首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thermodynamic studies of base pairing involving 2,6-diaminopurine.   总被引:6,自引:5,他引:1       下载免费PDF全文
C Cheong  I Tinoco  Jr    A Chollet 《Nucleic acids research》1988,16(11):5115-5122
The thermal stabilities of oligodeoxyribonucleotide duplexes containing 2,6-diaminopurine (D) matched with each of the four normal DNA bases were determined by optical melting techniques. Comparison of optical melting curves yielded relative stabilities for the D-containing standard base pairs in an otherwise identical base-pair sequence. The D:T pair was found to be more stable than the A:T pair in dC3DG3:dC3TG3, as stable as the A:T in dCT3DT3G:dCA3TA3G, and less stable than the A:T in dCA3DA3G:dCT7G. The order of stabilities for X:Y in the DNA duplex dCA3XA3G:dCT3YT3G is: (A:T) greater than (T:D) congruent to (D:T) greater than or equal to (T:A) greater than (C:D) congruent to (D:A) congruent to (D:G) greater than or equal to (D:C) congruent to (G:D) congruent to (D:D) greater than or equal to (A:D). Implications of these results for design of DNA oligonucleotide probes are discussed.  相似文献   

2.
Y Kawase  S Iwai  H Inoue  K Miura    E Ohtsuka 《Nucleic acids research》1986,14(19):7727-7736
The thermal stability of DNA duplexes containing deoxyinosine in a pairing position in turn with each of the four major deoxynucleotides has been investigated by measuring ultraviolet-absorbance at different temperatures. d(G2A4 X A4G2) and d(C2T4YT4C2) were prepared by the solid-phase phosphotriester method. When X is deoxyinosine, the Tm values of the duplexes are in the order Y = dC greater than dA greater than dG greater than dT greater than dU. The Tm of other duplexes containing dG, dA and dT at X were also measured. Self-complementary duplexes d(GGGAAINTTCCC) showed the same order of stability with N being dC, dA, dG and dT. Thermal stabilities of duplexes containing dG instead of dI were compared with other matched and mismatched duplexes. The Tm values of sequence isomers containing purine-pyrimidine combinations were compared. Self-complementary duplexes containing G-C and A-T in the central positions showed Tm values ca. 10 degrees higher than those containing C-G and T-A in the same positions. Thermodynamic parameters and circular dichroism spectra of these oligonucleotides were compared.  相似文献   

3.
Temperature-Gradient Gel Electrophoresis (TGGE) was employed to determine the thermal stabilities of 28 DNA fragments, 373 bp long, with two adjacent mismatched base pairs, and eight DNAs with Watson-Crick base pairs at the same positions. Heteroduplex DNAs containing two adjacent mismatches were formed by melting and reannealing pairs of homologous 373 bp DNA fragments differing by two adjacent base pairs. Product DNAs were separated based on their thermal stability by parallel and perpendicular TGGE. The polyacrylamide gel contained 3.36 M urea and 19.2 % formamide to lower the DNA melting temperatures. The order of stability was determined in the sequence context d(CXYG).d(CY'X'G) where X.X' and Y.Y" represent the mismatched or Watson-Crick base pairs. The identity of the mismatched bases and their stacking interactions influence DNA stability. Mobility transition melting temperatures (T u) of the DNAs with adjacent mismatches were 1.0-3.6 degrees C (+/-0.2 degree C) lower than the homoduplex DNA with the d(CCAG).d(CTGG) sequence. Two adjacent G.A pairs, d(CGAG).d(CGAG), created a more stable DNA than DNAs with Watson-Crick A.T pairs at the same sites. The d(GA).d(GA) sequence is estimated to be 0.4 (+/-30%) kcal/mol more stable in free energy than d(AA).d(TT) base pairs. This result confirms the unusual stability of the d(GA).d(GA) sequence previously observed in DNA oligomers. All other DNAs with adjacent mismatched base pairs were less stable than Watson-Crick homoduplex DNAs. Their relative stabilities followed an order expected from previous results on single mismatches. Two homoduplex DNAs with identical nearest neighbor sequences but different next-nearest neighbor sequences had a small but reproducible difference in T u value. This result indicates that sequence dependent next neighbor stacking interactions influence DNA stability.  相似文献   

