首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The timing of excision of maize transposable element Ac was studied using visual histochemical assay based on Ac excision restoring activity of -glucuronidase (GUS). The Solanum tuberosum L. cv. Bintje was used for Agrobacterium-mediated transformation with pTT230 plasmid harbouring Ac-interrupted gus A gene and npt II gene as a selectable marker gene. Twenty-eight out of 72 kanamycin resistant calli did not express any GUS activity, 31 calli showed partial GUS expression and 13 out of assayed calli revealed strong expression of gus A gene. Plants were regenerated from calli without and/or with partial expression of gus A gene. The regenerated transformants which did not express GUS during the callus phase often contained many small GUS expressing spots on leaves. A phenotypic selection assay for excision of Ac has been also used. This non-detectable excision of Ac in callus tissue could be followed by a "late" timing excision during leaf development. After transformation with pTT224 plasmid harbouring Ac-interrupted hpt II gene and npt II gene transgenic calli containing Ac within the hygromycin resistance gene were derived and hygromycin sensitive plants were regenerated from them. Protoplasts isolated from leaves of transgenic regenerated plants were selected on hygromycin. Hygromycin resistant minicalli showed to harbour multiple copies of Ac and mark out low uniqueness of integration sites.  相似文献   

2.
A method is described for the high frequency transformation of carrot proembryogenic suspension culture cells by a non-oncogenic Ti-plasmid vector (pGV3850::1103) which carried a chimaeric kanamycin resistance gene (nos-NPT-II). Plants were regenerated efficiently from transformed material by somatic embryogenesis in the presence of kanamycin. Transformed tissues expressed readily detectable levels of both NPT-II and nopaline. NPT-II could be detected in total protein extracts by Western blotting. This analysis indicated that NPT-II was produced as a single, full length polypeptide. The T-DNA copy number in individually selected transformants was analysed by Southern blotting and ranged from 1–8 per diploid genome. The copy number and organization of the T-DNA was retained in plants regenerated from these transformants by somatic embryogenesis. These data suggested a clonal origin for the selected kanamycin resistant colonies. NPT-II expression levels appeared to be directly related to gene dosage.  相似文献   

3.
To develop an efficient gene tagging system in rice, a plasmid was constructed carrying a non-autonomous maize Ds element in the untranslated leader sequence of a hygromycin B resistance gene fused with the 35S promoter of cauliflower mosaic virus. This plasmid was cotransfected by electroporation into rice protoplasts together with a plasmid containing the maize Ac transposase gene transcribed from the 35S promoter. Five lines of evidence obtained from the analyses of hygromycin B-resistant calli, regenerated plants and their progeny showed that the introduced Ds was trans-activated by the Ac transposase gene in rice. (1) Cotransfection of the two plasmids is necessary for generation of hygromycin B resistant transformants. (2) Ds excision sites are detected by Southern blot hybridization. (3) Characteristic sequence alterations are found at Ds excision sites. (4) Newly integrated Ds is detected in the rice genome. (5) Generation of 8 by target duplications is observed at the Ds integration sites on the rice chromosomes. Our results also show that Ds can be trans-activated by the transiently expressed Ac transposase at early stages of protoplast culture and integrated stably into the rice genome, while the cotransfected Ac transposase gene is not integrated. Segregation data from such a transgenic rice plant carrying no Ac transposase gene showed that four Ds copies were stably integrated into three different chromosomes, one of which also contained the functional hph gene restored by Ds excision. The results indicate that a dispersed distribution of Ds throughout genomes not bearing the active Ac transposase gene can be achieved by simultaneous transfection with Ds and the Ac transposase gene.  相似文献   

