首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metabolic compartmentation   总被引:1,自引:0,他引:1  
Evidence for the association of 'soluble' enzymes in vivo is extensive and compelling. These associations occur in all compartments of the cell of both prokaryotes and eukaryotes. Several factors present in vivo promote these associations among enzymes whose association in vitro is often too weak to detect. Several physiological advantages of the associated enzyme complexes can be identified, most (but not all) of which are the consequence of microcompartmentation of metabolites (substrate channeling). Substrate channeling of intermediates by either a 'direct transfer' process or 'proximity effects' can occur. The latter mechanism does not require the special molecular features needed for the direct transfer mechanism and may, therefore, exist in more general situations in the cell. Criticisms of these views are discussed. We argue that these criticisms have been largely answered by experiment and theory in recent years. Studies on simple systems in vitro, nevertheless, contribute important insights concerning the more complex phenomena in vivo.  相似文献   

2.
Substrate channeling is a process of transferring the product of one enzyme to an adjacent cascade enzyme or cell without complete mixing with the bulk phase. Such phenomena can occur in vivo, in vitro, or ex vivo. Enzyme–enzyme or enzyme–cell complexes may be static or transient. In addition to enhanced reaction rates through substrate channeling in complexes, numerous potential benefits of such complexes are protection of unstable substrates, circumvention of unfavorable equilibrium and kinetics imposed, forestallment of substrate competition among different pathways, regulation of metabolic fluxes, mitigation of toxic metabolite inhibition, and so on. Here we review numerous examples of natural and synthetic complexes featuring substrate channeling. Constructing synthetic in vivo, in vitro or ex vivo complexes for substrate channeling would have great biotechnological potentials in metabolic engineering, multi-enzyme-mediated biocatalysis, and cell-free synthetic pathway biotransformation (SyPaB).  相似文献   

3.
The binding of porcine heart mitochondrial malate dehydrogenase and beta-hydroxyacyl-CoA dehydrogenase to bovine heart NADH:ubiquinone oxidoreductase (complex I), but not that of bovine heart alpha-ketoglutarate dehydrogenase complex, is virtually abolished by 0.1 mM NADH. The malate dehydrogenase and beta-hydroxyacyl-CoA enzymes compete in part for the same binding site(s) on complex I as do the malate dehydrogenase and alpha-ketoglutarate dehydrogenase complex enzymes. Associations between mitochondrial malate dehydrogenase and bovine serum albumin were observed. Subtle convection artifacts in short-time centrifugation tests of enzyme association with the Beckman Airfuge are described. Substrate channeling of NADH from both the mitochondrial and cytoplasmic malate dehydrogenase isozymes to complex I and reduction of ubiquinone-1 were shown to occur in vitro by transient enzyme-enzyme complex formation. Excess apoenzyme causes little inhibition of the substrate channeling reaction with both malate dehydrogenase isozymes in spite of tighter equilibrium binding than the holoenzyme to complex I. This substrate channeling could, in principle, provide a dynamic microcompartmentation of mitochondrial NADH.  相似文献   

4.
Catalysis of sequential reactions is often envisaged to occur by channeling of substrate between enzyme active sites without release into bulk solvent. However, while there are compelling physiological rationales for direct substrate transfer, proper experimental support for the hypothesis is often lacking, particularly for metabolic pathways involving RNA. Here, we apply transient kinetics approaches developed to study channeling in bienzyme complexes to an archaeal protein synthesis pathway featuring the misaminoacylated tRNA intermediate Glu-tRNAGln. Experimental and computational elucidation of a kinetic and thermodynamic framework for two-step cognate Gln-tRNAGln synthesis demonstrates that the misacylating aminoacyl-tRNA synthetase (GluRSND) and the tRNA-dependent amidotransferase (GatDE) function sequentially without channeling. Instead, rapid processing of the misacylated tRNA intermediate by GatDE and preferential elongation factor binding to the cognate Gln-tRNAGln together permit accurate protein synthesis without formation of a binary protein-protein complex between GluRSND and GatDE. These findings establish an alternate paradigm for protein quality control via two-step pathways for cognate aminoacyl-tRNA formation.  相似文献   