4.
F H Arnold  S Wolk  P Cruz  I Tinoco 《Biochemistry》1987,26(13):4068-4075
The structures and hydrogen exchange properties of the mismatched DNA oligonucleotide duplexes d(CCCAGGG)2 and d(CCCTGGG)2 have been studied by high-resolution nuclear magnetic resonance. Both the adenine-adenine and thymine-thymine mismatches are intercalated in the duplexes. The structures of these self-complementary duplexes are symmetric, with the two strands in equivalent positions. The evidence indicates that these mismatches are not stably hydrogen bonded. The mismatched bases in both duplexes are in the anti conformation. The mismatched thymine nucleotide in d(CCCTGGG)2 is intercalated in the duplex with very little distortion of the bases or sugar-phosphate backbone. In contrast, the bases of the adenine-adenine mismatch in d(CCCAGGG)2 must tilt and push apart to reduce the overlap of the amino groups. The thermodynamic data show that the T-T mismatch is less destabilizing than the A-A mismatch when flanked by C-G base pairs in this sequence, in contrast to their approximately equal stabilities when flanked by A-T base pairs in the sequence d(CAAAXAAAG.CTTTYTTTG) where X and Y = A, C, G, and T [Aboul-ela, F., Koh, D., & Tinoco, I., Jr. (1985) Nucleic Acids Res. 13, 4811]. Although the mechanism cannot be determined conclusively from the limited data obtained, exchange of the imino protons with solvent in these destabilized heteroduplexes appears to occur by a cooperative mechanism in which half the helix dissociates.  相似文献   

5.
Nearest-neighbor thermodynamic parameters of the ‘universal pairing base’ deoxyinosine were determined for the pairs I·C, I·A, I·T, I·G and I·I adjacent to G·C and A·T pairs. Ultraviolet absorbance melting curves were measured and non-linear regression performed on 84 oligonucleotide duplexes with 9 or 12 bp lengths. These data were combined with data for 13 inosine containing duplexes from the literature. Multiple linear regression was used to solve for the 32 nearest-neighbor unknowns. The parameters predict the Tm for all sequences within 1.2°C on average. The general trend in decreasing stability is I·C > I·A > I·T ≈ I· G > I·I. The stability trend for the base pair 5′ of the I·X pair is G·C > C·G > A·T > T·A. The stability trend for the base pair 3′ of I·X is the same. These trends indicate a complex interplay between H-bonding, nearest-neighbor stacking, and mismatch geometry. A survey of 14 tandem inosine pairs and 8 tandem self-complementary inosine pairs is also provided. These results may be used in the design of degenerate PCR primers and for degenerate microarray probes.  相似文献   

6.
DNA heptamers containing the mutagenic base analogue 2-aminopurine (AP) have been chemically synthesized and physically characterized. We report on the relative stabilities of base pairs between AP and each of the common DNA bases, as determined from heptamer duplex melts at 275 and 330 nm. Base pairs are ranked in order of decreasing stability: AP.T greater than AP.A greater than AP.C greater than AP.G. It is of interest that AP.A is more stable than AP.C even though DNA polymerase strongly favors the formation of AP.C over AP.A base pairs. Comparisons of melting profiles at 330 nm and 275 nm indicate that AP.T, AP.A, and AP.C base pairs are annealed in heptamer duplexes and melt 2-3 degrees prior to surrounding base pairs, whereas AP.G appears not to be annealed.  相似文献   

7.
A generic oligodeoxyribonucleotide microchip was used to determine the sequence specificity of Hoechst 33258 binding to double-stranded DNA. The generic microchip contained 4096 oxctadeoxynucleo-tides in which all possible 4(6)= 4096 hexadeoxy-nucleotide sequences are flanked on both the 3'- and 5'-ends with equimolar mixtures of four bases. The microchip was manufactured by chemical immobilization of presynthesized 8mers within polyacrylamide gel pads. A selected set of immobilized 8mers was converted to double-stranded form by hybridization with a mixture of fluorescently labeled complementary 8mers. Massive parallel measurements of melting curves were carried out for the majority of 2080 6mer duplexes, in both the absence and presence of the Hoechst dye. The sequence-specific affinity for Hoechst 33258 was calculated as the increase in melting temperature caused by ligand binding. The dye exhibited specificity for A:T but not G:C base pairs. The affinity is low for two A:T base pairs, increases significantly for three, and reaches a plateau for four A:T base pairs. The relative ligand affinity for all trinucleotide and tetranucleotide sequences (A/T)(3)and (A/T)(4)was estimated. The free energy of dye binding to several duplexes was calculated from the equilibrium melting curves of the duplexes formed on the oligonucleotide microchips. This method can be used as a general approach for massive screening of the sequence specificity of DNA-binding compounds.  相似文献   

