首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The location of the Escherichia coli K-12 genes determining or regulating glutamate transport, and the location of the gene determining glutamate decarboxylase synthesis, were established by conjugation. The ability to grow on glutamate as the sole source of carbon and energy was used to select for glutamate transport recombinants. Two genes determining the ability to grow on glutamate as the sole source of carbon and energy were mapped. One (gltC) is located near mtl (mannitol), and the other (gltH) appears to be located between the gal (galactose) and trp (tryptophan) loci. The glutamate decarboxylase gene (gad) is strongly linked to gltC. The gltC(+) recombinants grow on glutamate much faster and accumulate this amino acid to a greater extent than do the gltH(+) recombinants. The gltH(+) gene functioned only in one female strain (P678), whereas the gltC gene functioned in all the female strains tested (P678, C600, W1).  相似文献   

3.
4.
5.
In order to get deeper insights into oxidative degradation of the hydrophobic substrates (HS) triglycerides and alkanes by yeasts, tagged mutants affected in these pathways were generated by random insertion of a mutagenesis cassette MTC into the genome of Yarrowia lipolytica. About 9.600 Ura+ transformants were screened in plate tests for utilization of alkanes (C10, C16), oleic acid and tributyrin. HS degradation mutants were recovered as unable to grow on alkane or on intermediates of the pathway (AlkA-AlkE phenotype classes). To identify the disrupted genes, insertion points of the MTC were sequenced using convergent and divergent PCR. Sequence analysis evidenced both known and new genes required for HS utilization, e.g. for AlkD/E mutants MTC insertion had occurred in genes of thioredoxin reductase, peroxines PEX14 and PEX20, succinate-fumarate carrier SFC1, and isocitrate lyase ICL1. Several mutants were affected in alkane utilization depending on chain length. Mutant Z110 (AlkAb: C10- C16+) was shown to be disrupted for ANT1 encoding a peroxisomal membrane localized adenine nucleotide transporter protein, providing ATP for the activation of short-chain fatty acids by acyl-CoA synthetase II in peroxisomes. Mutants N046 and B095 (AlkAc: C10+ C16-) were disrupted for the ABC transporter encoded by ABC1 gene, thus providing first evidence for its participation in chain length dependent alkane transport processes.  相似文献   

6.
A putative iron- and Fur-regulated hemin uptake gene cluster, composed of the transport genes chuABCD and a putative heme oxygenase gene (Cj1613c), has been identified in Campylobacter jejuni NCTC 11168. Mutation of chuA or Cj1613c leads to an inability to grow in the presence of hemin or hemoglobin as a sole source of iron. Mutation of chuB, -C, or -D only partially attenuates growth where hemin is the sole iron source, suggesting that an additional inner membrane (IM) ABC (ATP-binding cassette) transport system(s) for heme is present in C. jejuni. Genotyping experiments revealed that Cj1613c is highly conserved in 32 clinical isolates. One strain did not possess chuC, though it was still capable of using hemin/hemoglobin as a sole iron source, supporting the hypothesis that additional IM transport genes are present. In two other strains, sequence variations within the gene cluster were apparent and may account for an observed negative heme utilization phenotype. Analysis of promoter activity within the Cj1613c-chuA intergenic spacer region revealed chuABCD and Cj1613c are expressed from separate iron-repressed promoters and that this region also specifically binds purified recombinant Fur(Cj) in gel retardation studies. Absorbance spectroscopy of purified recombinant His(6)-Cj1613c revealed a 1:1 heme:His(6)-Cj1613c binding ratio. The complex was oxidatively degraded in the presence of ascorbic acid as the electron donor, indicating that the Cj1613c gene product functions as a heme oxygenase. In conclusion, we confirm the involvement of Cj1613c and ChuABCD in heme/hemoglobin utilization in C. jejuni.  相似文献   

7.
Pseudomonas putida CSV86 utilizes glucose, naphthalene, methylnaphthalene, benzyl alcohol and benzoate as the sole source of carbon and energy. Compared with glucose, cells grew faster on aromatic compounds as well as on organic acids. The organism failed to grow on gluconate, 2-ketogluconate, fructose and mannitol. Whole-cell oxygen uptake, enzyme activity and metabolic studies suggest that in strain CSV86 glucose utilization is exclusively by the intracellular phosphorylative pathway, while in Stenotrophomonas maltophilia CSV89 and P. putida KT2442 glucose is metabolized by both direct oxidative and indirect phosphorylative pathways. Cells grown on glucose showed five- to sixfold higher activity of glucose-6-phosphate dehydrogenase compared with cells grown on aromatic compounds or organic acids as the carbon source. Study of [14C]glucose uptake by whole cells indicates that the glucose is taken up by active transport. Metabolic and transport studies clearly demonstrate that glucose metabolism is suppressed when strain CSV86 is grown on aromatic compounds or organic acids.  相似文献   