5.
The history of the development of the ideas and research of organized metabolic systems during last three decades is shortly reviewed. The cell cytoplasm is crowded with solutes, soluble macromolecules such as enzymes, nucleic acids, structural proteins and membranes. The high protein density within the large compartments of the cells predominantly determines the major characteristics of cellular environment such as viscosity, diffusion and inhomogeneity. The fact that the solvent viscosity of cytoplasm is not substantially different from the water is explained by intracellular structural heterogeneity: the intrinsic macromolecular density is relatively low within the interstitial voids in the cell because many soluble enzymes are apparently integral parts of the insoluble cytomatrix and are not distributed homogeneously. The molecular crowding and sieving restrict the mobility of very large solutes, binding severely restrict the mobility of smaller solutes. One of consequence of molecular crowding and hindered diffusion is the need to compartmentalize metabolic pathway to overcome diffusive barriers. Although the movement of small molecules is slowed down in the cytoplasm, the metabolism can successfully proceed and even be facilitated by metabolite channeling which directly transfers the intermediate from one enzyme to an adjacent enzyme without the need of free aqueous-phase diffusion. The enhanced probability for intermediates to be transferred from one active site to the other by sequential enzymes requires stable or transient interactions of the relevant enzymes, which associate physically in non-dissociable, static multienzyme complexes--metabolones, particles containing enzymes of a part or whole metabolic systems. Therefore, within the living cell the metabolism depends on the structural organization of enzymes forming microcompartments. Since cells contain many compartments and microenvironments, the measurement of the concentration of metabolites in whole cells or tissues gives an average cellular concentration and not that which is actually sensed by the active site of a specific enzyme. Thus, the microcompartmentation could provide a mechanism which can control metabolic pathways. Independently and in parallel to the developments described above, the ideas of compartmentation came into existence from the necessity to explain important physiological phenomena, in particular in heart research and in cardiac electrophysiology. These phenomena demonstrated the physiological importance of the biophysical and biochemical mechanisms described in this review.  相似文献   

6.
In a sequence of coupled enzyme reactions the steady-state production of product is preceded by a lag period or transition time during which the intermediates of the sequence are accumulating. Provided that a steady state is eventually reached, the magnitude of this lag may be calculated, even when the differentiation equations describing the process have no analytical solution. The calculation may be made for simple systems in which the enzymes obey Michaelis-Menten kinetics or for more complex pathways in which intermediates act as modifiers of the enzymes. The transition time associated with each intermediate in the sequence is given by the ratio of the appropriate steady-state intermediate concentration to the steady-state flux. The theory is also applicable to the transition between steady states produced by flux changes. Application of the theory to coupled enzyme assays allows a definition of the minimum requirements for successful operation of the assay. The theory can be extended to deal with sequences in which the enzyme concentration exceeds substrate concentration.  相似文献   

7.
Shearer G  Lee JC  Koo JA  Kohl DH 《The FEBS journal》2005,272(13):3260-3269
A pathway intermediate is said to be 'channeled' when an intermediate just made in a pathway has a higher probability of being a substrate for the next pathway enzyme compared with a molecule of the same species from the aqueous cytoplasm. Channeling is an important phenomenon because it might play a significant role in the regulation of metabolism. Whereas the usual mechanism proposed for channeling is the (often) transient interaction of sequential pathway enzymes, many of the supporting data come from results with pure enzymes and dilute cell extracts. Even when isotope dilution techniques have utilized whole-cell systems, most often only a qualitative assessment of channeling has been reported. Here we develop a method for making a quantitative calculation of the fraction channeled in glycolysis from in vivo isotope dilution experiments. We show that fructose-1,6-bisphosphate, in whole cells of Escherichia coli, was strongly channeled all the way to CO2, whereas fructose-6-phosphate was not. Because the signature of channeling is lost if any downstream intermediate prior to CO2 equilibrates with molecules in the aqueous cytosol, it was not possible to evaluate whether glucose-6-phosphate was channeled in its transformation to fructose-6-phosphate. The data also suggest that, in addition to pathway enzymes being associated with one another, some are free in the aqueous cytosol. How sensitive the degree of channeling is to growth or experimental conditions remains to be determined.  相似文献   

