首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
RNase II is a 3'-5' exoribonuclease that processively hydrolyzes single-stranded RNA generating 5' mononucleotides. This enzyme contains a catalytic core that is surrounded by three RNA-binding domains. At its C terminus, there is a typical S1 domain that has been shown to be critical for RNA binding. The S1 domain is also present in the other major 3'-5' exoribonucleases from Escherichia coli: RNase R and polynucleotide phosphorylase (PNPase). In this report, we examined the involvement of the S1 domain in the different abilities of these three enzymes to overcome RNA secondary structures during degradation. Hybrid proteins were constructed by replacing the S1 domain of RNase II for the S1 from RNase R and PNPase, and their exonucleolytic activity and RNA-binding ability were examined. The results revealed that both the S1 domains of RNase R and PNPase are able to partially reverse the drop of RNA-binding ability and exonucleolytic activity resulting from removal of the S1 domain of RNase II. Moreover, the S1 domains investigated are not equivalent. Furthermore, we demonstrate that S1 is neither responsible for the ability to overcome secondary structures during RNA degradation, nor is it related to the size of the final product generated by each enzyme. In addition, we show that the S1 domain from PNPase is able to induce the trimerization of the RNaseII-PNP hybrid protein, indicating that this domain can have a role in the biogenesis of multimers.  相似文献   

2.
In most organisms, dedicated multiprotein complexes, called exosome or RNA degradosome, carry out RNA degradation and processing. In addition to varying exoribonucleases or endoribonucleases, most of these complexes contain a RNA helicase. In the Gram‐positive bacterium Bacillus subtilis, a RNA degradosome has recently been described; however, no RNA helicase was identified. In this work, we tested the interaction of the four DEAD box RNA helicases encoded in the B. subtilis genome with the RNA degradosome components. One of these helicases, CshA, is able to interact with several of the degradosome proteins, i.e. RNase Y, the polynucleotide phosphorylase, and the glycolytic enzymes enolase and phosphofructokinase. The determination of in vivo protein–protein interactions revealed that CshA is indeed present in a complex with polynucleotide phosphorylase. CshA is composed of two RecA‐like domains that are found in all DEAD box RNA helicases and a C‐terminal domain that is present in some members of this protein family. An analysis of the contribution of the individual domains of CshA revealed that the C‐terminal domain is crucial both for dimerization of CshA and for all interactions with components of the RNA degradosome, including RNase Y. A transfer of this domain to CshB allowed the resulting chimeric protein to interact with RNase Y suggesting that this domain confers interaction specificity. As a degradosome component, CshA is present in the cell in similar amounts under all conditions. Taken together, our results suggest that CshA is the functional equivalent of the RhlB helicase of the Escherichia coli RNA degradosome.  相似文献   

3.
RNase E: still a wonderfully mysterious enzyme   总被引:21,自引:4,他引:17  
Ribonuclease E (RNase E), which is encoded by an essential Escherichia coli gene known variously as rne, ams, and hmp, was discovered initially as an rRNA-processing enzyme but is now known to have a general role in RNA decay. Multiple functions, including the ability to cleave RNA endonucleolyticaliy in AU-rich single-strand regions, RNA-binding capabilities, and the ability to interact with polynucleotide phosphorylase and other proteins implicated in the processing and degradation of RNA, are encoded by its 1061 amino acid residues. The presence of homologues and functional analogues of the rne gene in a variety of prokaryotic and eukaryotic species suggests that its functions have been highly conserved during evolution. While much has been learned in recent years about the structure and functions of RNase E, there is continuing mystery about possible additional activities and molecular interactions of this enzyme.  相似文献   

4.
Summary Protein fragments containing the RNA-binding domain of Escherichia coli rho protein have been over-expressed in E. coli. NMR spectra of the fragment containing residues 1–116 of rho protein (Rho116) show that a region of this protein is unfolded in solution. Addition of (dC)10 to this fragment stabilizes the folded form of the protein. The fragment comprising residues 1–130 of rho protein (Rho130) is found to be stably folded, both in the absence and presence of nucleic acid. NMR studies of the complex of Rho 130 with RNA and DNA oligonucleotides indicate that the binding-site size, affinity, and specificity of Rho 130 are similar to those of intact rho protein; therefore, Rho 130 is a suitable model of the RNA-binding domain of rho protein. NMR line widths as well as titration experiments of Rho130 complexed with oligonucleotides of various lengths suggest that Rho130 forms oligomers in the presence of longer oligonucleotides. 1H, 15N and 13C resonance assignments were facilitated by the utilization of two pulse sequences, CN-NOESY and CCH-TOCSY. The secondary structure of unliganded Rho130 has been determined by NMR techniques, and it is clear that the RNA-binding domain of rho is more structurally similar to the cold shock domain than to the RNA recognition motif.Abbreviations Rho116, Rho130 protein containing the first 116 (130) residues of rho - CSD cold shock domain - RRM RNA recognition motif - RBD RNA-binding domain - IPTG isopropyl -D-thiogalactopyranoside - EDTA ethylenediaminetetraacetic acid - NOE nuclear Overhauser enhancement  相似文献   