4.
Summary Germinating seeds of Arabidopsis thaliana were cocultivated with an Agrobacterium tumefaciens strain (C58Clrif) carrying the pGV3850:pAK1003 Ti plasmid. This Ti plasmid contains the neomycin phosphotransferase II gene (NPT II) which confers resistance to kanamycin and G418. Seeds (T1 generation) imbibed for 12 h before a 24 h exposure to Agrobacterium gave rise to the highest number of transformed progeny (T2 generation). Over 200 kanamycin-resistant T2 seedlings were isolated. Some of the T2 seedlings and T3 families were characterized for genetic segregation of functional NPT II gene(s), NPT II activity, and the presence of T-DNA inserts (Southern analysis). Ninety percent of the T2 individuals transmitted the resistance factor to the T3 families in a Mendelian fashion. Of the T3 families segregating in a Mendelian fashion (n=111), 62% segregated for one functional insert, 29% for two unlinked or linked functional inserts, 5% for three unlinked inserts, 1% for four unlinked inserts, whereas 3% appeared to be homozygous for the insert(s). The 13 families that did not exhibit Mendelian segregation ratios fell into 2 classes, both of which had a deficiency of kanamycin-resistant seedlings. In the Group I T3 families (n=6) only 0%–2% of the seedlings were resistant to kanamycin (100 mg/l), whereas in the Group II families (n=7) 8%–63% of the seedlings were resistant. All of the kanamycin-resistant plants that were tested were found to possess NPT II activity. Southern analysis revealed that all of the resistant plants contained at least one copy of the T-DNA and that the majority of the plants had multiple inserts. Explants from kanamycin-resistant plants survived and formed callus when cultured on callus-inducing medium containg G418.  相似文献   

5.
The Ac/Ds transposon system of maize shows low activity in Arabidopsis. However, fusion of the CaMV 35S promoter to the transposase gene (35S::TPase) increases the abundance of the single Ac mRNA encoded by Ac and increases the frequency of Ds excision. In the experiments reported here it is examined whether this high excision frequency is associated with efficient re-insertion of the transposon. This was measured by using a Ds that carried a hygromycin resistance gene (HPT) and was inserted within a streptomycin resistance gene (SPT). Excision of Ds therefore gives rise to streptomycin resistance, while hygromycin resistance is associated with the presence of a transposed Ds or with retention of the element at its original location. Self-fertilisation of most individuals heterozygous for Ds and 35S::TPase produced many streptomycin-resistant (strepr) progeny, but in many of these families a small proportion of strepr seedlings were also resistant to hygromycin (hygr). Nevertheless, 70% of families tested did give rise to at least one strepr, hygr seedling, and over 90% of these individuals carried a transposed Ds. In contrast, the Ac promoter fusion to the transposase gene (Ac::TPase) produced fewer streprhygr progeny, and only 53% of these carried a transposed Ds. However, a higher proportion of the strepr seedlings were also hygr than after activation by 35S::TPase. We also examined the genotype of strepr, hygr seedlings and demonstrated that after activation by 35S::TPase many of these were homozygous for the transposed Ds, while this did not occur after activation by Ac::TPase. From these and other data we conclude that excisions driven by 35S::TPase usually occur prior to floral development, and that although a low proportion of strepr progeny plants inherit a transposed Ds, those that do can be efficiently selected with an antibiotic resistance gene contained within the element. Our data have important implications for transposon tagging strategies in transgenic plants and these are discussed.  相似文献   