8.
Oligodeoxyribonucleotides containing N4-methoxycytosine (mo4C), N4-methoxy-5-methylcytosine (mo4m5C) and other base-analogues were synthesised and used to compare the stabilities of duplexes containing mo4C.A and mo4C.G base pairs with those containing normal and mismatch pairs. The Tm values and other thermodynamic parameters are recorded. The otherwise identical duplexes containing a mo4C.A and a mo4C.G base pair have closely similar stabilities to each other and to the corresponding duplexes containing normal base pairs, considerably greater than the stabilities of those containing mismatch pairs. Corresponding observations are recorded in dot-blot experiments using M13 cloned DNA carrying an insert complementary to the oligonucleotides; approximate Td values are given.  相似文献   

9.
S Ebel  A N Lane  T Brown 《Biochemistry》1992,31(48):12083-12086
We have used ultraviolet melting techniques to compare the stability of several DNA duplexes containing tandem G.A mismatches to similar duplexes containing tandem A.G, I.A, and T.A base pairs. We have found that tandem G.A mismatches in 5'-Y-G-A-R-3' duplexes are more stable than their I.A counterparts and that they are sometimes more stable than tandem 5'-Y-T-A-R-3' sequences. This is not the case for tandem G.A mismatches in other base stacking environments, and it suggests that tandem G.A mismatches in 5'-Y-G-A-R-3' sequences have a unique configuration. In contrast to tandem 5'-G-A-3' mismatches, tandem 5'-A-G-3' mismatches were found to be unstable in all cases examined.  相似文献   

10.
Eight base analogs were tested as third strand residues in otherwise homopyrimidine strands opposite each of the 'direct' (A.T and G.C) and 'inverted' (T.A and C.G) Watson-Crick base pairs, using UV melting profiles to assess triplex stability. The target duplexes contained 20 A.T base pairs and a central test base pair X.Y, while the third strand contained 20 T residues and a central Z test base. Z included 5-bromo-uracil, 5-propynyluracil, 5-propynylcytosine, 5-methyl-cytosine, 5-bromocytosine, hypoxanthine, 2-amino-purine and 2,6-diaminopurine. Some of the base analogs enhanced third strand binding to the target duplex with one or other 'inverted' central base pair relative to the binding afforded by any of the canonical bases. Other analogs did the same for the duplexes with the 'direct' target pairs. The increasing order of triplex stabilization by these base analogs is: opposite the 'inverted' base pairs, for T.A, A < C < 5-pC < 5-pU < T < 5-BrC < 5-meC < 5-BrU < 2-AP < 2,6-DAP < Hy < G, for C.G, 2-AP < A < Hy < G < 5-pC < 5-BrC < 5-meC < C < 2,6-DAP < T < 5-BrU < 5-pU; opposite the 'direct' base pairs, for A.T, 2-AP < A < 5-meC < C < G < Hy < 2,6-DAP < 5-pU < T = 5-BrU < 5-BrC < 5-pC, for G.C, G < 2,6-DAP < 2-AP < A < Hy < T < 5-BrU < 5-pU < 5-pC < 5-BrC < C < 5-meC.  相似文献   

