首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Amoeboid chemotaxis involves a regulated increase in actin nucleation activity that is correlated with an increase in actin polymerization occurring seconds after chemotactic stimulation (Carson, M., Weber, A., and Zigmond, S. H. (1986) J. Cell Biol. 103, 2707-2714; Hall, A. L., Warren, V., Dharmawardhane, S., and Condeelis, J. (1989) J. Cell Biol. 109, 2207-2213). We report the isolation and characterization of an agonist-regulated capping protein, aginactin, from Dictyostelium that may regulate these changes in actin nucleation activity. Aginactin is isolated from low speed supernatants of starved amoebae by sequential anion exchange, hydrophobic interaction, fast protein liquid chromatography anion exchange, and hydroxyapatite chromatography. Aginactin migrates with an apparent molecular weight of 70,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels and gel filtration columns, suggesting that it is a globular monomer. Aginactin is a barbed-end capping protein by several criteria. It inhibits the rate and final extent of actin polymerization and increases the apparent critical concentration at substoichiometric ratios to actin. It also inhibits depolymerization of F-actin and inhibits polymerization at the barbed end of Limulus acrosomal bundles. Aginactin is unaffected by micromolar Ca2+, and it neither severs F-actin nor nucleates actin polymerization in either the presence or absence of Ca2+. Aginactin binds to and cosediments with F-actin and has an apparent Kd for capping F-actin of 2.7 nM.  相似文献   

2.
A cytosolic receptor protein for oxygenated sterols, postulated to be involved in the regulation of 3-hydroxy-3-methylglutaryl-CoA reductase and cholesterol biosynthesis, has been purified from mouse L cell cytosol greater than 3,600-fold in its undenatured form and to apparent homogeneity upon further electrophoresis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purified 7.5 S receptor appears to be a dimer with similar or identical subunits of Mr 95,000. Proteolytic cleavage by an endogenous factor(s) gives rise to a 4.2 S form of the receptor which is resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis into a heterogeneous mixture of ligand binding fragments of Mr 30,000-60,000. This 4.2 S form of the receptor retains high affinity for the oxysterol ligand and exhibits a more rapid oxysterol binding rate than the 7.5 S form. The 7.5 S form of the receptor binds to DNA-cellulose at low salt concentrations at neutral pH, and its affinity increases at low pH or in the presence of Zn2+. Receptor preparations from mouse liver were purified approximately 900-fold by the same purification procedure, but this was accompanied by conversion of the 7.5 S liver receptor to a approximately 4 S form, Mr approximately 55,000.  相似文献   

3.
Human erythrocyte clathrin and clathrin-uncoating protein   总被引:2,自引:0,他引:2  
Clathrin, a Mr = 72,000 clathrin-associated protein, and myosin were purified in milligram quantities from the same erythrocyte hemolysate fraction. Erythrocyte clathrin closely resembled brain clathrin in several respects: (a) both are triskelions as visualized by electron microscopy with arms 40 nm in length with globular ends and a flexible hinge region in the middle of each arm, and these triskelions assemble into polyhedral "cages" at appropriate pH and ionic strength; (b) both molecules contain heavy chains of Mr = 170,000 that are indistinguishable by two-dimensional maps of 125I-labeled peptides; and (c) both molecules contain light chains of Mr approximately 40,000 in a 1:1 molar ratio with the heavy chain. Erythrocyte clathrin is not identical to brain clathrin since antibody raised against the erythrocyte protein reacts better with erythrocyte clathrin than with brain clathrin and since brain clathrin contains two light chains resolved on sodium dodecyl sulfate gels while the light chain of erythrocyte clathrin migrates as a single band. The erythrocyte Mr = 72,000 clathrin-associated protein is closely related to a protein in brain that mediates ATP-dependent disassembly of clathrin from coated vesicles and binds tightly to clathrin triskelions (Schlossman, D. M., Schmid, S. L., Braell, W. A., and Rothman, J. E. (1984) J. Cell Biol. 99, 723-733). The erythrocyte and brain proteins have identical Mr on sodium dodecyl sulfate gels and identical maps of 125I-labeled peptides, share antigenic sites, and bind tightly to ATP immobilized on agarose. Clathrin and the uncoating protein are not restricted to reticulocytes since equivalent amounts of these proteins are present in whole erythrocyte populations and reticulocyte-depleted erythrocytes. Clathrin is present at 6,000 triskelions/cells, while the uncoating protein is in substantial excess at 250,000 copies/cell.  相似文献   