6.
The maize autonomous transposable element Ac was introduced into haploid Nicotiana plumbaginifolia via Agrobacterium tumefaciens transformation of leaf disks. All the regenerated transformants (R0) were diploid and either homozygous or heterozygous for the hygromycin resistance gene used to select primary transformants. The Ac excision frequency was determined using the phenotypic assay of restoration of neomycin phosphotransferase activity and expression of kanamycin resistance among progeny seedlings. Some of the R0 plants segregated kanamycin-resistant seedlings in selfed progeny at a high frequency (34 to 100%) and contained one or more transposed Ac elements. In the primary transformants Ac transposition probably occurred during plant regeneration or early development. Other R0 transformants segregated kanamycin-resistant plants at a low frequency ( 4%). Two transformants of this latter class, containing a unique unexcised Ac element, were chosen for further study in the expectation that their kanamycin resistant progeny would result from independent germinal transposition events. Southern blot analysis of 32 kanamycin-resistant plants (R1 or R2), selected after respectively one or two selfings of these primary transformants, showed that 27 had a transposed Ac at a new location and 5 did not have any Ac element. Transposed Ac copy number varied from one to six and almost all transposition events were independent. Southern analysis of the R2 and R3 progeny of these kanamycin-resistant plants showed that Ac continued to transpose during four generations, and its activity increased with its copy number. The frequency of Ac transposition, from different loci, remained low ( 7%) from R0 to R3 generations when only one Ac copy was present. The strategy of choosing R0 plants that undergo a low frequency of germinal excision will provide a means to avoid screening non-independent transpositions and increase the efficiency of transposon tagging.  相似文献   

7.
Summary To study regulation of the (Ds) transposition process in heterologous plant species, the transposase gene of Ac was fused to several promoters that are active late during plant development. These promoters are the flower-specific chalcone synthase A promoter (CHS A), the anther-specific chalcone isomerase B promoter CHI B and the pollen-specific chalcone isomerase A2 promoter CHI A2. The modified transposase genes were introduced into a tobacco tester plant. This plant contains Ds stably inserted within the leader sequence of the hygromycin resistance (HPT II) gene. As confirmed with positive control elements, excision of Ds leads to the restoration of a functional HPT II gene and to a hygromycin resistant phenotype. No hygromycin resistance was observed in negative control experiments with Ac derivatives lacking 5 regulatory sequences. Although transactivation of Ds was observed after the introduction of transposase gene fusions in calli, excision in regenerated plants was observed only for the CHS A- or CHI B-transposase gene fusions. With these modified transposase genes, somatic excision frequencies were increased (68%) and decreased (22%), respectively, compared to the situation with the Ac element itself (38%). The shifts in transactivation frequencies were not associated with significant differences in the frequencies of germinally transmitted excision events (approximately 5%). The relative somatic stability of Ds insertions bearing the CHI B-transposase gene fusion suggests the usefulness of this activator element for transposon tagging experiments.  相似文献   

8.
A system was established for introducing cloned genes into white clover (Trifolium repens L.). A high regeneration white clover genotype was transformed with binary Agrobacterium vectors containing a chimaeric gene which confers kanamycin resistance. Transformed kanamycin resistant callus was obtained by culturing Agrobacterium inoculated stolon internode segments on selective medium. The kanamycin resistance phenotype was stable in cells and in regenerated shoots. Transformation was confirmed by the expression of an unselected gene, nopaline synthase in selected cells and transgenic shoots and by the detection of neomycin phosphotransferase II enzymatic activity in kanamycin resistant cells. Integration of vector DNA sequences into plant DNA was demonstrated by Southern blot hybridisation.  相似文献   

9.
Shoot tips and epicotyl-segments of Vicia narbonensis were co-cultivated with Agrobacterium tumefaciens strain C58C1 pGV 3850 HPT, carrying a plasmid coding for hygromycin-phosphotransferase. On callus-induction medium containing 60 mg/l hygromycin for selection, approximately 18% of the explants produced hygromycin-resistant callus. After transfer to regeneration-medium these calluses produced hygromycin-resistant and nopaline-positive somatic embryos which could be regenerated to plantlets. The integration of the T-DNA into the plant genome was confirmed by Southern analysis.Abbreviations NAA naphthyl-acetic acid - BAP 6-benzylaminopurine - HPT hygromycin-phosphotransferase - MS Murashige and Skoog - CaMV cauliflower mosaic virus - nos nopaline-synthase - nop nopaline - hyg hygromycin - SDS sodium dodecyl sulfate  相似文献   