8.
We report a synthetic biology approach to demonstrate substrate channeling in an unusual bifunctional flavoprotein dimethylglycine oxidase. The catabolism of dimethylglycine through methyl group oxidation can potentially liberate toxic formaldehyde, a problem common to many amine oxidases and dehydrogenases. Using a novel synthetic in vivo reporter system for cellular formaldehyde, we found that the oxidation of dimethylglycine is coupled to the synthesis of 5,10-methylenetetrahydrofolate through an unusual substrate channeling mechanism. We also showed that uncoupling of the active sites could be achieved by mutagenesis or deletion of the 5,10-methylenetetrahydrofolate synthase site and that this leads to accumulation of intracellular formaldehyde. Channeling occurs by nonbiased diffusion of the labile intermediate through a large solvent cavity connecting both active sites. This central “reaction chamber” is created by a modular protein architecture that appears primitive when compared with the sophisticated design of other paradigm substrate-channeling enzymes. The evolutionary origins of the latter were likely similar to dimethylglycine oxidase. This work demonstrates the utility of synthetic biology approaches to the study of enzyme mechanisms in vivo and points to novel channeling mechanisms that protect the cell milieu from potentially toxic reaction products.  相似文献   

9.
First differentials of progress curves are easily obtainable in many enzyme assay systems. Such curves may be more readily applicable to kinetic analysis than are the usual progress curves. The theory for this approach is developed, and simple graphical procedures for the determination of Michaelis parameters are indicated. By using an electronic differentiator device the application of the method is demonstrated on the kinetics of three different serine proteinases with various synthetic substrates. Whenever the steady-state concentration of an intermediate of the reaction is proportional to the rate, the transition of this intermediate in substrate-depletion experiments may be analysed in similar terms. This is demonstrated with cytochrome c oxidase kinetics. A number of other possible applications are discussed.  相似文献   

10.
The Briggs–Haldane standard quasi-steady state approximation and the resulting rate expressions for enzyme driven biochemical reactions provide crucial theoretical insight compared to the full set of equations describing the reactions, mainly because it reduces the number of variables and equations. When the enzyme is in excess of the substrate, a significant amount of substrate can be bound in intermediate complexes, so-called substrate sequestration. The standard quasi-steady state approximation is known to fail under such conditions, a main reason being that it neglects these intermediate complexes. Introducing total substrates, i.e., the sums of substrates and intermediate complexes, provides a similar reduction of the number of variables to consider but without neglecting the contribution from intermediate complexes. The present theoretical study illustrates the usefulness of such simplifications for the understanding of biochemical reaction schemes. We show how introducing the total substrates allows a simple analytical treatment of the relevance of significant enzyme concentrations for pseudo first-order kinetics and reconciles two proposed criteria for the validity of the pseudo first-order approximation. In addition, we show how the loss of zero-order ultrasensitivity in covalent modification cycles can be analyzed, in particular that approaches such as metabolic control analysis are immediately applicable to scenarios described by the total substrates with enzyme concentrations higher than or comparable to the substrate concentrations. A simple criterion which excludes the possibility of zero-order ultrasensitivity is presented.  相似文献   

11.
Nagradova N 《IUBMB life》2003,55(8):459-466
Although bifunctional enzymes containing two different active centers located within separate domains are quite common in living systems, the significance of this bifunctionality is not always clear, and the molecular mechanisms of site-site interactions in such complex systems have come under the scrutiny of science only in recent years. This review summarizes recent data on the mechanisms of communication between active centers in bifunctional enzymes. Three types of enzymes are considered: (1) those catalyzing consecutive reactions of a metabolic pathway and exhibiting substrate channeling (glutamate synthase and imidazole glycerol phosphate synthase), (2) those catalyzing consecutive reactions without substrate channeling (lysine-ketoglutarate reductase/saccharopine dehydrogenase), and (3) those catalyzing opposed reactions (6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase). The functional role of interdomain communications is briefly discussed.  相似文献   