4.
Human nasopharyngeal epidermoid carcinoma (KB) cells contain a membrane-associated particulate folate-binding protein which is important in the cellular accumulation of physiologic folates (Antony, A. C., Kane, M. A., Portillo, R. M., Elwood, P. C., and Kolhouse, J. F. (1985) J. Biol. Chem. 260, 14911-14917) and in the binding of methotrexate (Kane, M. A., Portillo, R. M., Elwood, P. C., Antony, A. C., and Kolhouse, J. F. (1986) J. Biol. Chem. 261, 44-49). A soluble folate-binding protein appears in media exposed to proliferating KB cells. We have purified to homogeneity both the membrane-associated and the soluble folate-binding proteins from the KB cell tissue culture system. The purified membrane-associated and soluble folate-binding proteins give single bands on sodium dodecyl sulfate-polyacrylamide gel electrophoresis with apparent Mr values of 50,000 and 40,000, respectively. The membrane-associated folate-binding protein contains 45,000 g of amino acids and the soluble folate-binding protein contains 24,000 g of amino acids per mole of folate bound. Each of the purified proteins has a single folate-binding site, and the carbohydrate content is approximately 25% for each species of protein. The affinity constants for 5-methyltetrahydrofolate of the membrane-associated and soluble folate-binding proteins are 0.3 and 2.5 X 10(9) liters/mol, respectively. The affinities of various polyglutamated forms of methotrexate are similar for each protein, increase as the chain length of the polyglutamate increases (from approximately 0.004 X 10(9) liters/mol for methotrexate to 0.3 X 10(9) liters/mol for methotrexate heptaglutamate), are equal to the affinity for 5-methyltetrahydrofolate, and exceed the reported increase in affinity of methotrexate polyglutamates for dihydrofolate reductase.  相似文献   

5.
Purified preparations of activated glucocorticoid X receptor complex (GR) contain a Mr 94,000 hormone-binding polypeptide co-purifying together with a Mr 72,000 non-hormone-binding polypeptide (Wrange, O., Okret, S., Radojcic, M., Carlstedt-Duke, J., and Gustafsson, J.-A. (1984) J. Biol. Chem. 259, 4534-4541). GR binds selectively to discrete regions of DNA in mouse mammary tumor virus (Payvar, F., DeFranco, D., Firestone, G.L., Edgar, B., Wrange, O., Okret, S., Gustafsson, J.-A., and Yamamoto, K. R. (1983) Cell 35, 381-392). Such GR-binding DNA fragments were used to measure the stoichiometry of GR to DNA. Quantitative DNaseI protection "footprinting" analysis was used to ensure that saturation conditions for specific DNA-binding were achieved. Glycerol density gradient centrifugation was used to quantitate Mr 94,000 binding to specific and nonspecific DNA sites. One Mr 94,000 entity was bound per specific DNA site. A modified GR purification procedure resulted in increased amounts of Mr 72,000 polypeptide (1.6:1, 94,000:72,000 molar ratio), compared to previous GR preparations. Glycerol gradient centrifugation followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that the specific GR X DNA complex contained similar amounts of Mr 94,000 and Mr 72,000 polypeptide. It is as yet uncertain if the Mr 72,000 polypeptide is a functional subunit of GR or a co-purifying contaminant only.  相似文献   