10.
The frequency and fidelity of Ac transposition, and that of its non-autonomous derivative Ds, were investigated in flax callus. Flax (Linum usitatissimum var. Antares) hypocotyls were transformed with Agrobacterium Ti plasmid vectors containing the Ac or Ds element inserted within the untranslated leader sequence of a chimaeric neomycin phosphotransferase II gene. Kanamycin resistant tissues were produced as a result of excision of Ac in around 35% of the total number of Ac-containing transformants. In contrast, no excision was observed from transformants containing the Ds element. Whilst Ac appears to have excised completely from T-DNAs, little evidence was found to infer reintegration of the Ac element into the genome.Abbreviations NPT-II/npt-II Neomycin phosphotransferase II - kb Kilobasepairs - bp basepairs - MSO Murashige and Skoog medium - NAA naphthalene acetic acid - BAP 6-benzylaminopurine  相似文献   

11.
Transformed shoots of the major apple scion cultivar Delicious (Malus × domestica Borkh.) were obtained by cocultivation withAgrobacterium tumefaciens carrying disarmed plasmids. The transformation efficiency was influenced by the type of plasmid and by the inoculation temperature. Initial selection involved a callus stage followed by shoot regeneration. Shoot regeneration occurred only in the dark. Shoots grew in the light and were rooted in the presence of 100 mg l–1 kanamycin. Of the range of plasmids tested, the cointegrates pGV 3850::1103neo and pGV 3850::1103gus gave a higher frequency of transformation than the binary vector pGV 3111 × pKIWI. Elongation of transformed shoots was enhanced by culture in a mixture of the cytokinins 6(--dimethylallylamino)purine and 6-benzyladenine. Up to 60% of the elongated shoots rooted in 100 mg l–1 kanamycin. Transformation was indicated by kanamycin resistance, -glucuronidase assay, nopaline synthesis, and by integration of the T-DNA as judged by Southern analysis.  相似文献   

12.
Chimeric genes comprised of the nopaline synthase promoter and bacterial coding sequences specifying resistance to kanamycin, chloramphenicol or methotrexate, were inserted into the non-oncogenic Ti plasmid vector pGV3850 by recombination (through homologous pBR322 sequences present in the chimeric gene constructs and pGV3850). These co-integrates in Agrobacterium were used to infect single plant protoplasts of Nicotiana by co-cultivation. The resistance traits allowed the selection of transformed calli in tissue culture in the presence of the appropriate antibiotic. Furthermore, as a non-oncogenic Ti plasmid was used for the protoplast transformation, phenotypically normal and fertile plants could be regenerated from the resistant calli. We have shown that these fully differentiated plant tissues exhibit functional expression of resistance traits (KmR and CmR). All plants carrying the chimeric genes developed normally, flowered, and set seeds. The inheritance of several of these resistance traits was analyzed and shown to be Mendelian. These results are model experiments to demonstrate that genes of interest can be systematically transferred to the genome of plants using non-oncogenic Ti plasmid derivatives; and that transformed plants are capable of normal growth and differentiation, thus providing a natural environment for the study of gene expression and development of plant cells.  相似文献   

13.
Summary Direct gene transfer has proved to be an efficient transformation method for arabidopsis thaliana, a member of the Brassicaceae. Transgenic Arabidopsis plants resistant to hygromycin B have been regenerated from mesophyll protoplasts treated with polyethylene glycol and plasmid DNA carrying the hygromycin phosphotransferase (HPT) gene under the control of the 35 S promoter of cauliflower mosaic virus. The transformation procedure reproducibly yields transformants at frequencies of approximately 1×10-4 (based on the number of protoplasts treated) or 5% (based on the number of regenerating calli). DNA from plants regenerated from hygromycin resistant colonies was analysed by Southern blot hybridization demonstrating that the foreign gene is stably integrated into the plant chromosome. Genetic analysis of several hygromycin resistant plants showed that the HPT gene is transmitted to the progeny. Transformation experiments performed with a selectable and a non-selectable gene on separate plasmids resulted in a co-transformation rate of functionally active copies in about 25% of the transformants analysed. Hence this approach can be used to introduce non-selectable genes into the Arabidopsis genome.  相似文献   

