首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The molecular relationship between pUB110 (Kmr, 4.4 kilobases (kb] and antibiotic-resistant plasmids from thermophilic bacilli, pTHT15 (Tcr, 4.5 kb) and pTHN1 (Kmr, 4.8 kb), were studied by blot hybridization. Extensive homology was observed between pUB110 and pTHT15 at the region which includes the replication origin. Incompatibility studies revealed that pTHT15 and pUB110 were slightly incompatible in Bacillus subtilis but that they were apparently compatible in B. stearothermophilus. This difference in incompatibility between pTHT15 and pUB110 in the two host cells might be due to a difference in the copy number of pTHT15 in the two organisms. From the results of blot hybridization, mode of kanamycin inactivation, and DNA sequencing, it was determined that pTHN1 encoded the identical gene for kanamycin nucleotidyl transferase as that of pUB110. All three plasmids pTHT15, pTHN1, and pUB110 shared a common DNA homology at the in vitro membrane-binding region.  相似文献   

2.
Ten plasmids were isolated as covalently closed circular deoxyribonucleic acid from antibiotic-resistant thermophilic bacteria. Of the 10 plasmids tested, 2 could transform Bacillus subtilis, yielding resistance to specific antibiotics. Plasmid pTB20 (2.8 X 10(6) daltons, approximately 24 copies per chromosome) specifies resistance to tetracycline (Tcr), whereas pTB19 (17.2 X 10(6) daltons, approximately 1 copy per chromosome) renders the host resistant to both kanamycin and tetracycline (KMrTcr). Three plasmids were not self-transmissible. The restriction endonuclease cleavage maps of the two plasmids, pTB19 and pTB20, were constructed. pTB19 and pTB20, both of which were originally isolated from thermophilic bacilli, were tested for stability in B. subtilis. Digestion of pTB19 followed by ligation yielded deletion plasmids pTB512 (Kmr), pTB52 (Tcr), and pTB53 (KmrTcr). Determinants of Kmr, Tcr, and DNA replication were associated with EcoRI fragments R1b (4.2 X 10(6) daltons), R3 (2.8 X 10(6) daltons), and R1a (4.2 X 10(6) daltons), respectively. Restriction endonuclease cleavage maps of pTB51, pTB52, and pTB53 were constructed. Tetracycline resistance of pTB20 was confirmed to be in the EcoRI fragment (1.85 X 10(6) daltons).  相似文献   

3.
The structural gene for a thermostable alpha-amylase from Bacillus stearothermophilus was cloned in plasmids pTB90 and pTB53. It was expressed in both B. stearothermophilus and Bacillus subtilis. B. stearothermophilus carrying the recombinant plasmid produced about fivefold more alpha-amylase (20.9 U/mg of dry cells) than did the wild-type strain of B. stearothermophilus. Some properties of the alpha-amylases that were purified from the transformants of B. stearothermophilus and B. subtilis were examined. No significant differences were observed among the enzyme properties despite the difference in host cells. It was found that the alpha-amylase, with a molecular weight of 53,000, retained about 60% of its activity even after treatment at 80 degrees C for 60 min.  相似文献   

4.
An efficient protoplast transformation system was established for Bacillus stearothermophilus NUB3621 using thermophilic plasmid pTHT15 Tcr (4.5 kb) and mesophilic plasmid pLW05 Cmr (3 kb), a spontaneous deletion derivative of pPL401 Cmr Kmr. The efficiency of transformation of NUB3621 with pLW05 and pTHT15 was 2 x 10(7) to 4 x 10(8) transformants per micrograms DNA. The transformation frequency (transformants per regenerant) was 0.5 to 1.0. Chloramphenicol-resistant and tetracycline-resistant transformants were obtained when competent cells of Bacillus subtilis were transformed with pLW05 [2.5 x 10(5) transformants (microgram DNA)-1] and pTHT15 [1.8 x 10(5) transformants (micrograms DNA)-1], respectively. Thus, these plasmids are shuttle vectors for mesophilic and thermophilic bacilli. Plasmid pLW05 Cmr was not stably maintained in cultures growing at temperatures between 50 and 65 degrees C but the thermostable chloramphenicol acetyltransferase was active in vivo at temperatures up to 70 degrees C. In contrast, thermophilic plasmid pTHT15 Tcr was stable in cultures growing at temperatures up to 60 degrees C but the tetracycline resistance protein was relatively thermolabile at higher temperatures. The estimated copy number of pLW05 in cells of NUB3621 growing at 50, 60, and 65 degrees C was 69, 18, and 1 per chromosome equivalent, respectively. The estimated copy number of pTHT15 in cells of NUB3621 growing at 50 or 60 degrees C was about 41 to 45 per chromosome equivalent and 12 in cells growing at 65 degrees C.  相似文献   