6.
Bovine adrenal cortex contains a high molecular weight casein kinase II-like enzyme (Mr 500,000) that phosphorylates a specific serine residue in the cytoplasmic domain of the low density lipoprotein (LDL) receptor (Kishimoto, A., Brown, M. S., Slaughter, C. A., and Goldstein, J. L. (1987) J Biol. Chem. 262, 1344-1351). In the current paper, we provide evidence to suggest that this 500-kDa kinase can be dissociated into two subunits, a catalytic subunit and an activator subunit, by treatment with 1 M NaCl. The catalytic subunit was purified to homogeneity (greater than 100,000-fold) using affinity chromatography on GTP-agarose plus several other chromatography steps. It had an Mr of 50,000 by gel filtration and 35,000 by polyacrylamide gel electrophoresis in sodium dodecyl sulfate. The catalytic subunit phosphorylated casein actively, but it phosphorylated the LDL receptor with only low affinity. The affinity for the LDL receptor was increased 10-fold (saturation at 10 nM LDL receptor) by addition of a second protein that was released from a high molecular weight 500-kDa complex by 1 M NaCl. This activator protein (Mr 120,000 by gel filtration) was extremely heat stable but was destroyed by trypsin. It appeared to be required in stoichiometric amounts with relation to the LDL receptor. It did not increase the ability of the 50-kDa subunit to phosphorylate casein nor did it activate phosphorylation of the LDL receptor or casein by classic casein kinase II. The current data raise the possibility that the specificity of the 500-kDa LDL receptor kinase is attributable to a heat-stable activator subunit that binds to the LDL receptor and thereby renders it a better substrate for the catalytic subunit of the kinase.  相似文献   

7.
We have recently purified a Mr 22,000 GTP-binding protein (G protein) to near homogeneity from human platelet membranes and characterized it (Ohmori, T., Kikuchi, A., Yamamoto, K., Kim, S. and Takai, Y. (1989) J. Biol. Chem. in press). This platelet G protein was present most abundantly among several G proteins in platelets and showed a Mr of about 22,000 as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. This platelet G protein showed kinetic and physical properties very similar to those of the novel smg-21 gene product, having the same putative effector domain as the ras gene products, which we have recently purified to near homogeneity from bovine brain membranes and characterized (Kawata, M., Matsui, Y., Kondo, J., Hishida, T., Teranishi, Y. and Takai, Y. (1988) J. Biol. Chem. in press). Moreover, the peptide map of the platelet G protein was identical with that of the smg-21 gene product and the partial amino acid sequence of the platelet G protein was identical with that of the smg-21 gene product. These results indicate that this human platelet G protein is the smg-21 gene product.  相似文献   

8.
Purification and crystallization of dnaB protein from Escherichia coli was performed on a large scale by a simple procedure. From 1.5 kg of cells, 520 mg of dnaB protein were obtained in a 58% yield with a purity greater than 99%. The E. coli cells harbor a high copy-number plasmid carrying the dnaB gene and overproduce the enzyme over 200-fold. The subunit molecular weight determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis is 50,000. Based on a native Mr = 290,000 and cross-linking studies that yielded six bands, dnaB protein is judged to be a hexamer, confirming the results of Reha-Krantz, L. J., and Hurwitz, J. (1978) J. Biol. Chem. 253, 4043-4050.  相似文献   

9.
The structure, biosynthesis, and metabolism of proteoglycans in the HL-60 human promyelocytes were studied by metabolic labeling in culture with [35S]sulfate, [3H]glucosamine, [3H]serine, and [3H]leucine. These cells synthesize a single predominant species of intracellular proteoglycan with an approximate molecular weight of 100,000. The cells contain about 1 microgram of proteoglycan/million cells. The proteoglycan is turned over within the cells in two apparent pools with half-lives of about 0.6 and 27 h, respectively. The fast pool represents secretion into medium in an apparently intact form, whereas the slow pool represents intracellular degradation to free chondroitin sulfate chains and smaller fragments. The proteoglycan contains a protein core with an apparent Mr on gel filtration and sodium dodecyl sulfate-polyacrylamide gel electrophoresis of about 20,000-30,000. To the core protein are attached an average of six or seven chondroitin sulfate chains, each with an Mr of about 10,000. The chondroitin sulfate chains contain approximately 85% 4-sulfated and approximately 15% nonsulfated disaccharides. The chondroitin sulfate attachment region of the core protein is essentially resistant to trypsin and elastase, whereas the remainder of the protein core is readily degraded by proteases. The size of the chondroitin sulfate attachment region peptide generated by trypsin was estimated to be approximately 5 kDa. Based on the molecular size, distribution of amino acids, protease susceptibility, and the extent of O-glycosylation, we propose that the intracellular proteoglycan characterized in this study is the translation product of a proteoglycan gene reported to be present in these cells (Stevens, R.L., Avraham, S., Gartner, M.C., Bruns, G.A., Austen, K.E., and Weis, J.H. (1988) J. Biol. Chem. 263, 7287-7291).  相似文献   

