal E. coli from subjects having recently migrated from a temperate to a tropical area. We determined the phylogenetic group, the prevalence of the antibiotic resistance, the presence of integrons and the strain diversity in faecal isolates from 25 subjects originally from metropolitan France and expatriated to French Guyana. These characteristics were compared with those of 25 previously studied Wayampi Amerindian natives of French Guyana and from 25 metropolitan French residents. The three groups of subjects were matched for age and sex, had not taken antibiotics for at least 1 month, nor had been hospitalized within the past year. In all, the characteristics of intestinal E. coli from Expatriates were intermediate between those found in residents from metropolitan France and those found in natives of French Guyana. Prevalence of carriage of resistant Gram-negative bacteria in Expatriates was intermediate between French residents and Wayampi as were the prevalence of integrons in E. coli (12.3% versus 16.3% and 7.8% respectively), and the intra-host diversity of E. coli (2.3 strains/subject versus 1.9 and 3.1, respectively); lastly, in Expatriates, the prevalence of carriage of phylogenetic group B2 strains was lower than in French residents (16% versus 56%, P  = 0.005), while carriage of phylogenetic group A strains was lower than in Wayampi (56% versus 88%, P  = 0.03). Our results suggest that the composition of the commensal intestinal flora of humans is not static but changes dynamically in response to new environmental conditions.  相似文献   

20.
Both pathogenic and commensal strains of Escherichia coli colonize the human intestinal tract. Pathogenic strains differ only in the expression of virulence factors, many of which comprise a type III secretion system (TTSS). Little is known regarding the effect of E. coli on the intestinal epithelial response to the secretagogues that drive ion secretion, despite its importance in causing clinically significant diarrhoea. Using Ussing chambers to measure electrogenic ion transport of T84 intestinal epithelial cell monolayers, we found that all strains of E. coli tested (pathogenic, commensal, probiotic and lab strain) significantly reduced cAMP-dependent ion secretion after 4-8 h exposure. Enteropathogenic E. coli mutants lacking a functional TTSS caused similar hyposecretion while not causing significant apoptosis (as shown by caspase-3 cleavage) or necrosis (lactate dehydrogenase release), as did the commensal strain F18, indicating that epithelial cell death was not the cause of hyposecretion. Enteropathogenic E. coli and the TTSS mutant significantly reduced cell surface expression of the apical anion channel, cystic fibrosis transmembrane conductance regulator, which is likely the mechanism behind the pathogen-induced hyposecretion. However, F18 did not cause cystic fibrosis transmembrane conductance regulator mislocalization and the commensal-induced mechanism remains unclear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号