首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
RCA I-binding patterns of the Golgi apparatus   总被引:2,自引:0,他引:2  
The distribution in the Golgi apparatus of binding sites for the galactose-specific Ricinus communis I lectin (RCA I) was studied in differently specialized cells, including goblet cells and absorptive enterocytes of the rat small intestine as well as acinar cells of the rat embryonic pancreas and submandibular gland. For the purpose of localizing the binding reactions, a pre-embedment method using horseradish peroxidase for electron microscopic visualization, and a post-embedding technique making use of the colloidal gold system were employed. The reactions obtained, localizing cell constituents which contain saccharides with terminal or internal beta-D-galactosyl residues, labeled diverse Golgi subcompartments. The goblet cells showed intense RCA I staining of the cisternae of the trans side of the Golgi stacks. The reaction was weak in the medial cisternae and the cis side of the stacks mostly was devoid of label. In the absorptive cells, in addition to the RCA I reaction of trans Golgi elements, binding sites for this lectin were concentrated in the stacks' medial section. In the embryonic acinar cells, accessible galactosyl residues were either confined to the trans and/or medial cisternae, or distributed across elements of all the stacked saccules. In the latter stacks, the reactions mostly were weak in the cis cisternae and increased in intensity towards the trans side. As regards the respective labeling patterns, similar percentages were calculated for the early and late stages of development: they were approximately 62% for the pattern which showed RCA I label limited to trans/medial cisternae and approximately 38% for the "cis-to-trans"-distributed RCA I reaction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
We have determined the subcellular distribution of fucosyl residues in rat duodenal absorptive enterocytes and goblet cells, using the binding affinity of the lectin I of Ulex europaeus (UEA I). In absorptive enterocytes, UEA I-lectin gold complexes were detected at the brush border and at the basolateral plasma membrane; pits of the plasma membrane were labeled, as were small vesicles, multivesicular bodies, lysosomes, and the Golgi apparatus. In the Golgi stacks, about half of the cisternae showed gold marker particles: accessible fucosyl residues were sparse in the cis subcompartment, the cismost cisterna mostly remaining negative; more intense label was found in medial cisternae; reactions were concentrated in the trans and transmost Golgi subcompartments. Cisternae, tubules and vesicles located at the trans Golgi side were the most constantly and intensely stained Golgi elements. In goblet cells, mucin granules and trans Golgi cisternae were labeled. Rarely, UEA I-gold bound to cisternae of the medial subcompartment; the cis subcompartment remained unstained. In part, UEA I-gold particles were restricted to dilated portions of the transmost Golgi cisterna and to secretory granules.  相似文献   

3.
We examined the intracellular localization of sugar residues of the rat gastric surface mucous cells in relation to the functional polarity of the cell organellae using preembedding method with several lectins. In the surface mucous cells, the nuclear envelope and rough endoplasmic reticulum (rER) and cis cisternae of the Golgi stacks were intensely stained with Maclura pomifera (MPA), which is specific to alpha-Gal and GalNAc residues. In the Golgi apparatus, one or two cis side cisternae were stained with MPA and Dolichos biflorus (DBA) which is specific to terminal alpha-N-acetylgalactosamine residues, while the intermediate lamellae were intensely labeled with Arachis hypogaea (PNA) which is specific to Gal beta 1,3 GalNAc. Cisternae of the trans Golgi region were also stained with MPA, Ricinus communis I (RCA I) which is specific to beta-Gal and Limax flavus (LFA) which is specific to alpha-NeuAc. Immature mucous granules which are contiguous with the trans Golgi lamellae were weakly stained with RCA I, while LFA stained both immature and mature granules. The differences between each lectin's reactivity in the rough endoplasmic reticulum, in each compartment of the Golgi lamellae and in the secretory granules suggest that there are compositional and structural differences between the glycoconjugates in the respective cell organellae, reflecting the various processes of glycosylation in the gastric surface mucous cells.  相似文献   

