首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Huang  Bingru 《Plant and Soil》1999,208(2):179-186
Effects of localized soil drought stress on water relations, root growth, and nutrient uptake were examined in drought tolerant ‘Prairie’ buffalograss [Buchloe dactyloides (Nutt.) Engelm.] and sensitive ‘Meyer’ zoysiagrass (Zoysia japonica Steud.). Grasses were grown in small rhizotrons in a greenhouse and subjected to three soil moisture regimes: (1) watering the entire 80-cm soil profile (well-watered control); (2) drying 0–40 cm soil and watering the lower 40 cm (partially dried); (3) and drying the entire soil profile (fully dried). Drying the 0–40 cm soil for 28 days had no effect on leaf water potential (Ψ leaf ) in Prairie buffalograss compared to the well-watered control but reduced that in Meyer zoysiagrass. Root elongation rate was greater for Prairie buffalograss than Meyer zoysiagrass under well-watered or fully dried conditions. Rooting depth increased with surface soil drying; with Prairie buffalograss having a larger proportion of roots in the lower 40 cm than Meyer zoysiagrass. The higher rates of water uptake in the deeper soil profile in the partially dried compared to the well-watered treatment and by Prairie buffalograss compared to Meyer zoysiagrass could be due to differences in root distribution. Root 15N uptake for Prairie buffalograss was higher in 0–20 cm drying soil in the partially dried treatment than in the fully dried treatment. Diurnal fluctuations in soil water content in the upper 20 cm of soil when the lower 40 cm were well-watered indicated water efflux from the deeper roots to the drying surface soil. This could help sustain root growth, maintain nutrient uptake in the upper drying soil layer, and prolong turfgrass growth under localized drying conditions, especially for the deep-rooted Prairie buffalograss. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
The aims of this research were to test the influence of surface soil drying on photosynthesis, root respiration and grain yield of spring wheat (Triticum aestivum), and to evaluate the relationship between root respiration and grain yield. Wheat plants were grown in PVC tubes 120 cm in length and 10 cm in diameter. Three water regimes were employed: (a) all soil layers were irrigated close to field water capacity (CK); (b) upper soil layers (0–40 cm from top) drying (UD); (c) lower soil layer (80–120 cm from top) wet (LW). The results showed that although upper drying treatment maintained the highest root biomass, root respiration and photosynthesis rates at anthesis, the root respiration of the former was significantly (P < 0.05) lower than the latter at the jointing stage. There were no differences in water use efficiency or harvest index between plants from the upper drying and well-watered treatment. However, the grain weight for plants in the upper drying treatment was significantly (P< 0.05) higher than that of in well-watered control. The results suggest that reduced root respiration rate and the amount of photosynthates utilized by root respiration in early season growth may also have contributed to improve crop production under soil drying. Reduced root activity and root respiration rate, in the early growth stage, not only increased the photosynthate use efficiency (root respiration rate: photosynthesis ratio), but also grain yield. Rooting into a deeper wet soil profile before grain filling was crucial for spring wheat to achieve a successful seedling establishment and high grain yield.  相似文献   

3.
In natural environments, drought often occurs in surface soil while water is available for plant uptake deeper in the soil profile. The objective of the study was to examine the involvement of antioxidant metabolism and lipid peroxidation in the responses of two cool-season grasses to surface soil drying. Kentucky bluegrass (Poa pratensis L) and tall fescue (Festuca arundinacea Schreb.) were grown in split tubes, consisting of two sections (each 10 cm in diameter and 20 cm long). Grasses were subjected to three soil moisture regimes: (a) well-watered control: whole soil profile was watered; (b) surface drying: surface 20 cm of soil was dried by withholding irrigation and the lower 20 cm of soil was watered; (c) full drying: whole soil profile was dried. Surface drying had no effects on relative water content (RWC) and chlorophyll content (Chl) for both grasses and only slightly reduced shoot growth for tall fescue. Superoxide dismutase (SOD) activity increased, while catalase (CAT) and peroxidase (POD) activities remained unchanged during most periods of surface drying. Malondialdehyde (MDA) content was unaffected by surface drying for tall fescue, but increased initially and then decreased to the control level for Kentucky bluegrass. Under full drying, RWC, Chl content, and shoot dry weight decreased, but MDA content increased in both grasses; SOD and POD activities initially increased transiently and then decreased; CAT remained unchanged for 25 days and then decreased. These results suggested that both Kentucky bluegrass and tall fescue were capable of surviving surface soil drying. This capability could be related to increases in antioxidant activities, particularly SOD and CAT. However, full drying suppressed antioxidant activities and induced lipid peroxidation.  相似文献   