11.
Unusual duplex formation in purine rich oligodeoxyribonucleotides   总被引:5,自引:2,他引:3  
The purine rich oligodeoxyribonucleotides 1C, d(ATGACGGAATA) and 2C, d(ATGAGCGAATA) alone exhibit highly cooperative melting transitions. Analysis of the concentration dependence of melting, and electrophoretic studies indicate that these oligomers can form an unusual purine rich offset double helix. The unusual duplex is predicted to contain four A.T, two G.C, and four G.A mismatch base pairs as well as a single A base stacked on the 3' end of each chain of the helix. Other possible models for the duplex are unlikely because they are predicted to contain many base pairs of low stability. Changing the central sequence to CGG or GGG should destabilize the duplex and this is observed. The unusual duplex of 2C is more stable than the duplex of 1C indicating that the stability of G.A base pairs is quite sensitive to the surrounding sequence. Addition of 1C and 2C to their complementary pyrimidine strands results in normal duplexes of similar stability. We feel that the unusual duplexes are significantly stabilized by the intrinsic stacking tendency of purine bases.  相似文献   

12.
Oligodeoxynucleotides (ODNs) containing 5-formyl-2′-deoxycytidine (fC) were synthesized by the phosphoramidite method and subsequent oxidation with sodium periodate. The stabilities of duplexes containing A, G, C or T opposite fC were studied by thermal denaturation. It was found that fC:A, fC:C or fC:T base pairs significantly reduce the thermal stabilities of duplexes. Next, single nucleotide insertion reactions were performed using ODNs containing fC as templates and the Klenow fragment of Escherichia coli DNA polymerase I. It was found that: (i) insertion of dGMP opposite fC appears to be less efficient relative to insertion opposite 5-methyl-2′-deoxycytidine (mC); (ii) dAMP is misincorporated more frequently opposite fC than mC, although the frequency of misincorporation seems to be dependent on the sequence; (iii) TMP is misincorporated more frequently opposite fC than mC. These results suggest that fC may induce the transition mutation C·G→T·A and the transversion mutation C·G→A·T during DNA synthesis.  相似文献   

13.
Sequencing by the recently reported hybridization technique requires the formation of DNA duplexes with similar stabilities. In this paper we describe a new strategy to obtain DNA duplexes with a thermal stability independent of their AT/GC ratio content. Melting data were acquired on 35 natural and 27 modified duplexes of a given length and of varying base compositions. Duplexes built with AT and/or G4EtC base pairs exhibit a thermal stability restrained to a lower range of temperature than that of the corresponding natural compounds (16 instead of 51 degrees C). The 16 degrees C difference in thermal stability observed between the least stable and the most stable duplex built with AT and/or G4EtC base pairs is mainly due to the sequence effect and not to their AT/G4EtC ratio content. Thus N -4-ethyl-2'-deoxycytidine (d4EtC) hybridizes specifically with natural deoxyguanosine leading to a G4EtC base pair whose stability is very close to that of the natural AT base pair. Oligonucleotide probes involving d4EtC can be easily prepared by chemical synthesis with phosphoramidite chemistry. Modified DNA targets were successfully amplified by random priming or PCR techniques using d4EtCTP, dATP, dGTP and dTTP in the presence of DNA polymerase. This new system might be very useful for DNA sequencing by hybridization.  相似文献   

14.
A peptide nucleic acid (PNA) monomer containing the universal base 3-nitropyrrole was synthesized by coupling 1-carboxymethyl-3-nitropyrrole to ethyl N-[2-(tert-butoxycarbonylamino)ethyl]glycinate. The PNA sequence H-TGTACGTXACAACTA-NH2 (X = 3-nitropyrrole and C) and DNA sequence 5'-TGTACGTXACAACTA-3' were synthesized and thermal melting studies with the complementary DNA sequence 5'-TAGTTGTYACGTACA-3' (Y = A,C, G, T) compared. The T(m) data show that 3-nitropyrrole pairs indiscriminately with all four natural nucleobases as a constituent of either DNA or PNA. However, 3-nitropyrrole-containing PNA-DNA (average T(m) value = 51.1 degrees C) is significantly more thermally stable than 3-nitropyrrole-containing DNA-DNA (average T(m) value = 39.6 degrees C). From circular dichroism measurements, it is apparent that 3-nitropyrrole in the PNA strand causes a significant change in duplex structure.  相似文献   