4.
Binding sites for wheat germ agglutinin (WGA), Dolichos biflorus agglutinin (DBA), Ricinus communis I agglutinin (RCA I) and Limax flavus agglutinin (LFA) have been ultrastructurally detected in rat epiphyseal chondrocytes by a post-embedding cytochemical technique using colloidal gold as marker. The four lectins labelled exclusively the Golgi apparatus of chondrocytes embedded in Lowicryl K4M resin by two different methods. WGA binding sites were localized in medial and trans cisternae as well as in immature secretory vesicles, whereas those for DBA were seen concentrated in cis and medial cisternae. Labelling with both RCA I and LFA lectins was distributed throughout all the cisternae of the Golgi stack, and the latter also in vesicles and tubules at the trans face. Neuraminidase pretreatment of the sections abolished LFA staining, decreased reaction with WGA and increased that with RCA I, while it did not affect DBA staining. After chondroitinase ABC treatment only the RCA I reaction was modified, revealing new binding sites in the trans Golgi face, secretory granules and extracellular matrix. These results indicate that the distribution of subcompartments in the Golgi apparatus of chondrocytes is different from that in cells secreting glycoproteins as major products.  相似文献   

5.
Summary Binding sites for wheat germ agglutinin (WGA), Dolichos biflorus agglutinin (DBA), Ricinus communis I agglutinin (RCA I) and Limax flavus agglutinin (LFA) have been ultrastructurally detected in rat epiphyseal chondrocytes by a post-embedding cytochemical technique using colloidal gold as marker. The four lectins labelled exclusively the Golgi apparatus of chondrocytes embedded in Lowicryl K4M resin by two different methods. WGA binding sites were localized in medial and trans cisternae as well as in immature secretory vesicles, whereas those for DBA were seen concentrated in cis and medial cisternae. Labelling with both RCA I and LFA lectins was distributed throughout all the cisternac of the Golgi stack, and the latter also in vesicles and tubules at the trans face. Neuraminidase pretreatment of the sections abolished LFA staining, decreased reaction with WGA and increased that with RCA I, while it did not affect DBA staining. After chondroitinase ABC treatment only the RCA I reaction was modified, revealing new binding sites in the trans Golgi face, secretory granules and extracellular matrix. These results indicate that the distribution of subcompartments in the Golgi apparatus of chondrocytes is different from that in cells secreting glycoproteins as major products.  相似文献   

6.
Baby hamster kidney (BHK) cells were infected with Semliki Forest virus (SFV) and, 2 h later, were treated for 4 h with 10 microM monensin. Each of the four to six flattened cisternae in the Golgi stack became swollen and separated from the others. Intracellular transport of the viral membrane proteins was almost completely inhibited, but their synthesis continued and they accumulated in the swollen Golgi cisternae before the monensin block. In consequence, these cisternae bound large numbers of viral nucleocapsids and were easily distinguished from other swollen cisternae such as those after the block. These intracellular capsid-binding membranes (ICBMs) were not stained by cytochemical markers for endoplasmic reticulum (ER) (glucose-6-phosphatase) or trans Golgi cisternae (thiamine pyrophosphatase, acid phosphatase) but were labeled by Ricinus communis agglutinin I (RCA) in thin, frozen sections. Since this lectin labels only Golgi cisternae in the middle and on the trans side of the stack (Griffiths, G., R. Brands, B. Burke, D. Louvard, and G. Warren, 1982, J. Cell Biol., 95:781-792), we conclude that ICBMs are derived from Golgi cisternae in the middle of the stack, which we term medial cisternae. The overall movement of viral membrane proteins appears to be from cis to trans Golgi cisternae (see reference above), so monensin would block movement from medial to the trans cisternae. It also blocked the trimming of the high-mannose oligosaccharides bound to the viral membrane proteins and their conversion to complex oligosaccharides. These functions presumably reside in trans Golgi cisternae. This is supported by data in the accompanying paper, in which we also show that fatty acids are covalently attached to the viral membrane proteins in the cis or medial cisternae. We suggest that the Golgi stack can be divided into three functionally distinct compartments, each comprising one or two cisternae. The viral membrane proteins, after leaving the ER, would all pass in sequence from the cis to the medial to the trans compartment.  相似文献   