10.
We have investigated the physiochemical characteristics of trypsin-treated, molybdate-stabilized glucocorticoid-receptor complexes from rat liver in the presence of 10 mM sodium molybdate by high performance ion-exchange chromatography, high performance size-exclusion chromatography, and sedimentation analysis. Trypsin treatment was performed under conditions previously reported to degrade the monomeric Mr approximately 94,000 steroid-binding protein to an Mr approximately 27,000 ligand-binding entity (Wrange, O., and Gustafsson, J.-A. (1978) J. Biol. Chem. 253, 856-865). Also in the presence of molybdate, an Mr approximately 27,000 steroid-binding fragment was obtained by limited trypsinization. However, no major differences in the tested physicochemical parameters were seen when trypsin-treated glucocorticoid-receptor complexes were compared with crude cytosolic complexes. Furthermore, the Mr approximately 27,000 steroid-binding fragment generated in the presence of molybdate could be immunoprecipitated by antibodies specific for the glucocorticoid receptor-associated Mr approximately 90,000 heat shock protein. These results provide direct evidence for an interaction of the Mr approximately 90,000 heat shock protein with the steroid-binding domain of the glucocorticoid receptor, known to correspond to the C-terminal third of the receptor protein.  相似文献   

11.
The receptor for nerve growth factor (NGF) was purified from Triton X-100 extracts of sympathetic ganglia membranes by affinity chromatography on NGF-Sepharose. Elution of purified receptor was accomplished at pH 5 in the presence of 1 M NaCl. Sodium dodecyl sulfate gel electrophoresis of the purified iodinated receptor showed three major bands at Mr = 126,000, Mr = 105,000, and Mr = 81,000. Affinity labeling of the purified receptor using 125I-NGF and the photoreactive agent N-hydroxysuccinimidyl-p-azidobenzoate resulted in two major cross-linked complexes corresponding to Mr = 135,000 and Mr = 110,000. This labeling pattern is similar to that observed with sympathetic ganglia membranes (Massague, J., Guillette, B. J., Czech, M. P., Morgan, C. J., and Bradshaw, R. A. (1981) J. Biol. Chem. 256, 9419-9424) and indicates that these two forms do not arise from the cross-linking procedure. Reaction of the photoaffinity labeled NGF receptors with increasing amounts of trypsin resulted in a progressive decrease in the high molecular weight complex with a concomitant increase in the low molecular weight form. When the larger complex was isolated by electroelution from a sodium dodecyl sulfate gel and treated with trypsin, a species corresponding to Mr = 100,000 was generated. These observations are best explained by a precursor-product relationship for the two NGF receptor species of sympathetic neurons.  相似文献   