4.
The goal of our study was to investigate the impact of fungal endophytes in tall fescue (Festuca arundinacea) on rhizodeposition and in turn, the soil microbial community. Sand-based, aseptic microlysimeter units were constructed for the collection of rhizodeposit solutions for chemical analyses from the roots of endophyte-free (E−) and endophyte-infected (E+) tall fescue plants. E+ plants were infected with Neotyphodium coenophialum, the most common endophyte found in tall fescue. Rhizodeposit solutions collected over nine weeks from E+ grass contained more organic carbon and carbohydrates than E−. These solutions were allowed to percolate through columns of plant-free soils to assess the response of the soil microbial communities. Soils to which solutions from E+ grass were applied had significantly higher respiration rates than those receiving solutions from E− grass, suggesting that microbial activity was stimulated by changes in the rhizodeposits. Culture-based assays of the soil microbial community (plate counts and community-level physiological profiling) suggest that the basic structure of the microbial community was not affected by application of rhizodeposit solutions from E+ plants as compared to E−. Our results indicate that the presence of a fungal endophyte may enhance rhizodeposition by tall fescue and could consequently influence microbial mineralization processes in the soil. In grasslands where nutrients may be limiting, hosting a fungal endophyte has the potential to enhance plant nutrient supply indirectly via a stimulatory effect on the soil microbial biomass. Megan M. Van Hecke and Amy M. Treonis - Both authors contributed equally to this work.  相似文献   

5.
Soils play an important role in the global carbon cycle, and can be major source or sink of CO2 depending upon land use, vegetation type and soil management practices. Natural and human impact on soil carbon concentration and storage is poorly understood in native north Australian savanna, yet this represents the largest carbon store in the ecosystem. To gain understanding of possible management impacts on this carbon pool, soil organic carbon (SOC) of the top 1m of red earth sands and sandy loams common in the region was sampled at 5 sites with different vegetation cover and site history (fire regime and tree removal). SOC was high when compared to other published values for savannas and was more comparable with dry-deciduous tropical forests. Sites sampled in this study represent high rainfall savannas of northern Australia (> 1700 mm annual rainfall) that feature frequent burning (2 in 3 years or more frequent) and a cycle of annual re-growth of tall C4 grasses that dominate the savanna understorey. These factors may be responsible for the higher than expected SOC levels of the surface soils, despite high respiration rates. Medium term fire exclusion (15–20 years) at one of the sampled sites (Wildlife Park) dramatically reduced the grassy biomass of the understorey. This site had lower SOC levels when compared to the grass dominated and frequently burnt sites, which may be due to a reduction in detrital input to surface (0–30 cm) soil carbon pools. Exclusion of trees also had a significant impact on both the total amount and distribution of soil organic carbon, with tree removal reducing observed SOC at depth (100 cm). Soil carbon content was higher in the wet season than that in the dry season, but this difference was not statistically significant. Our results indicated that annual cycle of grass growth and wildfire resulted in small carbon accumulation in the upper region of the soil, and removal of woody plants resulted in significant carbon losses to recalcitrant, deep soil horizons greater than 80 cm depth.  相似文献   