7.
Frozen, thin sections of baby hamster kidney (BHK) cells were incubated with either concanavalin A (Con A) or Ricinus communis agglutinin I (RCA) to localize specific oligosaccharide moieties in endoplasmic reticulum (ER) and Golgi membranes. These lectins were then visualized using an anti-lectin antibody followed by protein A conjugated to colloidal gold. All Golgi cisternae and all ER membranes were uniformly labeled by Con A. In contrast, RCA gave a uniform labeling of only half to three-quarters of those cisternae on the trans side of the Golgi stack; one or two cis Golgi cisternae and all ER membranes were essentially unlabeled. This pattern of lectin labeling was not affected by infection of the cells with Semliki Forest virus (SFV). Infected cells transport only viral spike glycoproteins from their site of synthesis in the ER to the cell surface via the stacks of Golgi cisternae where many of the simple oligosaccharids on the spike proteins are converted to complex ones (Green, J., G. Griffiths, D. Louvard, P. Quinn, and G. Warren. 1981. J. Mol. Biol. 152:663-698). It is these complex oligosaccharides that were shown, by immunoblotting experiments, to be specifically recognized by RCA. Loss of spike proteins from Golgi cisternae after cycloheximide treatment (Green et al.) was accompanied by a 50% decrease in the level of RCA binding. Hence, about half of the RCA bound to Golgi membranes in thin sections was bound to spike proteins bearing complex oligosaccharides and these were restricted to the trans part of the Golgi stack. Our results strongly suggest that complex oligosaccharides are constructed in trans Golgi cisternae and that the overall movement of spike proteins is from the cis to the trans side of the Golgi stack.  相似文献   

8.
The localization of concanavalin A (con A) binding sites has been determined at the electron-microscopic level in the six types of neurons (A1, A2, A3, B1, B2, C) of rat dorsal root ganglia. In all ganglion cells, con A stained the plasma membrane, the nuclear envelope, the cisternae of the rough endoplasmic reticulum, and the matrix of some multivesicular bodies. In contrast, the con A reactivity of the Golgi apparatus varied according to cell type. In type B1 and B2 cells and possibly in type A3 cells, the lectin was exclusively located in three or four saccules on the cis side of the Golgi stacks, whereas the TPPase-positive saccules and the trans sacculotubular elements were unstained with con A. In type A1, A2, and C neurons, all Golgi saccules as well as the trans sacculotubular elements were stained with the lectin. These results suggest that different types of glycoproteins were produced in these two groups of neurons. In the type A1, A2, and C cells, the persistence of the lectin reactivity in the TTPase-positive saccules or sacculotubular elements on the trans side of the Golgi stacks suggests the presence of glycoproteins with oligosaccharide side chains rich in alpha-D-mannosyl residues in terminal positions. In contrast, the disappearance of the con A reactivity in equivalent elements of the Golgi stacks in type B1, B2, and A3 cells suggests the addition at this level of other sugar residues characteristic of complex oligosaccharide side chains. The majority of the vesicular elements associated with the Golgi apparatus, as well as lysosomes, were unstained with con A.  相似文献   

9.
The budding yeast Pichia pastoris contains ordered Golgi stacks next to discrete transitional endoplasmic reticulum (tER) sites, making this organism ideal for structure-function studies of the secretory pathway. Here, we have used P. pastoris to test various models for Golgi trafficking. The experimental approach was to analyze P. pastoris tER-Golgi units by using cryofixed and freeze-substituted cells for electron microscope tomography, immunoelectron microscopy, and serial thin section analysis of entire cells. We find that tER sites and the adjacent Golgi stacks are enclosed in a ribosome-excluding "matrix." Each stack contains three to four cisternae, which can be classified as cis, medial, trans, or trans-Golgi network (TGN). No membrane continuities between compartments were detected. This work provides three major new insights. First, two types of transport vesicles accumulate at the tER-Golgi interface. Morphological analysis indicates that the center of the tER-Golgi interface contains COPII vesicles, whereas the periphery contains COPI vesicles. Second, fenestrae are absent from cis cisternae, but are present in medial through TGN cisternae. The number and distribution of the fenestrae suggest that they form at the edges of the medial cisternae and then migrate inward. Third, intact TGN cisternae apparently peel off from the Golgi stacks and persist for some time in the cytosol, and these "free-floating" TGN cisternae produce clathrin-coated vesicles. These observations are most readily explained by assuming that Golgi cisternae form at the cis face of the stack, progressively mature, and ultimately dissociate from the trans face of the stack.  相似文献   