12.
Purification of the Ah receptor from C57BL/6J mouse liver   总被引:4,自引:0,他引:4  
The photoaffinity ligand for the Ah receptor, [125I]-2-azido-3-iodo-7,8-dibromodibenzo-p-dioxin, previously has been shown to selectively label two peptides in the cytosol fraction of C57BL/6J mouse liver: a 95-kDa peptide, the ligand binding moiety of the Ah receptor, and a 70-kDa proteolytic fragment formed from the larger peptide (Poland, A., Glover, E., Ebetino, F. H., and Kende, A.S. (1986) J. Biol. Chem. 261, 6352-6365). These two peptides were partially purified to an approximately 20,000-fold enrichment with a 15-20% yield by the following scheme: 1) photoaffinity labeling of the 35-55% ammonium sulfate fraction of liver cytosol; 2) chromatography on polyethyleneimine-Sepharose coupled at low charge density and heparin/Mn2+ precipitation of the dilute column eluate; 3) DEAE-Sepharose chromatography to remove heparin; 4) chromatography on heparin-Sepharose; 5) preparative sodium dodecyl sulfate-polyacrylamide slab gel electrophoresis followed by electroelution of the protein and ion pair extraction to remove sodium dodecyl sulfate; and 6) high performance liquid chromatography on a reverse-phase C-4 column. Following initial chromatography on polyethyleneimine Sepharose, it was found that substantial subsequent purification could only be achieved under denaturing conditions.  相似文献   

13.
A heat-stable 32K calmodulin-binding protein has been purified approximately 3,670-fold from porcine testis to apparent homogeneity as judged by both sodium dodecyl sulfate polyacrylamide gel electrophoresis and polyacrylamide gel electrophoresis under native conditions. The purification employed calmodulin-Sepharose 4B affinity chromatography; elution was performed with a free Ca2+ gradient. This provided a simple and efficient procedure, and approximately 1.62 mg of pure heat-stable calmodulin-binding protein was obtained from 390 g of porcine testis with a yield of 47% in activity. The purified protein was asymmetric (f/fo = 1.89) and consisted of a single polypeptide of Mr = 32,000. It is a highly acidic protein (pI = 3.9) with a diffusion coefficient of 5.4 X 10(-7) cm2/s, a sedimentation coefficient of 1.43 S, and a Stokes radius of 39.5 A in its free form and 41.3 A in its complex form with calmodulin. The extent of inhibition of phosphodiesterase by the calmodulin-binding protein was affected by the order of addition of the agents to the reaction mixture. The extent of inhibition was maximal when phosphodiesterase was added last, while it was minimal when the calmodulin-binding protein was added last. This protein was indistinguishable from a heat-stable calmodulin-binding protein in rat testis (Ono, T., Koide, Y., Arai, Y., & Yamashita, K. (1984) J. Biol. Chem. 259, 9011-9016).  相似文献   

14.
Bovine, canine, and porcine thyroid membrane proteins which were [32P] ADP-ribosylated by cholera and pertussis toxin in vitro were analyzed by one and two-dimensional polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. These three mammalian species have similar cholera toxin substrates (Mr 42,000 and 48,000) and pertussis toxin substrates (Mr 40,000). Resolution by two dimensional gel electrophoresis of these ribosylated proteins revealed that they each consist of at least 6 distinct polypeptides with similar isoelectric points ranging from approximately 5.5-7.0.  相似文献   

15.
The catalytic subunit of the branched-chain alpha-keto acid dehydrogenase (BCKDH) phosphatase (Damuni, Z., Merryfield, M.L., Humphreys, J.S., and Reed, L.J., (1984) Proc. Natl. Acad. Sci. U.S.A. 81, 4335-4338) has been purified over 50,000-fold from extracts of bovine kidney mitochondria. The apparently homogeneous protein consists of a single polypeptide chain with an apparent Mr = approximately 33,000 as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. BCKDH phosphatase, with an apparent Mr = 460,000, was dissociated to its catalytic subunit with no apparent change in activity, at an early stage in the purification procedure by treatment with 6 M urea. The specific activity of the catalytic subunit was 1,500-2,500 units/mg. The catalytic subunit exhibited approximately 10% maximal activity with 32P-labeled pyruvate dehydrogenase complex but was inactive with phosphorylase a and with p-nitrophenyl phosphate. The catalytic subunit, like the Mr = 460,000 species, was inhibited by nanomolar concentrations of BCKDH phosphatase inhibitor protein, was unaffected by protein phosphatase inhibitor 1 and inhibitor 2, and was inhibited by nucleoside tri- and diphosphates but not by nucleoside monophosphates.  相似文献   