14.
In vitro grown shoot tissue of facultative apomictic lines of guayule (Parthenium argentatum Gray), a rubber producing desert shrub, were transformed by Agrobacterium-mediated DNA transfer and regenerated into complete plants. Guayule shoots of lines 11591, UC101 and UC104 were inoculated with A. tumefaciens strains LBA4404 or PC2760 harboring the binary vector pCGN1557. Axillary shoots were regenerated from transformed cells and rooted in vitro in the presence of kanamycin. Genetic transformation in all cases was verified by Southern blot analysis. Transgenic plants were grown to maturity in the greenhouse and, as predicted for apomictic species, all seed produced possessed kanamycin resistance. Because apomicts have limitations for gene transfer by normal sexual crosses, this method offers a new means of transferring genes into this species.Abbreviations BA benzyladenine - EDTA ethylene diamine tetraacetate - kanR kanamycin resistance - MS salts salts of Murashige and Skoog medium (1962) - NAA naphthalene acetic acid - NPT-II neomycin phosphotransferase - SDS sodium dodecyl sulfate  相似文献   

15.
Summary With the idea to develop a selection system for asymmetric somatic hybrids between oilseed rape (Brassica napus) and black mustard (B. nigra), the marker gene hygromycin resistance was introduced in this last species by protoplast transformation with the disarmed Agrobacterium tumefaciens strain C58 pGV 3850 HPT. The B. nigra lines used for transformation had been previously selected for resistance to two important rape pathogens (Phoma lingam, Plasmodiophora brassicae). Asymmetric somatic hybrids were obtained through fusion of X-ray irradiated (mitotically inactivated) B. nigra protoplasts from transformed lines as donor with intact protoplasts of B. napus, using the hygromycin resistance as selection marker for fusion products. The somatic hybrids hitherto obtained expressed both hygromycin phosphotransferase and nopaline synthase genes. Previous experience with other plant species had demonstrated that besides the T-DNA, other genes of the donor genome can be co-transferred. In this way, the produced hybrids constitute a valuable material for studying the possibility to transfer agronomically relevant characters — in our case, diseases resistances — through asymmetric protoplast fusion.  相似文献   

16.
Summary A genetic transformation method, using in vitro microtubers and Agrobacterium-mediated transformation has been developed for five wild Solanum species: S. verrucosum, S. hjertingii, S. papita, S. stoloniferum, S. demissum, which range in ploidy from diploid to hexaploid. A disarmed A. tumefaciens strain, C58 harbouring the co-integrate vector pGV3580::pKU2 with the genes of neomycin phosphotransferase (NPTII) and hygromycin phosphotransferase (HPTII) as selectable markers, was used. Selection of putative transformants was based on their ability to grow and produce roots on a medium containing 150 mg/l kanamycin. The transgenic nature of the putative transformants was confirmed by Polymerase Chain Reaction analysis and by NPTII dotblot assay to show the expression of the NPTII gene. Additionally, the transmission of transgenes, NPTII and HPTII in selfed-sexual progeny of some transgenic plants was also determined.Abbreviations MS Murashige and Skoog - NPTII neomycin phosphotransferase - HPTII hygromycin phosphotransferase - PCR polymerase chain reaction - GA3 gibberellic acid - CCC chlorocholine chloride - BAP benzylaminopurine - NAA naphthalene acetic acid - ZR zeatin riboside - IAA indole acetic acid - LB Luria Broth  相似文献   