10.
Xyloglucan is the dominant hemicellulosic polysaccharide of the primary cell wall of dicotyledonous plants that plays a key role in plant development. It is well established that xyloglucan is assembled within Golgi stacks and transported in Golgi-derived vesicles to the cell wall. It is also known that the biosynthesis of xyloglucan requires the action of glycosyltransferases including α-1,6-xylosyltransferase, β-1,2-galactosyltransferase and α-1,2-fucosyltransferase activities responsible for the addition of xylose, galactose and fucose residues to the side chains. There is, however, a lack of knowledge on how these enzymes are distributed within subcompartments of Golgi stacks. We have undertaken a study aiming at mapping these glycosyltransferases within Golgi stacks using immunogold-electron microscopy. To this end, we generated transgenic lines of tobacco (Nicotiana tabacum) BY-2 suspension-cultured cells expressing either the α-1,6-xylosyltransferase, AtXT1, the β-1,2-galactosyltransferase, AtMUR3, or the α-1,2-fucosyltransferase AtFUT1 of Arabidopsis thaliana fused to green-fluorescent protein (GFP). Localization of the fusion proteins within the endomembrane system was assessed using confocal microscopy. Additionally, tobacco cells were high pressure-frozen/freeze-substituted and subjected to quantitative immunogold labelling using anti-GFP antibodies to determine the localization patterns of the enzymes within subtypes of Golgi cisternae. The data demonstrate that: (i) all fusion proteins, AtXT1-GFP, AtMUR3-GFP and AtFUT1-GFP are specifically targeted to the Golgi apparatus; and (ii) AtXT1-GFP is mainly located in the cis and medial cisternae, AtMUR3-GFP is predominantly associated with medial cisternae and AtFUT1-GFP mostly detected over trans cisternae suggesting that initiation of xyloglucan side chains occurs in early Golgi compartments in tobacco cells.  相似文献   

11.
《The Journal of cell biology》1983,96(5):1197-1207
Antibodies directed against membrane components of dog pancreas rough endoplasmic reticulum (A-RER) and rat liver Golgi apparatus (A-Golgi) (Louvard, D., H. Reggio, and G. Warren, 1982, J. Cell Biol. 92:92-107) have been applied to cultured rat prolactin (PRL) cells, either normal cells in primary cultures, or clonal GH3 cells. In normal PRL cells, the A-RER stained the membranes of the perinuclear cisternae as well as those of many parallel RER cisternae. The A-Golgi stained part of the Golgi membranes. In the stacks it stained the medial saccules and, with a decreasing intensity, the saccules of the trans side, as well as, in some cells, a linear cisterna in the center of the Golgi zone. It also stained the membrane of many small vesicles as well as that of lysosomelike structures in all cells. In contrast, it never stained the secretory granule membrane, except at the level of very few segregating granules on the trans face of the Golgi zone. In GH3 cells the A-RER stained the membrane of the perinuclear cisternae, as well as that of short discontinuous flat cisternae. The A-Golgi stained the same components of the Golgi zone as in normal PRL cells. In some cells of both types the A-Golgi also stained discontinuous patches on the plasma membrane and small vesicles fusing with the plasma membrane. Immunostaining of Golgi membranes revealed modifications of membrane flow in relation to either acute stimulation of PRL release by thyroliberin or inhibition of basal secretion by monensin.  相似文献   

12.
Summary We examined the intracellular localization of sugar residues of the rat gastric surface mucous cells in relation to the functional polarity of the cell organellae using preembedding method with several lectins.In the surface mucous cells, the nuclear envelope and rough endoplasmic reticulum (rER) and cis cisternae of the Golgi stacks were intensely stained with Maclura pomifera (MPA), which is specific to -Gal and GalNAc residues. In the Golgi apparatus, one or two cis side cisternae were stained with MPA and Dolichos biflorus (DBA) which is specific to terminal -N-acetylgalactosamine residues, while the intermediate lamellae were intensely labeled with Arachis hypogaea (PNA) which is specific to Gal 1,3 GalNAc. Cisternae of the trans Golgi region were also stained with MPA, Ricinus communis I (RCA I) which is specific to -Gal and Limax flavus (LFA) which is specific to -NeuAc. Immature mucous granules which are contiguous with the trans Golgi lamellae were weakly stained with RCA I, while LFA stained both immature and mature granules.The differences between each lectin's reactivity in the rough endoplasmic reticulum, in each compartment of the Golgi lamellae and in the secretory granules suggest that there are compositional and structural differences between the glycoconjugates in the respective cell organellae, reflecting the various processes of glycosylation in the gastric surface mucous cells.  相似文献   