15.
Thermodynamics of DNA duplexes with adjacent G.A mismatches.   总被引:11,自引:0,他引:11  
Y Li  G Zon  W D Wilson 《Biochemistry》1991,30(30):7566-7572
The sequence 5'-d(ATGAGCGAAT) forms a very stable self-complementary duplex with four G.A mismatch base pairs (underlined) out of ten total base pairs [Li et al. (1991) Proc. Natl. Acad. Sci. U.S.A. 88, 26-30]. The conformation is in the general B-family and is stabilized by base-pair hydrogen bonding of an unusual type, by favorable base dipole orientations, and by extensive purine-purine stacking at the mismatched sites. We have synthesized 13 decamers with systematic variations in the sequence above to determine how the flanking sequences, the number of G.A mismatches, and the mismatch sequence order (5'-GA-3' or 5'-AG-3') affect the duplex stability. Changing A.T to G.C base pairs in sequences flanking the mismatches stabilizes the duplexes, but only to the extent observed with B-form DNA. The sequence 5'-pyrimidine-GA-purine-3', however, is considerably more stable than 5'-purine-GA-pyrimidine-3'. The most stable sequences with two pairs of adjacent G.A mismatches have thermodynamic parameters for duplex formation that are comparable to those for fully Watson-Crick base-paired duplexes. Similar sequences with single G.A pairs are much less stable than sequences with adjacent G.A mismatches. Reversing the mismatch order from 5'-GA-3' to 5'-AG-3' results in an oligomer that does not form a duplex. These results agree with predictions from the model derived from NMR and molecular mechanics and indicate that the sequence 5'-pyrimidine-GA-purine-3' forms a stable conformational unit that fits quite well into a B-form double helix.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The preparation of synthetic oligonucleotides containing 2'-deoxynebularine (dN) and 2'-deoxyxanthosine (dX) is described. The thermal stabilities of duplexes containing dX, dN, and 2'-deoxyinosine (dI) base-paired with the four natural bases have been measured. Xanthine base pairs have stabilities at pH 5.5 that are similar to those of dI-containing duplexes at neutral pH. When xanthine is paired with adenine or cytosine an unusual stabilization of the duplex structure is observed at acid pH. Incorporation of base mispairs opposite template xanthine sites were measured using Drosophila DNA polymerase alpha. The relative nucleoside incorporation rates are in the order: T greater than C much greater than A approximately equal to G. These rates do not correlate with relative thermodynamic stabilities of base mispairs with xanthine obtained from Tm measurements: T greater than G greater than A approximately equal to C. We suggest that DNA polymerase misinsertion rates are greatest when the base mispair can be formed in accordance with Watson-Crick as opposed to other base pairing geometries even though other geometries, e.g. wobble, may result in a more stable final DNA product.  相似文献   

17.
Pronounced instability of tandem IU base pairs in RNA   总被引:1,自引:1,他引:0       下载免费PDF全文
Optical melting was used to determine the stabilities of three series of RNA oligomers containing tandem XU base pairs, GGCXUGCC (5′XU3′), GGCUXGCC (5′UX3′) and GGCXXGGC/CCGUUCCG (5′XX3′), where X is either A, G or I (inosine). The helices containing tandem AU base pairs were the most stable in the first two series (5′XU3′ and 5′UX3′), with an average melting temperature ~11°C higher than the helices with tandem 5′GU3′ base pairs and 25°C higher than the helices with tandem 5′IU3′ base pairs. For the third series (5′XX3′), the helix containing tandem GG is the most stable, with an average melting temperature ~2°C higher than the helix with tandem AA base pairs and ~24°C higher than the helix with tandem II base pairs. The thermodynamic stability of the oligomers with tandem IU base pairs was also investigated as a function of magnesium ion concentration. As with normal A–U or G–U tandem duplexes, the data could best be interpreted as non-specific binding of magnesium ions to the inosine-containing RNA oligonucleotides.  相似文献   