5.
DEAD-box proteins are found in all domains of life and participate in almost all cellular processes that involve RNA. The presence of DEAD and Helicase_C conserved domains distinguish these proteins. DEAD-box proteins exhibit RNA-dependent ATPase activity in vitro, and several also show RNA helicase activity. In this study, we analyzed the distribution and architecture of DEAD-box proteins among bacterial genomes to gain insight into the evolutionary pathways that have shaped their history. We identified 1,848 unique DEAD-box proteins from 563 bacterial genomes. Bacterial genomes can possess a single copy DEAD-box gene, or up to 12 copies of the gene, such as in Shewanella. The alignment of 1,208 sequences allowed us to perform a robust analysis of the hallmark motifs of DEAD-box proteins and determine the residues that occur at high frequency, some of which were previously overlooked. Bacterial DEAD-box proteins do not generally contain a conserved C-terminal domain, with the exception of some members that possess a DbpA RNA-binding domain (RBD). Phylogenetic analysis showed a separation of DbpA-RBD-containing and DbpA-RBD-lacking sequences and revealed a group of DEAD-box protein genes that expanded mainly in the Proteobacteria. Analysis of DEAD-box proteins from Firmicutes and γ-Proteobacteria, was used to deduce orthologous relationships of the well-studied DEAD-box proteins from Escherichia coli and Bacillus subtilis. These analyses suggest that DbpA-RBD is an ancestral domain that most likely emerged as a specialized domain of the RNA-dependent ATPases. Moreover, these data revealed numerous events of gene family expansion and reduction following speciation.  相似文献   

6.
Ribosomal RNA is normally a stable molecule in bacterial cells with negligible turnover. Antibiotics which impair ribosomal subunit assembly promote the accumulation of subunit intermediates in cells which are then degraded by ribonucleases. It is predicted that cells expressing one or more mutated ribonucleases will degrade the antibiotic-bound particle less efficiently, resulting in increased sensitivity to the antibiotic. To test this, eight ribonuclease-deficient strains of Escherichia coli were grown in the presence or absence of azithromycin. Cell viability and protein synthesis rates were decreased in these strains compared with wild type cells. Degradation of 23S rRNA and recovery from azithromycin inhibition were examined by 3H-uridine labeling and by hybridization with a 23S rRNA specific probe. Mutants defective in ribonuclease II and polynucleotide phosphorylase demonstrated hypersensitivity to the antibiotic and showed a greater extent of 23S rRNA accumulation and a slower recovery rate. The results suggest that these two ribonucleases are important in 23S rRNA turnover in antibiotic-inhibited E. coli cells.  相似文献   

7.
K C Tsou  K F Yip 《Biopolymers》1974,13(5):987-993
Poly(1,N6-etheno-2-aza-adenylic acid) [poly(2-aza-εA)] was synthesized from 1,N6-etheno-2-aza-adenosine 5′-diphosphate (2-aza-εADP) and Escherichia coli polynucleotide phosphorylase. The values Km = 1.02 mM, V = 1.06 μmol hr?1 enzyme unit?1 were found for the polymerization reaction. In contrast to polyadenylic acid, this novel fluorescent polymer has a random structure in solution. The application of the 2-aza-εADP for localization of polynucleotide phosphorylase was also described.  相似文献   

8.
Escherichia coli contains a large CspA family, CspA to CspI. Here, we demonstrate that E. coli is highly protected against cold-shock stress, as these CspA homologues existed at approximately a total of two million molecules per cell at low temperature and growth defect was not observed until four csp genes (cspA, cspB, cspE and cspG) were deleted. The quadruple-deletion strain acquired cold sensitivity and formed filamentous cells at 15 degrees C although chromosomes were normally segregated. The cold-sensitivity and filamentation phenotypes were suppressed by all members of the CspA family except for CspD, which causes lethality upon overexpression. Interestingly, the cold sensitivity of the mutant was also suppressed by the S1 domain of polynucleotide phosphorylase (PNPase), which also folds into a beta-barrel structure similar to that of CspA. The present results show that cold-shock proteins and S1 domains share not only the tertiary structural similarity but also common functional properties, suggesting that these seemingly distinct protein categories may have evolved from a common primordial RNA-binding protein.  相似文献   