16.
The Mr approximately 540,000 dimeric actin gelation protein, actin-binding protein (ABP), has previously been shown in human platelets to link actin to membrane glycoprotein Ib (GPIb) (Fox, J. E. B. (1985) J. Biol. Chem. 260, 11970-11977; Okita, J. R., Pidard, D., Newman, P. J., Montgomery, R. R., and Kunicki, T. J. (1985) J. Cell Biol. 100, 317-321). We have examined further the interaction between ABP and GPIb. Platelet extracts were depleted of ABP by precipitation with anti-ABP monoclonal antibodies (mAbs); in resulting precipitates, ABP monomer is complexed with GPIb in a 5:1 molar ratio. The ABP.GPIb complex is resistant to chaotropic solvents but dissociated by the ionic detergent, sodium dodecyl sulfate. Treatment of intact platelets with the ionophore A23187 activates a Ca2+-dependent protease which cleaves the Mr approximately 270,000 ABP subunit into three fragments of Mr 190,000, 100,000, and 90,000; the latter fragment is derived from the Mr 100,000 fragment. Anti-ABP mAbs coprecipitated GPIb with the Mr 100,000 and 90,000 fragments, but not with the Mr 190,000 fragment which contains the ABP self-association site. In the reciprocal experiment, anti-GPIb antibodies co-precipitated only the Mr 100,000 and 90,000 ABP fragments. Actin also co-precipitated with the Mr 100,000 and 90,000, but not with the Mr 190,000 ABP fragment. The anti-ABP mAb that precipitated the Mr 100,000-90,000 GPIb-binding ABP fragment recognizes a trypsin cleavage fragment of ABP that binds actin filaments in vitro. These findings establish that both the GPIb-binding site and actin-binding sites are in the same region of the ABP monomer. Because of the extended bipolar conformation of the ABP molecule, the data suggest that the GPIb.actin-binding region is located remote from the self-association, or dimerization, site of the ABP subunit.  相似文献   

17.
1. 32P-Labeled proteins from the superior cervical ganglion of the rat were separated by two-dimensional gel electrophoresis and visualized by autoradiography. 2. The most heavily labeled phosphoprotein in the ganglion had a relative molecular weight of 83,000 and a pI of 4.5. Phosphorylation of this protein was increased by phorbol 12,13-dibutyrate, an activator of the Ca2+/phospholipid-dependent protein kinase, protein kinase C. This protein appears to be similar or identical to a specific protein kinase C substrate that has been described in other tissues (Blackshear, P. J., et al., J. Biol. Chem. 261:1459-1469, 1986). 3. Phosphorylation of this protein was also increased by treatment of the ganglion with phospholipase C (Bacillus cereus) but was not increased by 8-bromo-cyclic AMP or by nicotinic agonists. Vasopressin increased the hydrolysis of inositol-containing phospholipids in the ganglion and also increased the labeling of the 83,000 Mr protein. Thus, vasopressin appears to activate protein kinase C in the ganglion. 4. Muscarine, which also increased phospholipid metabolism in the ganglion, did not increase the phosphorylation of the 83,000 Mr protein. Muscarine and vasopressin stimulate phospholipid metabolism in different structures within the ganglion (Horwitz, J., et al., J. Pharmacol. Exp. Ther. 237:312-317, 1986). Muscarine may increase phospholipid metabolism in structures that do not contain significant amounts of the 83,000 Mr protein.  相似文献   