12.
Z J Huang 《Biochemistry》1991,30(35):8535-8540
Kinetic fluorescence measurements were employed to quantitative to stepwise hydrolysis of fluorescein di-beta-D-galactoside (FDG) by beta-galactosidase and the intermediate fluorescein mono-beta-D-galactoside (FMG) channeling. The kinetic parameters, Michaelis-Menten constant Km and enzymatic catalysis rate k2, for FDG hydrolysis to FMG by beta-galactosidase were obtained as 18.0 microM and 1.9 mumol.(min-mg)-1, respectively. The FMG intermediate is hydrolyzed via two modes: (1) FMG that is in free solution binding to the enzyme substrate binding site in competition with FDG and then being hydrolyzed (binding mode); (2) FMG being directly hydrolyzed into the final products of fluorescein and galactose before the FMG can diffuse away from the enzyme active site (channeling mode). The extent of the FMG channeling mode was found to depend on the FDG hydrolysis rate but to be independent of the free enzyme concentration. A channeling factor, defined as the ratio of the real FMG hydrolysis rate with both binding and channeling modes over that which would be observed with an exclusive binding mode, was used to quantitate the effect of the intermediate channeling. The FMG channeling factor was determined to be close to 1 at low FDG concentration (about 5.1 microM), where the slow FDG hydrolysis rate gives an ineffective channeling and where the FMG is then hydrolyzed mainly via the binding mode. However, the channeling factor dramatically increases at higher FDG concentrations (greater than Km), strongly indicating that the effective FMG channeling mode, resulting from the considerable FDG hydrolysis rate at high FDG concentrations, becomes a primary pathway to channel a steady system hydrolysis with a high rate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Formiminotransferase-cyclodeaminase, a circular tetramer of dimers, binds four tetrahydropteroylpolyglutamates/octamer, which indicates that these polyglutamate sites are formed by one type of subunit interface. The transferase and deaminase are separate catalytic sites as determined by inhibition studies with (6R)-tetrahydropteroylglutamate and by the observation that the activities can operate simultaneously. Under conditions where the transferase is saturated with tetrahydropteroyl(glutamate)n substrate, exogenously added formimino intermediate is utilized by the deaminase only if at least one of the substrate/intermediate pair is a monoglutamate. These properties indicate the existence of only one polyglutamate site/pair of catalytic sites. Kinetic specificity for each activity as measured by Vm/Km increases for longer polyglutamates, but does not differentiate among 4, 5, 6, and 7 glutamates. The enzyme shows distinct preference for hexaglutamate based on Kd as well as on Km values. With all substrates, Vm of the deaminase is greater than that of the transferase, allowing for potential channeling of the intermediate between active sites. Efficiency of channeling, optimal with pentaglutamate, does not correspond with affinity for binding. This demonstrates that a steric requirement predominates over simple sequestering of intermediates on the enzyme surface as the fundamental mechanism for channeling.  相似文献   

14.
As a first step toward the elucidation of the systems biology of the model organism Escherichia coli, it was our goal to mathematically model a metabolic system of intermediate complexity, namely the well studied end product-regulated pathways for the biosynthesis of the branched chain amino acids L-isoleucine, L-valine, and L-leucine. This has been accomplished with the use of kMech (Yang, C.-R., Shapiro, B. E., Mjolsness, E. D., and Hatfield, G. W. (2005) Bioinformatics 21, in press), a Cellerator (Shapiro, B. E., Levchenko, A., Meyerowitz, E. M., Wold, B. J., and Mjolsness, E. D. (2003) Bioinformatics 19, 677-678) language extension that describes a suite of enzyme reaction mechanisms. Each enzyme mechanism is parsed by kMech into a set of fundamental association-dissociation reactions that are translated by Cellerator into ordinary differential equations. These ordinary differential equations are numerically solved by Mathematica. Any metabolic pathway can be simulated by stringing together appropriate kMech models and providing the physical and kinetic parameters for each enzyme in the pathway. Writing differential equations is not required. The mathematical model of branched chain amino acid biosynthesis in E. coli K12 presented here incorporates all of the forward and reverse enzyme reactions and regulatory circuits of the branched chain amino acid biosynthetic pathways, including single and multiple substrate (Ping Pong and Bi Bi) enzyme kinetic reactions, feedback inhibition (allosteric, competitive, and non-competitive) mechanisms, the channeling of metabolic flow through isozymes, the channeling of metabolic flow via transamination reactions, and active transport mechanisms. This model simulates the results of experimental measurements.  相似文献   

15.
Tryptophan synthase (TrpS) is a pyridoxal phosphate-containing bifunctional enzyme that catalyzes the last two steps in the biosynthesis of L-tryptophan. Indole, an intermediate generated at the active site of the alpha-subunit is channeled via a 25 A long tunnel to the beta-active site where it reacts with an aminoacrylate intermediate derived from L-serine. The two reactions are kept in phase by allosteric interactions between the two subunits. The recent development of novel alpha-site ligands and alpha-reaction transition state analogs combined with kinetic and crystal structure analysis of Salmonella typhimurium tryptophan synthase has provided new insights into the allosteric regulation of substrate channeling, the reaction mechanisms of the alpha and beta active sites, and the influence of structural dynamics.  相似文献   