13.
Summary The plant root tip represents a fascinating model system for studying changes in Golgi stack architecture associated with the developmental progression of meristematic cells to gravity sensing columella cells, and finally to young and old, polysaccharideslime secreting peripheral cells. To this end we have used high pressure freezing in conjunction with freeze-substitution techniques to follow developmental changes in the macromolecular organization of Golgi stacks in root tips ofArabidopsis andNicotiana. Due to the much improved structural preservation of all cells under investigation, our electron micrographs reveal both several novel structural features common to all Golgi stacks, as well as characteristic differences in morphology between Golgi stacks of different cell types.Common to all Golgi stacks are clear and discrete differences in staining patterns and width of cis, medial and trans cisternae. Cis cisternae have the widest lumina (30 nm) and are the least stained. Medial cisternae are narrower (20 nm) and filled with more darkly staining products. Most trans cisternae possess a completely collapsed lumen in their central domain, giving rise to a 4–6 nm wide dark line in cross-sectional views. Numerous vesicles associated with the cisternal margins carry a non-clathrin type of coat. A trans Golgi network with clathrin coated vesicles is associated with all Golgi stacks except those of old peripheral cells. It is easily distinguished from trans cisternae by its blebbing morphology and staining pattern. The zone of ribosome exclusion includes both the Golgi stack and the trans Golgi network.Intercisternal elements are located exclusively between trans cisternae of columella and peripheral cells, but not meristematic cells. In older peripheral cells only trans cisternae exhibit slime-related staining. Golgi stacks possessing intercisternal elements also contain parallel rows of freeze-fracture particles in their trans cisternal membranes. We propose that intercisternal elements serve as anchors of enzyme complexes involved in the synthesis of polysaccharide slime molecules to prevent the complexes from being dragged into the forming secretory vesicles by the very large slime molecules. In addition, we draw attention to the similarities in composition and apparent site of synthesis of xyloglucans and slime molecules.Dedicated to the memory of Professor Oswald Kiermayer  相似文献   

14.
The O-linked oligosaccharides of mucin-type glycoproteins contain N- acetyl-D-galactosamine (GalNAc) that is not found in N-linked glycoproteins. Because Helix pomatia lectin interacts with terminal GalNAc, we used this lectin, bound to particles of colloidal gold, to localize such sugar residues in subcellular compartments of intestinal goblet cells. When thin sections of low temperature Lowicryl K4M embedded duodenum or colon were incubated with Helix pomatia lectin- gold complexes, no labeling could be detected over the cisternal space of the nuclear envelope and the rough endoplasmic reticulum. A uniform labeling was observed over the first and several subsequent cis Golgi cisternae and over the last (duodenal goblet cells) or the two last (colonic goblet cells) trans Golgi cisternae as well as forming and mature mucin droplets. However, essentially no labeling was detected over several cisternae in the central (medial) region of the Golgi apparatus. The results strongly suggest that core O-glycosylation takes place in cis Golgi cisternae but not in the rough endoplasmic reticulum. The heterogenous labeling for GalNAc residues in the Golgi apparatus is taken as evidence that termination of certain O- oligosaccharide chains by GalNAc occurs in trans Golgi cisternae.  相似文献   