5.
L Oskam  D J Hillenga  G Venema  S Bron 《Plasmid》1991,26(1):30-39
Plasmid pTB19 is a 27-kb plasmid originating from a thermophilic Bacillus species. It was shown previously that pTB19 contains an integrated copy of the rolling-circle type plasmid pTB913. Here we describe the analysis of a 4324-bp region of pTB19 conferring resistance to tetracycline. The nucleotide sequence of this region revealed all the characteristics of a second plasmid replicating via the rolling-circle mechanism. This sequence contained (i) the tetracycline resistance marker of pTB19, which is highly similar to other tetL-genes of gram-positive bacteria; (ii) a hybrid mob gene, which bears relatedness to both the mob-genes of pUB110 and pTB913; (iii) a palU type minus origin identical to those of pUB110 and pTB913; and (iv) a plus origin of replication similar to that of pTB913. A repB-type replication initiation gene sequence identical to that of pTB913 was present, which lacked the middle part (492 bp), thus preventing autonomous replication of this region. The hybrid mob gene was functional in conjugative mobilization of plasmids between strains of Bacillus subtilis.  相似文献   

6.
We studied the segregational stability of plasmids based on pTB913, a 4.5-kb rolling-circle plasmid derived from the thermophilic Bacillus plasmid pTB19. In Bacillus stearothermophilus the stability of pTB913 derivatives appeared to be strain-dependent. In strain CU21 large amounts of single-stranded pTB913 DNA were found and the plasmid was highly unstable at 57 degrees C. In strain NUB3621, however, very low amounts of single-stranded plasmid DNA were formed and pTB913-based replicons were only slightly unstable at 57 degrees C. The NUB3621/pTB913 host-vector system seems appropriate for molecular cloning. A RepA-based replicon, also derived from pTB19 but replicating by a theta mechanism, was highly unstable in B. stearothermophilus NUB3621.  相似文献   

7.
The structural gene for a thermostable protease from Bacillus stearothermophilus was cloned in plasmid pTB90. It is expressed in both B. stearothermophilus and Bacillus subtilis. B. stearothermophilus carrying the recombinant plasmid produced about 15-fold more protease (310 U/mg of cell dry weight) than did the wild-type strain of B. stearothermophilus. Some properties of the proteases that have been purified from the transformants of B. stearothermophilus and B. subtilis were examined. No significant difference was observed among the enzyme properties studied here despite the difference in host cells. We found that the protease, neutral in pH characteristics and with a molecular weight of 36,000, retained about 80% of its activity even after treatment of 65 degrees C for 30 min.  相似文献   

8.
Useful Host-Vector Systems in Bacillus stearothermophilus   总被引:4,自引:2,他引:2       下载免费PDF全文
We isolated a highly transformable thermophile, Bacillus stearothermophilus SIC1, which exhibited the following features. The growth temperature ranged from 45 to 65°C in L broth. The maximum cell concentration in 2L broth (2% tryptone, 1% yeast extract, 0.5% NaCl, pH 7.2) was determined as an optical density at 660 nm of 7.8, and the generation time was 11 min at 60°C. Strain SIC1 was a prototroph and was transformed by the protoplast procedure not only with repB plasmids (high-copy-number plasmids such as pTB913 and pUB110) but also with repA plasmids (low-copy-number plasmids such as pTB53). Transformation efficiencies with repB and repA plasmids were about 2 × 106 to 5 × 106 and 5 × 104 transformants per μg of DNA, respectively. The transformant carrying plasmid pTB913Y/K could grow at 63°C in the presence of kanamycin. The regeneration frequency of protoplasts was 60%, and only 1 day was needed for regeneration at 55°C.  相似文献   