18.
DNA fragments with the sequences d(gcGX[Y]n Agc) (n=1, X=A, and Y=A, T, or G)form base-intercalated duplexes, which is a basic unit for formation of multiplexes such as octaplex and hexaplex. To examine the stability of multiplexes, a DNA with X=Y=G and n=1 was crystallized under conditions different from those of the previously determined sequences, and its crystal structure has been determined. The two strands are coupled in an anti-parallel fashion to form a base-intercalated duplex, in which the first and second residues form Watson-Crick type G:C pairs and the third and sixth residues form a sheared G:A pairs at both ends of the duplex. The G4 and G5 bases are stacked alternatively on those of the counter strand to form a long G column of G3-G4-G5*-G5-G4*-G3*, the central four Gs being protruded. In addition, the three duplexes are associated to form a hexaplex around a mixture of calcium and sodium cations on the crystallographic threefold axis. These structural features are similar to those of the previous crystals, though slightly different in detail. The present study indicates that mutation at the 4th position is possible to occur in a base-intercalated duplex for multiplex formations, suggesting that DNA fragments with any sequence sandwiched between the two triplets gcG and Agc can form a multiplex.  相似文献   

19.
The effects of base sequence, specifically different pyrimidines flanking a bulky DNA adduct, on translesional synthesis in vitro catalyzed by the Klenow fragment of Escherichia coli Pol I (exo(-)) was investigated. The bulky lesion was derived from the binding of a benzo[a]pyrene diol epoxide isomer [(+)-anti-BPDE] to N(2)-guanine (G*). Four different 43-base long oligonucleotide templates were constructed with G* at a site 19 bases from the 5'-end. All bases were identical, except for the pyrimidines, X or Y, flanking G* (sequence context 5'-.XGY., with X, Y = C and/or T). In all cases, the adduct G* slows primer extension beyond G* more than it slows the insertion of a dNTP opposite G* (A and G were predominantly inserted opposite G, with A > G). Depending on X or Y, full lesion bypass differed by factors of approximately 1.5-5 ( approximately 0.6-3.0% bypass efficiencies). A downstream T flanking G on the 5'-side instead of C favors full lesion bypass, while an upstream C flanking G* is more favorable than a T. Various deletion products resulting from misaligned template-primer intermediates are particularly dominant ( approximately 5.0-6.0% efficiencies) with an upstream flanking C, while a 3'-flanking T lowers the levels of deletion products ( approximately 0.5-2.5% efficiencies). The kinetics of (1) single dNTP insertion opposite G* and (2) extension of the primer beyond G* by a single dNTP, or in the presence of all four dNTPs, with different 3'-terminal primer bases (Z) opposite G* were investigated. Unusually efficient primer extension efficiencies beyond the adduct (approaching approximately 90%) was found with Z = T in the case of sequences with 3'-flanking upstream C rather than T. These effects are traced to misaligned slipped frameshift intermediates arising from the pairing of pairs of downstream template base sequences (up to 4-6 bases from G*) with the 3'-terminal primer base and its 5'-flanking base. The latter depend on the base Y and on the base preferentially inserted opposite the adduct. Thus, downstream template sequences as well as the bases flanking G* influence DNA translesion synthesis.  相似文献   

20.
A series of DNA heptadecamers containing the DNA analogues of RNA E-like 5'-d(GXA)/(AYG)-5' motifs (X/Y is complementary T/A, A/T, C/G, or G/C pair) were studied using nuclear magnetic resonance (NMR) methodology and distance geometry (DG)/molecular dynamics (MD) approaches. Such oligomers reveal excellent resolution in NMR spectra and exhibit many unusual nuclear Overhauser effects (NOEs) that allow for good characterization of an unusual zipper-like conformation with zipper-like Watson-Crick base-pairs; the potential canonical X.Y H-bonding is not present, and the central X/Y pairs are transformed instead into inter-strand stacks that are bracketed by sheared G.A base-pairs. Such phenomenal structural change is brought about mainly through two backbone torsional angle adjustments, i.e. delta from C2'-endo to C3'-endo for the sugar puckers of unpaired residues and gamma from gauche(+) to trans for the following 3'-adenosine residues. Such motifs are analogous to the previously studied (GGA)(2) motif presumably present in the human centromeric (TGGAA)(n) tandem repeat sequence. The novel zipper-like motifs are only 4-7 deg. C less stable than the (GGA)(2) motif, suggesting that inter-strand base stacking plays an important role in stabilizing unusual nucleic acid structures. The discovery that canonical Watson-Crick G.C or A.T hydrogen-bonded pairs can be transformed into stacking pairs greatly increases the repertoire for unusual nucleic acid structural motifs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号