15.
The trans Golgi face in rat small intestinal absorptive cells   总被引:1,自引:0,他引:1  
In the small intestine cell differentiation from immature crypt cells to mature absorptive cells localized along the villi is accompanied by alterations in the organization of the trans Golgi side. In immature crypt cells the transmost Golgi cisterna is usually located closely adjacent to the other cisternae thus being a component of the stack. Concomitantly with cell differentiation the transmost cisterna of an increasing number of Golgi stacks sets off from the other cisternae being then located at various distances to the stacks. This transmost cisterna has, as in several other cell types, been interpreted as "GERL" (Golgi associated endoplasmic reticulum lysosomes [20, 28]) and thus, has been postulated to represent a specialized region of the endoplasmic reticulum. Our results, however, have shown that the cytochemical staining pattern which has been used as a basis for the differentiation of GERL from Golgi components is not present in crypt cells nor in mature absorptive cells of the proximal small intestine: identical cisternae react for thiamine pyrophosphatase, inosine diphosphatase, and acid phosphatase. Thiamine pyrophosphatase and inosine diphosphatase--enzymes characteristic for Golgi cisternae--are apparent over transmost cisternae defined as GERL, too, and in addition, acid phosphatase--postulated as GERL-marker--is demonstrable over stacked Golgi cisternae. This overlapping cytochemical reaction, as well as the alterations during cell differentiation, indicate that those structures which have been described as GERL are to be interpreted as Golgi components rather than as endoplasmic reticulum. On the other hand, endoplasmic reticulum is a constant component of the trans Golgi face in undifferentiated crypt-base cells and in maturing cells of the crypt-top region. From its localization closely adjacent to trans Golgi cisternae it may be termed "Golgi-associated endoplasmic reticulum"; however, these cisternae of endoplasmic reticulum are constantly devoid of acid phosphatase. No indications exist for continuities with the thiamine pyrophosphatase-, inosine diphosphatase-, and acid phosphatase-positive transmost Golgi cisternae, and for an engagement in production of lysosomes.  相似文献   

16.
Summary The formation of three types of vesicles in the oomycetePhytophthora cinnamomi was investigated using ultrastructural and immunocytochemical techniques. All three vesicles are synthesised at the same time; one type serves a storage role; the others undergo regulated secretion. A monoclonal antibody Lpv-1 that is specific for glycoproteins contained in the storage vesicles labelled the endoplasmic reticulum (ER), elements in the transition region between ER and Golgi stack, and cis, medial and trans Golgi cisternae. Cpa2, a monoclonal antibody specific for glycoproteins contained within secretory dorsal vesicles labelled the transition region, cis cisternae and a trans-Golgi network. Vesicles possessing a structure characteristic of mature secretory ventral vesicles were observed in close association with the trans face of Golgi stacks. The results suggest that all three vesicles are formed by the Golgi apparatus. Double immunogold labelling with Lpv-1 and Cpa-2 showed that these two sets of glycoproteins occurred within the same Golgi cisternae, indicating that both products pass through and are sorted concurrently within a single Golgi stack.  相似文献   

17.
The Golgi apparatus forms stacks of cisternae in many eukaryotic cells. However, little is known about how such a stacked structure is formed and maintained. To address this question, plant cells provide a system suitable for live-imaging approaches because individual Golgi stacks are well separated in the cytoplasm. We established tobacco BY-2 cell lines expressing multiple Golgi markers tagged by different fluorescent proteins and observed their responses to brefeldin A (BFA) treatment and BFA removal. BFA treatment disrupted cis, medial, and trans cisternae but caused distinct relocalization patterns depending on the proteins examined. Medial- and trans-Golgi proteins, as well as one cis-Golgi protein, were absorbed into the endoplasmic reticulum (ER), but two other cis-Golgi proteins formed small punctate structures. After BFA removal, these puncta coalesced first, and then the Golgi stacks regenerated from them in the cis-to-trans order. We suggest that these structures have a property similar to the ER-Golgi intermediate compartment and function as the scaffold of Golgi regeneration.  相似文献   