9.
Real-time polymerase chain reaction (PCR)-based methodology for the determination of rRNA gene (rrn) copy number was introduced and demonstrated. Both absolute and relative quantifications were tested with Escherichia coli. The separate detection of rRNA gene and chromosomal DNA was achieved using two primer sets, specific for 16S rRNA gene and for D-1-deoxyxylulose 5-phosphate synthase gene (dxs), respectively. As dxs is a single-copy gene of E. coli chromosomal DNA, the rrn copy number can be determined as the copy ratio of rrn to dxs. This methodology was successfully applied to determine the rrn copy number in E. coli cells. The results from absolute and relative quantifications were identical and highly reproducible with coefficient of variation (CV) values of 1.8–4.6%. The estimated rrn copy numbers also corresponded to the previously reported value in E. coli (i.e., 7), indicating that the results were reliable. The methodology introduced in this study is faster and cost-effective without safety problems compared to the traditionally used Southern blot analysis. The fundamentals in our methodology would be applicable to any microorganism, as long as having the sequence information of the rRNA gene and another chromosomal gene with a known copy number.  相似文献   

10.
In this study, a cDNA encoding a small RNA-binding protein was isolated from a Nicotiana sylvestris cDNA library. The predicted protein (RGP-3) is 144 amino acid residues long, and contains a consensus sequence-type RNA binding domain (CS-RBD) of 83 amino acids and a short glycine-rich region of 15 amino acids. RGP-3 synthesized in Escherichia coli has high affinity for poly(U). Immunocytochemical analysis indicated that RGP-3 is localized in the nucleoplasm, and that RGP-1b, a related protein reported previously, is localized in the nucleolus. Possible roles of these proteins in pre-mRNA or pre-rRNA processing are discussed.  相似文献   

11.
Bacterial polynucleotide phosphorylase (PNPase) plays a major role in mRNA turnover by the degradation of RNA from the 3′- to 5′-ends. Here, we determined the crystal structures of the wild-type and a C-terminal KH/S1 domain-truncated mutant (ΔKH/S1) of Escherichia coli PNPase at resolutions of 2.6 Å and 2.8 Å, respectively. The six RNase PH domains of the trimeric PNPase assemble into a ring-like structure containing a central channel. The truncated mutant ΔKH/S1 bound and cleaved RNA less efficiently with an eightfold reduced binding affinity. Thermal melting and acid-induced trimer dissociation studies, analyzed by circular dichroism and dynamic light scattering, further showed that ΔKH/S1 formed a less stable trimer than the full-length PNPase. The crystal structure of ΔKH/S1 is more expanded, containing a slightly wider central channel than that of the wild-type PNPase, suggesting that the KH/S1 domain helps PNPase to assemble into a more compact trimer, and it regulates the channel size allosterically. Moreover, site-directed mutagenesis of several arginine residues in the channel neck regions produced defective PNPases that either bound and cleaved RNA less efficiently or generated longer cleaved oligonucleotide products, indicating that these arginines were involved in RNA binding and processive degradation. Taking these results together, we conclude that the constricted central channel and the basic-charged residues in the channel necks of PNPase play crucial roles in trapping RNA for processive exonucleolytic degradation.  相似文献   

12.
13.
14.
The Guanine-rich RNA sequence binding factor 1 (GRSF1) is a member of the heterogeneous nuclear ribonucleoprotein F/H family and has been implicated in RNA processing, RNA transport and translational regulation. Amino acid alignments and homology modeling suggested the existence of three distinct RNA-binding domains and two auxiliary domains. Unfortunately, little is known about the molecular details of GRSF1/RNA interactions. To explore the RNA-binding mechanisms we first expressed full-length human GRSF1 and several truncation mutants, which include the three separated qRRM domains in E. coli, purified the recombinant proteins and quantified their RNA-binding affinity by RNA electrophoretic mobility shift assays. The expression levels varied between 1 and 10 mg purified protein per L bacterial liquid culture and for full-length human GRSF1 a binding constant (KD-value) of 0.5 μM was determined. In addition, our mechanistic experiments with different truncation mutants allowed the following conclusions: i) Deletion of either of the three RNA-binding domains impaired the RNA-binding affinity suggesting that the simultaneous presence of the three domains is essential for high-affinity RNA-binding. ii) Deletion of the Ala-rich auxiliary domain did hardly affect RNA-binding. Thus, this structural subunit may not be involved in RNA interaction. iii) Deletion of the acidic auxiliary domain improved the RNA-binding suggesting a regulatory role for this structural motif. iv) The isolated RNA-binding domains did not exhibit sizeable RNA-binding affinities. Taken together these data suggest that a cooperative interaction of the three qRRMs is required for high affinity RNA-binding.  相似文献   