6.
Canopy CO2 concentrations in a tropical rainforest in French Guiana were measured continuously for 5 days during the 1994 dry season and the 1995 wet season. Carbon dioxide concentrations ([CO2]) throughout the canopy (0.02–38 m) showed a distinct daily pattern, were well-stratified and decreased with increasing height into the canopy. During both seasons, daytime [CO2] in the upper and middle canopy decreased on average 7–10 μmol mol−1 below tropospheric baseline values measured at Barbados. Within the main part of the canopy (≥ 0.7 m), [CO2] did not differ between the wet and dry seasons. In contrast, [CO2] below 0.7 m were generally higher during the dry season, resulting in larger [CO2] gradients. Supporting this observation, soil CO2 efflux was on average higher during the dry season than during the wet season, either due to diffusive limitations and/or to oxygen deficiency of root and microbial respiration. Soil respiration rates decreased by 40% after strong rain events, resulting in a rapid decrease in canopy [CO2] immediately above the forest floor of about 50␣μmol mol−1. Temporal and spatial variations in [CO2]canopy were reflected in changes of δ13Ccanopy and δ18Ocanopy values. Tight relationships were observed between δ13C and δ18O of canopy CO2 during both seasons (r 2 > 0.86). The most depleted δ13Ccanopy and δ18Ocanopy values were measured immediately above the forest floor (δ13C = −16.4‰; δ18O = 39.1‰ SMOW). Gradients in the isotope ratios of CO2 between the top of the canopy and the forest floor ranged between 2.0‰ and 6.3‰ for δ13C, and between 1.0‰ and 3.5‰ for δ18O. The δ13Cleaf and calculated c i/c a of foliage at three different positions were similar for the dry and wet seasons indicating that the canopy maintained a constant ratio of photosynthesis to stomatal conductance. About 20% of the differences in δ13Cleaf within the canopy was accounted for by source air effects, the remaining 80% must be due to changes in c i/c a. Plotting 1/[CO2] vs. the corresponding δ13C ratios resulted in very tight, linear relationships (r 2 = 0.99), with no significant differences between the two seasons, suggesting negligible seasonal variability in turbulent mixing relative to ecosystem gas exchange. The intercepts of these relationships that should be indicative of the δ13C of respired sources were close to the measured δ13C of soil respired CO2 and to the δ13C of litter and soil organic matter. Estimates of carbon isotope discrimination of the entire ecosystem, Δe, were calculated as 20.3‰ during the dry season and as 20.5‰ during the wet season. Received: 3 March 1996 / Accepted: 19 October 1996  相似文献   

7.
The effect of tall fescue turf on growth, flowering, nodulation, and nitrogen fixing potential of Lupinus albifrons Benth. was examined for greenhouse and field grown plants. No allelopathic effect was observed for lupine plants treated with tall fescue leachates. The nitrogen-fixing potential measured by nodule dry weight and acetylene reduction rates was not significantly affected by tall fescue turf.Both the greenhouse and field studies showed that the growth, sexual reproductive allocation and number of inflorescences were significantly reduced when lupine plants were grown with tall fescue. The root-length densities of tall fescue turf and lupine monoculture were measured. The tall fescue turf had 20 times higher root-length density (20 cm cm-3 soil) than the lupine plant monoculture. This suggests that intense competition at the root zone may be a dominant factor which limits the growth of the lupine plants.The flowering characters of the lupine plants were improved by phosphorus fertilization. Transplanting of older lupine plants into the turf substantially alleviated the tall fescue turf competitive effect.  相似文献   