18.
In the accompanying paper (Griffiths, G., P. Quinn, and G. Warren, 1983, J. Cell Biol., 96:835-850), we suggested that the Golgi stack could be divided into functionally distinct cis, medial, and trans compartments, each comprising one or two adjacent cisternae. These compartments were identified using Baby hamster kidney (BHK) cells infected with Semliki Forest virus (SFV) and treated with monensin. This drug blocked intracellular transport but not synthesis of the viral membrane proteins that were shown to accumulate in the medial cisternae. In consequence, these cisternae bound nucleocapsids. Here we show that this binding markedly increased the density of the medial cisternae and allowed us to separate them from cis and trans Golgi cisternae. A number of criteria were used to show that the intracellular capsid-binding membranes (ICBMs) observed in vivo were the same as those membranes sedimenting to a higher density in sucrose gradients in vitro, and this separation of cisternae was then used to investigate the distribution, within the Golgi stack, of some specific Golgi functions. After labeling for 2.5 min with [3H]palmitate, most of the fatty acid attached to viral membrane proteins was found in the ICBM fraction. Because the viral membrane proteins appear to move from cis to trans, this suggests that fatty acylation occurs in the cis or medial Golgi cisternae. In contrast, the distribution of alpha 1-2- mannosidase, an enzyme involved in trimming high-mannose oligosaccharides, and of galactosyl transferase, which is involved in the construction of complex oligosaccharides, was not affected by monensin treatment. Together with data in the accompanying paper, this would restrict these two Golgi functions to the trans cisternae. Our data strongly support the view that Golgi functions have specific and discrete locations within the Golgi stack.  相似文献   

19.
The secretory route in eukaryotic cells has been regarded as one common pathway from the endoplasmic reticulum (ER) through the Golgi cisternae to the trans Golgi network where recognition, sorting and exit of cargo molecules are thought to occur. Morphologically, the ribosome-coated ER is observed throughout the cytoplasm, while the Golgi apparatus usually is confined to a perinuclear position in mammalian cells. However, Golgi outposts have been observed in neuronal dendrites and dispersed Golgi elements in skeletal muscle myofibers. In insects, like in Drosophila melanogaster imaginal disc cells and epidermal cells of Tobacco and Arabidopsis leafs, individual Golgi stacks are distributed throughout the cytoplasm. Golgi stacks do not only differ in their intracellular localization but also in the number of stacks from one to several hundreds. Each stack consists of closely aligned, flattened, membrane-limited cisternae. The number of cisternae in a Golgi stack is also variable, 2-3 in some ciliates, 10 in many plant cell types and up to 30 in certain euglenoids. The yeast Saccharomyces cerevisiae has a Golgi structure of minimal complexity with scattered solitary cisternae. It is assumed that the number of Golgi cisternae reflects the overall complexity of the enzymatic reactions that occur in their lumen, while the number of stacks reflects the load of macromolecules arriving at the cis side. In this review, we will focus on how the available morphological and biochemical data fit with the current view of protein sorting in the secretory pathway, particularly in polarized cells like neuronal and epithelial cells.  相似文献   

20.
Three-dimensional reconstructions of portions of the Golgi complex from cryofixed, freeze-substituted normal rat kidney cells have been made by dual-axis, high-voltage EM tomography at approximately 7-nm resolution. The reconstruction shown here ( approximately 1 x 1 x 4 microm3) contains two stacks of seven cisternae separated by a noncompact region across which bridges connect some cisternae at equivalent levels, but none at nonequivalent levels. The rest of the noncompact region is filled with both vesicles and polymorphic membranous elements. All cisternae are fenestrated and display coated buds. They all have about the same surface area, but they differ in volume by as much as 50%. The trans-most cisterna produces exclusively clathrin-coated buds, whereas the others display only nonclathrin coated buds. This finding challenges traditional views of where sorting occurs within the Golgi complex. Tubules with budding profiles extend from the margins of both cis and trans cisternae. They pass beyond neighboring cisternae, suggesting that these tubules contribute to traffic to and/or from the Golgi. Vesicle-filled "wells" open to both the cis and lateral sides of the stacks. The stacks of cisternae are positioned between two types of ER, cis and trans. The cis ER lies adjacent to the ER-Golgi intermediate compartment, which consists of discrete polymorphic membranous elements layered in front of the cis-most Golgi cisterna. The extensive trans ER forms close contacts with the two trans-most cisternae; this apposition may permit direct transfer of lipids between ER and Golgi membranes. Within 0.2 microm of the cisternae studied, there are 394 vesicles (8 clathrin coated, 190 nonclathrin coated, and 196 noncoated), indicating considerable vesicular traffic in this Golgi region. Our data place structural constraints on models of trafficking to, through, and from the Golgi complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号