8.
9.
Malathion is an organophosphate insecticide that has been widely used for both domestic and commercial agricultural purposes. However, malathion has the potential to produce toxic effects in mammalian systems. In this study, Pseudomonas aeruginosa AA 112 which was isolated from soil using enrichment technique could utilize the malathion as a sole carbon source and a source of energy. Pseudomonas aeruginosa AA112 was able to grow in MSMPY medium containing 42.75 mg/ml malathion. However, the optimum concentration of malathion which supported the maximum bacterial growth was found to be 22. 8 mg/ml. Malathion was used as an initial source of energy and carbon when it was found without additional carbon sources (in MSM medium) while it was utilized as second source of energy and carbon in a nutrient-supplemented medium (in MSMPY medium). Moreover, lead acetate test indicated that malathion was first attacked at a sulphur site 1-2 hours after the start of incubation. TLC and IR analysis indicated that malathion was completely degraded into diethyl succinate, hydrogen sulphide and phosphates. Therefore a malathion degradation pathway was proporsed. The degradation of malathion is attributed to the genes located on the chromosome and at least three proteins of high molecular size might be involved in malathion utilization. Bacteria able to use malathion as a food source or metabolize its residues in the environment to inactive, less toxic, and harmless compounds, could be used in bioremediation of an environmental pollution caused by the pesticide.  相似文献   

10.
Summary The oncogenic plasmids of Agrobacterium, the Ti-plasmids, carry genes that enable their bacterial host to catabolize opines. Opines are unusual amino acid derivatives that are only produced in crown gall tumours incited by oncogenic strains of Agrobacterium. The 2 opines, octopine and nopaline, are degraded by Agrobacterium strains carrying the octopine or the nopoline Ti-plasmid, respectively, to arginine and pyruvic acid, and to arginine and -ketoglutaric acid. In this paper it is shown that the Ti-plasmids carry gene(s) involved in the utilisation of arginine as a carbon source. Strains harbouring wild type octopine or nopaline Ti-plasmids in the chromosomal context of strain C58C1 do not grow on arginine as a carbon source. However, they are able to grow on arginine provided that they are induced, or constitutive for opine catabolism. The features of ornithine utilisation are identical. The gene(s) involved in arginine and ornithine utilization in C58C1 (pTi-oct) or C58C1 (pTi-nop) are under the control of the regulator gene that controls octopine or nopaline catabolism. A tentative pathway of octopine utilization is proposed, in which at least two steps are Ti-plasmid coded, and probably belong to the same operon: 1-scission of octopine into arginine and pyruvic acid 2-transformation of an arginine derivative (GSA?) to glutamic acid.Arginine utilization as a carbon source is therefore a new function of the Ti-plasmid. As this function is not inducible by arginine but by opines, it provides a method for selecting regulatory mutants of opine catabolism in the genetic background of strain C58.  相似文献   

11.
12.
13.
The majority of experimental and clinical studies indicates that the hypertrophied and failing myocardium are characterized by changes in energy and substrate metabolism that attributed to failing heart changes at the genomic level, in fact, heart failure is caused by various diseases, their energy metabolism and substrate are in different genetic variations, then the potential significance of the molecular mechanisms for the aetiology of heart failure is necessary to be evaluated. Persistent viral infection (especially coxsackievirus group B3) of the myocardium in viral myocarditis and viral dilated cardiomyopathy has never been neglected by experts. This study aimed to explore the role and regulatory mechanism of the altered gene expression for energy metabolism involved in mitochondrial oxidative phosphorylation, fatty acid metabolism in viral dilated cardiomyopathy. cDNA Microarray technology was used to evaluate the expression of >35,852 genes in a mice model of viral dilated cardiomyopathy. In total 1385 highly different genes expression, we analyzed 33 altered genes expression for energy metabolism involved in mitochondrial oxidative phosphorylation, fatty acid metabolism and further selected real-time-PCR for quantity one of regulatory mechanisms for energy including fatty acid metabolism—the UCP2 and assayed cytochrome C oxidase activity by Spectrophotometer to explore mitochondrial oxidative phosphorylation function. We found obviously different expression of 33 energy metabolism genes associated with mitochondria oxidative phosphorylation, fatty acid metabolism in cardiomyopathy mouse heart, the regulatory gene for energy metabolism: UCP2 was down-regulated and cytochrome C oxidase activity was decreased. Genes involved in both fatty acid metabolism and mitochondrial oxidative phosphorylation were down-regulated, mitochondrial uncoupling proteins (UCP2) expression did not increase but decrease which might be a kind of adaptive protection response to regulate energy metabolism for ATP produce.  相似文献   