18.
We have developed a chemically defined, minimal growth medium for Thermus thermophilus which is suitable for nutritional studies, isotopic enrichment, and genetic manipulation of the organism. Reliable procedures are described for the large scale purification of cytochrome c552 from the periplasm and for cytochrome c555,549 and cytochrome c1 aa3 from the plasma membrane. In contrast to a previous report (Fee, J. A., Choc, M. G., Findling, K. L., Lorence, R., and Yoshida, T. (1980) Proc. Natl. Acad. Sci. U. S. A. 77, 147-151) which suggested a molecular weight near 200,000, the cytochrome c1aa3 complex was shown by protein and amino acid analyses to have Mr approximately 93,000. Sodium dodecyl sulfate-urea-polyacrylamide gel electrophoresis and reversed phase high performance liquid chromatography, combined with amino acid analyses, revealed the presence of only two proteins in a 1:1 ratio: C-protein has Mr approximately 33,000, binds heme C, and is thought to correspond to cytochrome c1. A-protein has Mr approximately 55,000 and is thought to bind the four redox components (2 heme A and 2 Cu) of cytochrome aa3.  相似文献   

19.
After dissociation of cytosolic heteromeric glucocorticoid receptor complexes by steroid, salt, and other methods, only 35-60% of the dissociated receptors can bind to DNA-cellulose. The DNA-binding and non-DNA-binding forms of the dissociated receptors have the same Mr and are phosphorylated to the same extent (Tienrungroj, W., Sanchez, E. R., Housley, P. R., Harrison, R. W., and Pratt, W. B. (1987) J. Biol. Chem. 262, 17347-17349). The basis for the different DNA-binding activities is unknown, but the DNA-binding fraction of the receptor has a more basic pI than the non-DNA-binding fraction (Smith, A. C., Elsasser, M. S., and Harmon, J. M. (1986) J. Biol. Chem. 261, 13285-13292). We have separated the non-DNA-binding state of the receptor from the DNA-binding state and then cleaved it with trypsin and chymotrypsin. We find that the 15-kDa tryptic fragment derived from the non-DNA-binding state of the dissociated receptor is fully competent in binding DNA, whereas the 42-kDa chymotryptic fragment containing both the hormone-binding and DNA-binding domains does not bind DNA. Trypsin cleavage of the molybdate-stabilized untransformed receptor also yields a 15-kDa fragment that is fully competent in binding DNA. Reducing agents do not restore DNA-binding to the non-DNA-binding fraction of the receptor and the hormone-binding domain can be separated from the DNA-binding domain on nonreducing gel electrophoresis. These results argue that the two domains are not linked by disulfide bridges, and they are consistent with the proposal that there are two least energy states of folding after dissociation of hsp90. A significant portion of the receptors is "misfolded" in such a manner that the steroid binding domain is directly preventing DNA-binding activity.  相似文献   

20.
alpha 1-Adrenergic receptors from a cultured smooth muscle cell line (DDT1 MF-2) have been solubilized with digitonin and purified to apparent homogeneity by sequential chromatography on a biospecific affinity support (Sepharose-A55453 (4-amino-6,7-dimethoxy-2-[4-[5-(4-amino-3-phenyl) pentanoyl]-1-piperazinyl]-quinazoline), an alpha 1 receptor-selective antagonist), a wheat germ agglutinin-agarose gel, and a high performance steric exclusion liquid chromatography column. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography of iodinated purified receptor preparations reveals a peptide with an apparent Mr = 80,000 that co-migrates with the peptide labeled by the specific alpha 1-adrenergic receptor photoaffinity probe 4-amino-6,7-dimethoxy-2-[4-[5-(4-azido-3-[125I]iodophenyl)pentanoyl] -1-piperazinyl] quinazoline. The specific activity (approximately 13,600 pmol of ligand binding/mg of protein) of purified receptor preparations is consistent with that expected for a pure peptide of Mr = 80,000 containing a single ligand binding site. Overall yields approximate 14% of initial crude particulate binding. The purified receptor preparations bind agonist and antagonist ligands with appropriate alpha 1-adrenergic specificity, stereoselectivity, and affinity. Peptide maps of the pure alpha 1-adrenergic receptor and the pure human platelet alpha 2-adrenergic receptor (Regan, J.W., Nakata, H., DeMarinis, R.M., Caron, M.G., and Lefkowitz, R.J. (1986) J. Biol. Chem. 261, 3894-3900) using several different proteases suggest that these two receptors show little if any structural homology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号