8.
Carbon isotope ratios (δ13C) were studied in evergreen and deciduous forest ecosystems in semi-arid Utah (Pinus contorta, Populus tremuloides, Acer negundo and Acer grandidentatum). Measurements were taken in four to five stands of each forest ecosystem differing in overstory leaf area index (LAI) during two consecutive growing seasons. The δ13Cleaf (and carbon isotope discrimination) of understory vegetation in the evergreen stands (LAI 1.5–2.2) did not differ among canopies with increasing LAI, whereas understory in the deciduous stands (LAI 1.5–4.5) exhibited strongly decreasing δ13Cleaf values (increasing carbon isotope discrimination) with increasing LAI. The δ13C values of needles and leaves at the top of the canopy were relatively constant over the entire LAI range, indicating no change in intrinsic water-use efficiency with overstory LAI. In all canopies, δ13Cleaf decreased with decreasing height above the forest floor, primarily due to physiological changes affecting c i/c a (> 60%) and to a minor extent due to δ13C of canopy air (< 40%). This intra-canopy depletion of δ13Cleaf was lowest in the open stand (1‰) and greatest in the denser stands (4.5‰). Although overstory δ13Cleaf did not change with canopy LAI, δ13C of soil organic carbon increased with increasing LAI in Pinus contorta and Populus tremuloides ecosystems. In addition, δ13C of decomposing organic carbon became increasingly enriched over time (by 1.7–2.9‰) for all deciduous and evergreen dry temperate forests. The δ13Ccanopy of CO2 in canopy air varied temporally and spatially in all forest stands. Vertical canopy gradients of δ13Ccanopy, and [CO2]canopy were larger in the deciduous Populus tremuloides than in the evergreen Pinu contorta stands of similar LAI. In a very wet and cool year, ecosystem discrimination (Δe) was similar for both deciduous Populus tremulodies (18.0 ± 0.7‰) and evergreen Pinus contorta (18.3 ± 0.9‰) stands. Gradients of δ13Ccanopy and [CO2]canopy were larger in denser Acer spp. stands than those in the open stand. However, 13C enrichment above and photosynthetic draw-down of [CO2]canopy below tropospheric baseline values were larger in the open than in the dense stands, due to the presence of a vigorous understory vegetation. Seasonal patterns of the relationship δ13Ccanopy versus 1/[CO2]canopy were strongly influenced by precipitation and air temperature during the growing season. Estimates of Δe for Acer spp. did not show a significant effect of stand structure, and averaged 16.8 ± 0.5‰ in 1933 and 17.4 ± 0.7‰ in 1994. However, Δe varied seasonally with small fluctuations for the open stand (2‰), but more pronounced changes for the dense stand (5‰). Received: 15 April 1996 / Accepted: 19 October 1996  相似文献   

9.
Sap flow rate (Qw) and leaf water potential (Ψw.leaf) in adult specimens of birch (Betula) and oak (Quercus) were measured under contrasting soil moisture conditions (Ψw.sofl). With sufficient soil moisture Qw reached about 250 cm3h−1 calculated per unit tree-trunk segment as given by 1 cm length of its circumference. In soil water-stress conditions (when Ψw.leaf = = −15 × 105Pa), birch stopped transpiration and wilted. Oak transpired even when Ψw.leaf fell below −20 × 105Pa. The relation between Qw and Ψw.leaf was always linear and with various Ψw.soil differed in the slopes of regression lines only. Hydraulic conductance (Kwcu) with nonlimiting moisture conditions reached about 6 × 10−9m3 10−5Pa−1s−1 and “conductivity” (“kwa”) when calculated per leaf area unit reached about 23 m 10−5Pa−1s−1. Kwcu and “kwa” were of about one half to nine times greater in birch than in oak. On the basis of relations between Ψw.soil at various depths, Ψw.leaf and Qw (resp. Kw) it is possible to assess the maximal rooting depth and the effective depth where the maximum of absorption of roots occurs. It is to be seen that the root system macrostructure substantially participates in the drought avoidance of adult trees in a forest stand.  相似文献   

10.
Wang  Yunbo  Wang  Deli  Shi  Baoku  Sun  Wei 《Plant and Soil》2020,447(1-2):581-598
Background and aims

Understanding the influences of environmental variation and anthropogenic disturbance on soil respiration (RS) is critical for accurate prediction of ecosystem C uptake and release. However, surprisingly, little is known about how soil respiration and its components respond to grazing in the context of global climate change (i.e., precipitation or nitrogen deposition increase).