17.
Summary Agrobacterium-mediated transformation of thin cell layer explants (Klimaszewska and Keller 1985) yielded large numbers of transgenic plants of a major Canadian rapeseed cultivar Brassica napus ssp. oleifera cv Westar. The morphology and fertility of these plants were indistinguishable from controls. The Ti plasmid vector, pGV3850 (Zambryski et al. 1983) was used as a cis vector and as a helper plasmid for the binary vector pBin19 (Bevan 1984). Selectable marker genes that conferred resistance to high levels of kanamycin (Km) on Nicotiana tabacum were less efficient in the selection of transgenic B. napus. At low levels of Km (15 g/ml) large numbers of transgenic plants (50%) were identified among the regenerants by nopaline synthase activity and several of these were confirmed by Southern blot analyses. Only a small number were resistant to higher levels of Km (80 g/ml). Preliminary analyses indicated that resistance to Km was transmitted to the selfed progeny. Chimeric chloramphenicol acetyl transferase genes were ineffective biochemical markers in transgenic B. napus.Contribution No. 1092 Plant Research Centre, Ontario, Canada  相似文献   

18.
Summary Kanamycin resistant callus was produced from leaf disc or hypocotyl expiants of green bean (Phaseolus vulgaris L.) when cultured on a defined medium containing 50 mg/l kanamycin after 4 days of co-cultivation with Agrobacterium tumefaciens strain EHA101 containing the binary vector pKYLX71GUS. The presence of neomycin phosphotransferase II (NPT-II) in crude cellular extracts from the kanamycin resistant callus was confirmed by ELISA. The expression of the ß-glucuronidase (GUS) reporter gene was confirmed by histochemical and fluorimetric analyses. Southern blot border analysis confirmed the integration of the foreign DNA. In addition to the evidence obtained from Southern analysis, the absence of Agrobacterium in the transformed callus cultures was confirmed by microscopic observation and through test cultures. Using the above protocol, bean callus cultures were also transformed with a bean chalcone synthase promoter-GUS fusion. These cultures, when treated with the elicitor glutathione, showed higher levels of GUS expression than the unelicited callus clumps.  相似文献   

19.
A chimeric DNA construction having nopaline synthase promoter, coding sequences of neomycin phosphotransferase gene conferring resistance to antibiotic kanamycin and OCS (octopine synthase) polyadenylation sequences bracketed by T-DNA ends was transferred to tobacco. Leaf discs were infected withA. tumefaciens containing disarmed, cointegrate plasmid pGV3850:: 1103 and allowed to form a callus in the presence of kanamycin. Shoots regenerated from infected leaf discs either through the callus or arising directly were further selected for their ability to root in kanamycin-containing media. Among the nine transgenic plants that were progeny tested, the transferred bacterial gene segregated as monohybrid ratio (3 KanR: 1 Kans) in seven. Segregation data of two plant progenies indicated the presence of two independent loci of KanR DNA insertion (15 KanR: 1 Kan s ). Back-cross segregation data were consistent with the monohybrid or independent assortment of duplicate factors. Thus in the two cases, a minimum independent integration of two copies of T-DNA each with a KanR marker is inferred.  相似文献   

20.
以质粒pMCB30为模板,扩增GFP基因,连接到载体pCMBIA2300-35S-OCS上,构建过量表达载体p35S:GFP,将其转入农杆菌GV3101.通过农杆菌介导法将p35S:GFP载体分别转入新疆特色植物小拟南芥和拟南芥中.T0代经含有卡那霉素的1/2MS培养基筛选,获得了T1代转基因小拟南芥2株,T1代转基因拟南芥9株.通过激光共聚焦显微镜观察,在转基因小拟南芥和拟南芥的根尖细胞中均可检测到GFP绿色荧光蛋白;对转基因植株进行PCR扩增,均可检测到GFP基因,表明GFP基因已成功转入小拟南芥和拟南芥中.该研究建立了小拟南芥的遗传转化体系,为进一步利用GFP基因和进一步研究小拟南芥的功能基因奠定基础.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号