9.
截短的短小芽孢杆菌质粒pCJ3与去除了复制功能的金黄色葡萄球菌质粒PUB110经EcoRI酶切,DNA连接酶连接后组建T_o~r及K_m~r的双抗性的重组质粒pSC33和和PSC48。根据电泳迁移率估算pSC33及pSC48的大小分别为6.7及6.27Kb。具有BamHⅠ、AVaⅠ、XbaⅠ及BgLⅡ等限制酶的单切点,其中BgLⅡ切点位于卡那霉素抗性基因内。pSC33及pSC48能转化枯草杆菌各种突变体的感受态细胞,转化率比亲本质粒高一个数量级,也能转化枯草杆菌的原生质体。pSC33及pSC48在枯草杆菌BR151中表现稳定,以PSC48和载体克隆了滑鼠蛇肝线粒体DNA片段。  相似文献   

10.
Four antibiotic-resistance plasmids isolated from thermophilic bacilli were characterized in detail. Three tetracycline-resistance (Tc1) plasmids were designated as pTHT9 (7.7 kilobases (kb], pTHT15 (4.5 kb) and pTHT22 (8.4 kb). From the results of restriction endonuclease analysis and the subsequent Southern hybridization, these were found to possess extensive genetic homology in the regions that include the replication origin and the Tcr gene. Detailed restriction maps of the smallest Tcr plasmid pTHT15 and a kanamycin-resistance (Kmr) plasmid pTHN1 (4.8 kb) were constructed. The positions of antibiotic-resistance loci and regions essential for plasmid replication were determined by cloning plasmid fragments in Bacillus subtilis. These four plasmids were found to replicate and express the resistance genes stably in both B. subtilis and B. stearothermophilus.  相似文献   

11.
Two different replication determinants were found on an antibiotic resistance plasmid, pTB19, from a thermophilic bacillus. One replication determinant (designated RepA) was functional only in Bacillus subtilis, whereas the other (designated RepB) functioned in both B. subtilis and Bacillus stearothermophilus. A deletion plasmid, pTB90, carrying the RepB derived from pTB19 coincidentally contained the specific 1.0 MDal EcoRI fragment of a cryptic plasmid pBSO2 from B. stearothermophilus. The presence of this 1.0 MDal EcoRI fragment in various deletion plasmids from pTB90 increased transformation frequencies for B. stearothermophilus 10(3) to 10(4) times and lowered plasmid copy numbers in the host strain to about one-tenth of those found for plasmids lacking this fragment.  相似文献   

12.
Bacillus licheniformis was transformed with plasmids pUB110 and pJJ10 (pUB110 - pBR322) isolated from Bac. subtilis and Escherichia coli, respectively. It was revealed that the structure and genetic properties of the plasmids did not change during the transformation process. pJJ101 (pJJ10-rib) DNA isolated from E. coli and containing helper pJJ10 plasmid was used, as a recipient. It was shown that pJJ101 rib markers were "rescued" by the resident plasmid during transformation of Bac. licheniformis (pJJ10). Plasmid pLP1 containing ribB, ribD, Kmr genes and the pUB110 replicator, was isolated from the transformants. pLP1 plasmid might be considered as a detected derivative of the parental pJJ101 plasmid. The deletion is presented by 3,9 MD segment that contains the pBR322 replicator. pLP1 DNA is capable of transforming plasmidless strains of Bac. licheniformis and Bac. subtilis.  相似文献   

13.
The structural gene for a thermostable α-amylase from Bacillus stearothermophilus was cloned in plasmids pTB90 and pTB53. It was expressed in both B. stearothermophilus and Bacillus subtilis. B. stearothermophilus carrying the recombinant plasmid produced about fivefold more α-amylase (20.9 U/mg of dry cells) than did the wild-type strain of B. stearothermophilus. Some properties of the α-amylases that were purified from the transformants of B. stearothermophilus and B. subtilis were examined. No significant differences were observed among the enzyme properties despite the difference in host cells. It was found that the α-amylase, with a molecular weight of 53,000, retained about 60% of its activity even after treatment at 80°C for 60 min.  相似文献   