Methods

We conducted a field manipulative grazing experiment with water and nitrogen addition treatments in a meadow grassland on the Songnen Plain, China, and assessed the combined influences of grazing and global change factors on RS, autotrophic respiration (RA), and heterotrophic respiration (RH).

Results

Compared with the control plots, RS, RA and RH all exhibited positive responses to water or nitrogen addition in the wet year, while a similar effect occurred only for RH in the dry year. The responses of RS to precipitation regimes were dominated by both frequency and amount. However, grazing significantly inhibited both soil respiration and its components in all subplots. Further analysis demonstrated that the plant root/shoot ratio, belowground biomass and microbial biomass played dominant roles in shaping these C exchange processes.

Conclusion

These findings suggest that changes in precipitation regimes, nitrogen deposition, and land utilization may significantly alter soil respiration and its component processes by affecting local carbon users (roots and soil microorganism) and carbon substrate supply in meadow steppe grasslands. The future soil carbon sequestration in the studied meadow steppe will be benefited more by the moderate grazing disturbance.

  相似文献   

11.
Warming temperatures are likely to accelerate permafrost thaw in the Arctic, potentially leading to the release of old carbon previously stored in deep frozen soil layers. Deeper thaw depths in combination with geomorphological changes due to the loss of ice structures in permafrost, may modify soil water distribution, creating wetter or drier soil conditions. Previous studies revealed higher ecosystem respiration rates under drier conditions, and this study investigated the cause of the increased ecosystem respiration rates using radiocarbon signatures of respired CO2 from two drying manipulation experiments: one in moist and the other in wet tundra. We demonstrate that higher contributions of CO2 from shallow soil layers (0–15 cm; modern soil carbon) drive the increased ecosystem respiration rates, while contributions from deeper soil (below 15 cm from surface and down to the permafrost table; old soil carbon) decreased. These changes can be attributed to more aerobic conditions in shallow soil layers, but also the soil temperature increases in shallow layers but decreases in deep layers, due to the altered thermal properties of organic soils. Decreased abundance of aerenchymatous plant species following drainage in wet tundra reduced old carbon release but increased aboveground plant biomass elevated contributions of autotrophic respiration to ecosystem respiration. The results of this study suggest that drier soils following drainage may accelerate decomposition of modern soil carbon in shallow layers but slow down decomposition of old soil carbon in deep layers, which may offset some of the old soil carbon loss from thawing permafrost.  相似文献   

12.
The dynamic responses of stomatal conductance (g s) net photosynthesis (A) and leaf water potential (Ψleaf) to a progressive drought were examined in nine poplar clones (Populus spp.) with contrasting drought tolerance from the Canadian Prairies, a region prone to frequent droughts. Plants were grown in a greenhouse and either well-watered or drought preconditioned (5–6 cycles of drought) for 8 weeks. At the end of the last cycle, plants were watered to saturation then progressively dried-down (−1.25 MPa Ψsoil) during which A, g s and Ψleaf were measured. Drought tolerant Okanese reached the lowest combined Ψleaf while sensitive clones (Assiniboine and Imperial) had the highest (−1.6 vs. −1.1 MPa). Steady state g s (measured under well watered conditions) was lower in tolerant (Okanese and Tristis SBC#1) than in sensitive clones. Preconditioning reduced steady state g s in all clones, lowered the threshold Ψleaf for stomatal closure and the minimum Ψleaf in most clones but did not affect the steady state A. Tolerant and some moderately tolerant clones maintained higher A at lower Ψleaf than the other clones. Stomatal closure was gradual in tolerant clones and in moderately tolerant Northwest but rapid in the other clones. Stomata in the sensitive clones closed at the highest Ψleaf, Okanese closed at the lowest. The substantial range in gas exchange and Ψleaf responses observed here represented both drought tolerance and taxonomic (Aegiros or Tacamahaca sections) traits which could play a role in the survival and productivity in environments with limited water or during periods of drought.  相似文献   