15.
16.
DNA replication stops when chemical or physical damage occurs to the DNA. Repairing genomic DNA and reloading the replication helicase are crucial steps for restarting DNA replication. The Escherichia coli primosome is a complex of proteins and DNA responsible for reloading the replication helicase DnaB. DnaT, a protein found in the primosome complex, contains two functional domains. The C-terminal domain (89–179) forms an oligomeric complex with single-stranded DNA. Although the N-terminal domain (1–88) forms an oligomer, the specific residues responsible for this oligomeric structure have not yet been identified.In this study, we proposed that the N-terminal domain of DnaT has a dimeric antitoxin structure based on its primary sequence. Based on the proposed model, we confirmed the site of oligomerization in the N-terminal domain of DnaT through site-directed mutagenesis. The molecular masses and thermodynamic stabilities of the site-directed mutants located at the dimer interface, namely Phe42, Tyr43, Leu50, Leu53, and Leu54, were found to be lower than those of the wild-type. Moreover, we observed a decrease in the molecular masses of the V10S and F35S mutants compared to the wild-type DnaT. NMR analysis of the V10S mutant revealed that the secondary structure of the N-terminal domain of DnaT was consistent with the proposed model. Additionally, we have demonstrated that the stability of the oligomer formed by the N-terminal domain of DnaT is crucial for its function. Based on these findings, we propose that the DnaT oligomer plays a role in replication restart in Escherichia coli.  相似文献   

17.
Summary The gene for Escherichia coli ribosomal protein S15 (rpsO) was cloned on the vector pBR322 from F-prime JCH55 DNA. The recombinant plasmid was transformed to Serratia marcescens cells and it was proved that E. coli S15 was synthesized and incorporated into ribosome particles in S. marcescens cells. A DNA fragment containing rpsO was also inserted into the vector pRF3, which changes its copy number depending on the growth temperature in a temperature-sensitive polA host. By use of this recombinant plasmid it was shown that the relative synthesis rate of S15 increased about twice even when the copy number of the plasmid increased more than twenty-fold.  相似文献   

18.
Escherichia coli ribosomal protein S1 is required for the translation initiation of messenger RNAs, in particular when their Shine–Dalgarno sequence is degenerated. Closely related forms of the protein, composed of the same number of domains (six), are found in all Gram-negative bacteria. More distant proteins, generally formed of fewer domains, have been identified, by sequence similarities, in Gram-positive bacteria and are also termed ‘S1 proteins’. However in the absence of functional information, it is generally difficult to ascertain their relationship with Gram-negative S1. In this article, we report the solution structure of the fourth and sixth domains of the E. coli protein S1 and show that it is possible to characterize their β-barrel by a consensus sequence that allows a precise identification of all domains in Gram-negative and Gram-positive S1 proteins. In addition, we show that it is possible to discriminate between five domain types corresponding to the domains 1, 2, 3, 4–5 and 6 of E. coli S1 on the basis of their sequence. This enabled us to identify the nature of the domains present in Gram-positive proteins and, subsequently, to probe the filiations between all forms of S1.  相似文献   

19.
Plasmid R1 drd-19 and two of its copy mutants (pKN102 and pKN103) were transferred from Escherichia coli to Salmonella typhimurium, where the expression of the copy mutations was studied further. The copy number (ratio of plasmid DNA to chromosomal DNA) was the same in S. typhimurium and in E. coli. The activities of the plasmid-coded antibiotic-metabolizing enzymes β-lactamase, chloramphenicol acetyltransferase, and streptomycin adenylyltransferase as well as the resistances to ampicillin and streptomycin were proportional to the gene dosage up to at least a threefold increase in the steady state plasmid copy number, whereas resistance to chloramphenicol showed no increase with increased number of plasmid copies per chromosome equivalent. Also the resistance to rifampicin was affected since S. typhimurium cells became more sensitive the higher the copy number of the resident plasmid. Furthermore, plasmid R1 showed molecular instability in S. typhimurium cells since there was a tendency to dissociate into resistance transfer factors and resistance determinants and also to form miniplasmids. This tendency to instability was more pronounced the higher the plasmid copy number.  相似文献   

20.
A polynucleotide phosphorylase was isolated from the Thermus thermophilus protein fractions, obtained at different steps of purification of elongation factors, and immobilized on agarose activated with cyanogen bromide and macroporous glass modified with (3,3-diethoxypropyl)triethoxysilane. The preparations of the native and immobilized enzyme catalyzed rather efficiently the addition of adenylyl and guanylyl residues to oligonucleotide primers, in contrast to the E. coli and M. luteus polynucleotide phosphorylases. Tri-, tetra- and pentanucleotides with 3'-terminal guanosine and adenosine were obtained including structural analogues of the anticodon fragment 34-37 of yeast tRNA(Phe).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号