14.
15.
X Feng  L T Ou    A Ogram 《Applied microbiology》1997,63(4):1332-1337
A bacterial strain (CF06) that mineralized both the carbonyl group and the aromatic ring of the insecticide carbofuran and that is capable of using carbofuran as a sole source of carbon and nitrogen was isolated from a soil in Washington state. Phospholipid fatty acid and 16S rRNA sequencing analysis indicate that CF06 is a Sphingomonas sp. CF06 contains five plasmids, at least some of which are required for metabolism of carbofuran. Loss of the plasmids induced by growth at 42 degrees C resulted in the inability of the cured strain to grow on carbofuran as a sole source of carbon. Introduction of the plasmids confers on Pseudomonas fluorescens M480R the ability to use carbofuran as a sole source of carbon for growth and energy. Of the five plasmids, four are rich in insertion sequence elements and contain large regions of overlap. Rearrangements, deletions, and loss of individual plasmids that resulted in the loss of the carbofuran-degrading phenotype were observed following introduction of Tn5.  相似文献   

16.
17.
18.
Plesiomonas shigelloides is an intestinal pathogen that uses heme as an iron source. The P. shigelloides heme utilization system consists of 10 genes, 7 of which permit heme transport and 3 of which are associated with utilization of heme as an iron source once it is inside the cell. The goal of this study was to examine hugZ, 1 of the 3 genes associated with utilization of heme iron. DPH8, a hugZ mutant, failed to grow to full cell density in media containing heme as the iron source, indicating that hugZ is required for heme iron utilization. Western blots using antibodies against Vibrio cholerae HutZ to detect the P. shigelloides HugZ indicated that hugZ encodes an iron-regulated cytoplasmic protein, which is absent in DPH8. A heme affinity bead assay performed on soluble protein fractions from P. shigelloides DPH8/pHUG24.5 (pHUG24.5 encodes hugZ) indicated that HugZ binds heme. Heme utilization was restored in DPH8 by hox1, which encodes the alpha-heme oxygenase from Synechocystis sp. strain PCC6803. However, HugZ did not exhibit alpha-heme oxygenase activity in an assay that detects the conversion of heme to the bilin functional group present in phycobiliproteins. These results do not rule out that HugZ exhibits another type of heme oxygenase activity not detected in the assay.  相似文献   

19.
Mutations in the ack (acetate kinase) and pta (phosphotransacetylase) genes in Salmonella typhimurium were characterized and determined to be analogous to those of previously described Escherichia coli mutants. We established that in both bacterial species these genes were cotransducible with the neighboring histidine transport operon and were distally located relative to purF. pta mutants were sensitive to the dye alizarin yellow and were unable to grow on medium containing inositol as a carbon source. We selected mutants of both species with deletions covering both the ack and the pta genes; some deletions extended into the histidine transport operon.  相似文献   

20.
The most abundant carbon source transported into legume root nodules is photosynthetically produced sucrose, yet the importance of its metabolism by rhizobia in planta is not yet known. To identify genes involved in sucrose uptake and hydrolysis, we screened a Sinorhizobium meliloti genomic library and discovered a segment of S. meliloti DNA which allows Ralstonia eutropha to grow on the alpha-glucosides sucrose, maltose, and trehalose. Tn5 mutagenesis localized the required genes to a 6.8-kb region containing five open reading frames which were named agl, for alpha-glucoside utilization. Four of these (aglE, aglF, aglG, and aglK) appear to encode a periplasmic-binding-protein-dependent sugar transport system, and one (aglA) appears to encode an alpha-glucosidase with homology to family 13 of glycosyl hydrolases. Cosmid-borne agl genes permit uptake of radiolabeled sucrose into R. eutropha cells. Analysis of the properties of agl mutants suggests that S. meliloti possesses at least one additional alpha-glucosidase as well as a lower-affinity transport system for alpha-glucosides. It is possible that the Fix+ phenotype of agl mutants on alfalfa is due to these additional functions. Loci found by DNA sequencing to be adjacent to aglEFGAK include a probable regulatory gene (aglR), zwf and edd, which encode the first two enzymes of the Entner-Doudoroff pathway, pgl, which shows homology to a gene encoding a putative phosphogluconolactonase, and a novel Rhizobium-specific repeat element.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号