13.
Supply-side controls on soil respiration among Oregon forests   总被引:3,自引:0,他引:3  
To test the hypothesis that variation in soil respiration is related to plant production across a diverse forested landscape, we compared annual soil respiration rates with net primary production and the subsequent allocation of carbon to various ecosystem pools, including leaves, fine roots, forests floor, and mineral soil for 36 independent plots arranged as three replicates of four age classes in three climatically distinct forest types. Across all plots, annual soil respiration was not correlated with aboveground net primary production (R2=0.06, P>0.1) but it was moderately correlated with belowground net primary production (R2=0.46, P<0.001). Despite the wide range in temperature and precipitation regimes experienced by these forests, all exhibited similar soil respiration per unit live fine root biomass, with about 5 g of carbon respired each year per 1 g of fine root carbon (R2=0.45, P<0.001). Annual soil respiration was only weakly correlated with dead carbon pools such as forest floor and mineral soil carbon (R2=0.14 and 0.12, respectively). Trends between soil respiration, production, and root mass among age classes within forest type were inconsistent and do not always reflect cross‐site trends. These results are consistent with a growing appreciation that soil respiration is strongly influenced by the supply of carbohydrates to roots and the rhizosphere, and that some regional patterns of soil respiration may depend more on belowground carbon allocation than the abiotic constraints imposed on subsequent metabolism.  相似文献   

14.
Drained peatlands are hotspots for greenhouse gas (GHG) emissions, which could be mitigated by rewetting and land use change. We performed an ecological/economic analysis of rewetting drained fertile peatlands in a hemiboreal climate using different land use strategies over 80 years. Vegetation, soil processes, and total GHG emissions were modeled using the CoupModel for four scenarios: (1) business as usual—Norway spruce with average soil water table of ?40 cm; (2) willow with groundwater at ?20 cm; (3) reed canary grass with groundwater at ?10 cm; and (4) a fully rewetted peatland. The predictions were based on previous model calibrations with several high‐resolution datasets consisting of water, heat, carbon, and nitrogen cycling. Spruce growth was calibrated by tree‐ring data that extended the time period covered. The GHG balance of four scenarios, including vegetation and soil, were 4.7, 7.1, 9.1, and 6.2 Mg CO2eq ha?1 year?1, respectively. The total soil emissions (including litter and peat respiration CO2 + N2O + CH4) were 33.1, 19.3, 15.3, and 11.0 Mg CO2eq ha?1 year?1, respectively, of which the peat loss contributed 35%, 24%, and 7% of the soil emissions for the three drained scenarios, respectively. No peat was lost for the wet peatland. It was also found that draining increases vegetation growth, but not as drastically as peat respiration does. The cost–benefit analysis (CBA) is sensitive to time frame, discount rate, and carbon price. Our results indicate that the net benefit was greater with a somewhat higher soil water table and when the peatland was vegetated with willow and reed canary grass (Scenarios 2 and 3). We conclude that saving peat and avoiding methane release using fairly wet conditions can significantly reduce GHG emissions, and that this strategy should be considered for land use planning and policy‐making.  相似文献   

15.
The growth response of endophyte-infected (EI) and endophyte-free (EF) tall fescue to salt stress was investigated under two growing systems (hydroponic and soil in pots). The hydroponic experiment showed that endophyte infection significantly increased tiller and leaf number, which led to an increase in the total biomass of the host grass. Endophyte infection enhanced Na accumulation in the host grass and improved Na transport from the roots to the shoots. With a 15 g l?1 NaCl treatment, the phytoextraction efficiency of EI tall fescue was 2.34-fold higher than EF plants. When the plants were grown in saline soils, endophyte infection also significantly increased tiller number, shoot height and the total biomass of the host grass. Although EI tall fescue cannot accumulate Na to a level high enough for it to be termed a halophyte, the increased biomass production and stress tolerance suggested that endophyte / plant associations had the potential to be a model for endophyte-assisted phytoextraction in saline soils.  相似文献   