16.
本文提出了一个利用过程曲线确定酶催化反应动力学参数的新方法.利用这一方法,仅仅根据两条实验曲线就可以确定单底物酶催化反应的全部动力学参数,并且所有的图形都是(?)  相似文献   

17.
Using the quenched flow technique the mechanism of seryl tRNA synthetase action has been investigated with respect to the presteady state kinetics of individual steps. Under conditions where the strong binding sites of the enzyme are nearly saturated and the steady state turnover number is about 1 s-1, rate constants of four different processes have been determined: steps connected with substrate associations are relatively slow (12 s-1 for the entire process); activation of serine is the rate determining step (about 1.2 s-1 in presence of tRNASer); whereas the transfer of serine onto tRNASer (35 s-1) and the dissociation of seryl tRNASer (70 s-1) are fast. Similar kinetic parameter seem to hold also for the steady state reactions. This conclusion is based on a detailed study of the substrate, product, and Mg2+ concentration dependence of the transfer reaction. The results also indicate that a second serine binding site is operative. Since the transfer of serine from a preformed adenylate complex onto tRNASer is fast, seryl adenylate seems to be a kinetically competent intermediate of the aminoacylation reaction although, of course, alternative mechanisms cannot be excluded.  相似文献   

18.
Nonlinear steady state kinetic patterns are frequently encountered in enzyme studies. Consequently, there is a need to develop procedures for systematically interpreting such data. This paper contributes to this development by identifying a common feature in nonlinear systems and by showing that quite different models commonly in use give very similar mathematical functions.Identical or similar cycles can result from quite different chemical events in enzyme mechanisms, cooperativity, second sites and random pathways. Such cycles can account for many of the observed nonlinear patterns, i.e., power functions, substrate activation and inhibition. Therefore nonlinear steady state kinetics generally requires the presence of a cycle(s) in the mechanism without specifying the underlying chemical events giving rise to that cycle(s).Rate equations for cooperative, second-site and random pathway models are derived and shown to yield virtually identical mathematical functions. Thus empirical equations composed of these functions can be used to represent nonlinear kinetic data without specifying the underlying chemical events.  相似文献   

19.
F M Menger 《Biochemistry》1992,31(23):5368-5373
"The entire and sole source of catalytic power is the stabilization of the transition state; reactant-state interactions are by nature inhibitory and only waste catalytic power". So reads a literature quote expressing the current view on enzyme catalysis proposed by Pauling over 40 years ago. Its validity is now examined by means of a "split-site" model in which an active site is subdivided into a region of binding and a region of reaction. Analysis of the resulting free energy levels clarifies several points of confusion regarding the nature of enzyme catalysis, including why enzyme/substrate complexes form if, indeed, they only "waste catalytic power". Circumstances are defined in which an evolving enzyme can both lower Km (i.e., enhance substrate binding) and improve the forward catalytic rate while never meddling with the transition structure at the reactive site. It is argued that this process is most advantageously viewed as a substrate destabilization embodying "conserved" interactions at the binding region. Classical transition-state stabilization and an "anti-Pauling" effect are both capable of inducing rate accelerations. In certain circumstances, the latter can predominate as it does with many enzyme-like intramolecular reactions. Behavioral modes discussed herein are applicable to the chemistry of catalytic host/guest and enzyme systems.  相似文献   

20.
Enzymes required for sulfur metabolism have been suggested to gain efficiency by restricted diffusion (i.e., channeling) of an intermediate APS2- between active sites. This article describes modeling of the whole channeling process by numerical solution of the Smoluchowski diffusion equation, as well as by coarse-grained Brownian dynamics. The results suggest that electrostatics plays an essential role in the APS2- channeling. Furthermore, with coarse-grained Brownian dynamics, the substrate channeling process has been studied with reactions in multiple active sites. Our simulations provide a bridge for numerical modeling with Brownian dynamics to simulate the complicated reaction and diffusion and raise important questions relating to the electrostatically mediated substrate channeling in vitro, in situ, and in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号