14.
15.
J G Naglich  R E Andrews 《Plasmid》1988,20(2):113-126
The Staphylococcus aureus plasmids pC194 and pUB110 were introduced into Bacillus thuringiensis subsp. israelensis by using the Streptococcus faecalis transposon Tn916 as a mobilizing agent. Plasmid transfer occurred only when B. thuringiensis subsp. israelensis was mated with a B. subtilis donor that contained both pC194 and pUB110 and Tn916; plasmid transfer was not observed in the absence of the transposon. B. thuringiensis transconjugants resistant to chloramphenicol (Cmr) and tetracycline (Tetr) were detected at a frequency of 1.96 x 10(-6) per recipient cell, whereas the Tetr phenotype, but not the Cmr, was observed at a frequency of 1.09 x 10(-4). The converse, Cmr but not Tetr, was observed at a frequency of 2.94 X 10(-5). The transfer of pUB110 from B. subtilis to B. thuringiensis subsp. israelensis was observed at a frequency of 3.0 x 10(-6) per recipient cell but concomitant transfer of pUB110 and Tn916 was not observed. Mobilization of plasmid pE194 was not observed under these conditions. Transconjugants were detected in filter matings only, not in broth. The Tn916 phenotype was maintained during serial passage of B. thuringiensis without selection, whereas the pC194 phenotype was not. Unlike pC194, however, pUB110 remained stable in B. thuringiensis during several passages through nonselective medium. Southern hybridization analysis demonstrated that Tn916 had inserted into several different sites on the B. thuringiensis chromosome and that pC194 and pUB110 were maintained as an autonomous plasmid.  相似文献   

16.
17.
Bacillus subtilis and Bacillus brevis 47-5, carrying the Bacillus stearothermophilus alpha-amylase gene on pUB110 (pBAM101), synthesized the same alpha-amylase as the donor strain as determined by the enzyme's thermal stability and NH2-terminal amino acid sequence. Regardless of the host, the 34-amino acid signal peptide of the enzyme was processed at exactly the same site between two alanine residues. B. brevis 47-5(pBAM101) secreted the enzyme most efficiently of the hosts examined, 100, 15, and 5 times more than B. stearothermophilus, Escherichia coli HB101(pH1301), and B. subtilis 1A289(pBAM101), respectively. The efficient secretion of the enzyme in B. brevis 47-5(pBAM101) was suggested to be due to the unique properties of the cell wall of this organism.  相似文献   

18.
19.
A thermostable pullulanase (alpha-dextrin 6-glucanohydrolase [EC 3.2.1.41]) from a newly isolated Bacillus stearothermophilus strain (TRS128) was purified and characterized. The enzyme hydrolyzed (1-->6)-alpha-d-glucosidic linkages of pullulan to produce maltotriose, and the optimum temperature was 65 degrees C. About 90% of the enzyme activity was retained after treatment at 65 degrees C for 60 min. By using pTB522 as a vector plasmid, the pullulanase gene was cloned and expressed in Bacillus subtilis.  相似文献   

20.
A transformant of Bacillus stearothermophilus carrying a recombinant plasmid, pLP11 (9.5 MDa), on which the penicillinase gene (penP) and kanamycin resistance gene (kan) were located was subjected to mutagenesis, and a mutant plasmid (9.5 MDa; penP kan), designated pTRA117, was obtained. A transformant of B. stearothermophilus carrying pTRA117 could grow at 63 degrees C in medium containing kanamycin, whereas a transformant carrying pLP11 could not. Although pTRA117 was detected as covalently closed circular (ccc) DNA when it was extracted from transformants cultured at 48 degrees C, it was integrated into the host chromosome when the culture temperature was shifted up to 63 degrees C. If the culture temperature was lowered to 48 degrees C from 63 degrees C, a new plasmid (10.7 MDa; penP kan), designated pTRZ117, could be detected as ccc DNA; the size of this plasmid suggested that it was pTRA117 plus a 1.2 MDa DNA fragment of the host chromosome, and this was confirmed by Southern hybridization. pTRZ90 (7.9 MDa; kan) was constructed from pTRZ117 by the deletion of a 2.8 MDa DNA fragment that contained penP. Fresh transformants of B. stearothermophilus that carried either pTRZ117 or pTRZ90 could grow at 65 degrees C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号