16.
Predictions of warming and drying in the Mediterranean and other regions require quantifying of such effects on ecosystem carbon dynamics and respiration. Long‐term effects can only be obtained from forests in which seasonal drought is a regular feature. We carried out measurements in a semiarid Pinus halepensis (Aleppo pine) forest of aboveground respiration rates of foliage, Rf, and stem, Rt over 3 years. Component respiration combined with ongoing biometric, net CO2 flux [net ecosystem productivity (NEP)] and soil respiration measurements were scaled to the ecosystem level to estimate gross and net primary productivity (GPP, NPP) and carbon‐use efficiency (CUE=NPP/GPP) using 6 years data. GPP, NPP and NEP were, on average, 880, 350 and 211 g C m?2 yr?1, respectively. The above ground respiration made up half of total ecosystem respiration but CUE remained high at 0.4. Large seasonal variations in both Rf and Rt were not consistently correlated with seasonal temperature trends. Seasonal adjustments of respiration were observed in both the normalized rate (R20) and short‐term temperature sensitivity (Q10), resulting in low respiration rates during the hot, dry period. Rf in fully developed needles was highest over winter–spring, and foliage R20 was correlated with photosynthesis over the year. Needle growth occurred over summer, with respiration rates in developing needles higher than the fully developed foliage at most times. Rt showed a distinct seasonal maximum in May irrespective of year, which was not correlated to the winter stem growth, but could be associated with phenological drivers such as carbohydrate re‐mobilization and cambial activity. We show that in a semiarid pine forest photosynthesis and stem growth peak in (wet) winter and leaf growth in (dry) summer, and associated adjustments of component respiration, dominated by those in R20, minimize annual respiratory losses. This is likely a key for maintaining high CUE and ecosystem productivity similar to much wetter sites, and could lead to different predictions of the effect of warming and drying climate on productivity of pine forests than based on short‐term droughts.  相似文献   

17.
Effects of above-ground herbivory on short-term plant carbon allocation were studied using maize (Zea mays) and a generalist lubber grasshopper (Romalea guttata). We hypothesized that above-ground herbivory stimulates current net carbon assimilate allocation to below-ground components, such as roots, root exudation and root and soil respiration. Maize plants 24 days old were grazed (c. 25–50% leaf area removed) by caging grasshoppers around individual plants and 18 h later pulse-labelled with14CO2. During the next 8 h,14C assimilates were traced to shoots, roots, root plus soil respiration, root exudates, rhizosphere soil, and bulk soil using carbon-14 techniques. Significant positive relationships were observed between herbivory and carbon allocated to roots, root exudates, and root and soil respiration, and a significant negative relationship between herbivory and carbon allocated to shoots. No relationship was observed between herbivory and14C recovered from soil. While herbivory increased root and soil respiration, the peak time for14CO2 evolved as respiration was not altered, thereby suggesting that herbivory only increases the magnitude of respiration, not patterns of translocation through time. Although there was a trend for lower photosynthetic rates of grazed plants than photosynthetic rates of ungrazed plants, no significant differences were observed among grazed and ungrazed plants. We conclude that above-ground herbivory can increase plant carbon fluxes below ground (roots, root exudates, and rhizosphere respiration), thus increasing resources (e.g., root exudates) available to soil organisms, especially microbial populations.  相似文献   

18.

Background

Thermal acclimation of foliar respiration and photosynthesis is critical for projection of changes in carbon exchange of terrestrial ecosystems under global warming.

Methodology/Principal Findings

A field manipulative experiment was conducted to elevate foliar temperature (T leaf) by 2.07°C in a temperate steppe in northern China. R d/T leaf curves (responses of dark respiration to T leaf), A n/T leaf curves (responses of light-saturated net CO2 assimilation rates to T leaf), responses of biochemical limitations and diffusion limitations in gross CO2 assimilation rates (A g) to T leaf, and foliar nitrogen (N) concentration in Stipa krylovii Roshev. were measured in 2010 (a dry year) and 2011 (a wet year). Significant thermal acclimation of R d to 6-year experimental warming was found. However, A n had a limited ability to acclimate to a warmer climate regime. Thermal acclimation of R d was associated with not only the direct effects of warming, but also the changes in foliar N concentration induced by warming.

Conclusions/Significance

Warming decreased the temperature sensitivity (Q 10) of the response of R d/A g ratio to T leaf. Our findings may have important implications for improving ecosystem models in simulating carbon cycles and advancing understanding on the interactions between climate change and ecosystem functions.  相似文献   

19.
Interpreting,measuring, and modeling soil respiration   总被引:32,自引:0,他引:32  
This paper reviews the role of soil respiration in determining ecosystem carbon balance, and the conceptual basis for measuring and modeling soil respiration. We developed it to provide background and context for this special issue on soil respiration and to synthesize the presentations and discussions at the workshop. Soil respiration is the largest component of ecosystem respiration. Because autotrophic and heterotrophic activity belowground is controlled by substrate availability, soil respiration is strongly linked to plant metabolism, photosynthesis and litterfall. This link dominates both base rates and short-term fluctuations in soil respiration and suggests many roles for soil respiration as an indicator of ecosystem metabolism. However, the strong links between above and belowground processes complicate using soil respiration to understand changes in ecosystem carbon storage. Root and associated mycorrhizal respiration produce roughly half of soil respiration, with much of the remainder derived from decomposition of recently produced root and leaf litter. Changes in the carbon stored in the soil generally contribute little to soil respiration, but these changes, together with shifts in plant carbon allocation, determine ecosystem carbon storage belowground and its exchange with the atmosphere. Identifying the small signal from changes in large, slow carbon pools in flux dominated by decomposition of recent material and autotrophic and mycorrhizal respiration is a significant challenge. A mechanistic understanding of the belowground carbon cycle and of the response of different components to the environment will aid in identifying this signal. Our workshop identified information needs to help build that understanding: (1) the mechanisms that control the coupling of canopy and belowground processes; (2) the responses of root and heterotrophic respiration to environment; (3) plant carbon allocation patterns, particularly in different forest developmental stages, and in response to treatments (warming, CO2, nitrogen additions); and (4) coupling measurements of soil respiration with aboveground processes and changes in soil carbon. Multi-factor experiments need to be sufficiently long to allow the systems to adjust to the treatments. New technologies will be necessary to reduce uncertainty in estimates of carbon allocation, soil carbon pool sizes, and different responses of roots and microbes to environmental conditions.  相似文献   

20.
盐生境下硅对坪用高羊茅生物学特性的影响   总被引:2,自引:0,他引:2  
刘慧霞  郭兴华  郭正刚 《生态学报》2011,31(23):7039-7046
干旱半干旱区草坪绿地的长期灌溉容易引发土壤次生盐渍化,提高草坪草在盐生境下的生长发育能力是应对土壤次生盐渍化的主要途径之一.采用盆栽试验研究了盐生境下硅对坪用高羊茅(Festuca arundinaea)生物学特性的影响.结果表明,向盐生境土壤中添加不同浓度硅均提前高羊茅出苗时间2d,加快出苗速率,增加出苗总数,提高保苗率,且总出苗率和保苗率随着硅浓度增加而显著增大(P<0.05),这说明盐生境下向土壤添加硅改善了幼苗完全死亡的现象.盐生境下硅显著增加了高羊茅叶长,株高和分蘖数,但对叶宽影响不显著,说明硅能够促进高羊茅生长,但对草坪绿地的质地影响不大.虽然硅能显著增加高羊茅总生物量(P<0.05),但较低浓度时促进其茎叶生长,高浓度促进其根系生长.硅在高羊茅体内的沉积量随施入硅增加而增大,但其茎叶和根系内硅含量不超过3.0%,且根系内硅含量约为茎叶内硅含量的2倍.结果显示,硅提高了坪用高羊茅在盐生境下的适应能力,这为以后草坪绿地管理中应对土壤潜在盐渍化的问题提供了一定的科学依据.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号