首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cx40:Cx43 expression ratio in A7r5 cells is augmented in growth stimulated vs. growth arrested conditions. To determine the impact of changing Cx40:Cx43 expression ratio on gap junction function, we have developed A7r5 cell lines that display Cx40:Cx43 ratios of 1:1 (66B5n) and 10:1 (A7r540C3). When Rin43 cells were paired with these coexpressing cells, there was an increasing asymmetry of voltage dependent gating as the Cx40:Cx43 ratio increased in the coexpressing cell. This asymmetry was opposite to that which is predicted by Cx40/Cx43 heterotypic channels. In addition, when Rin43 cells were paired with coexpressing cells there was a shift toward smaller single channel event amplitudes with increasing Cx40:Cx43 ratio in the coexpressing cell. Again, this is opposite to that which is predicted by Cx40/Cx43 heterotypic channels. In dye coupling experiments, 6B5N, A7r5, and A7r540C3 cells displayed charge and size selectivity that increased with increasing Cx40:Cx43 expression ratio. These data indicate that although the electrophysiological properties of heteromeric/heterotypic channels are not directly related to the proportions of Cx constituents that comprise the channel, the dye permeability data fit what would be predicted by an increase in Cx40:Cx43 ratio.  相似文献   

2.
Incells that coexpress connexin (Cx)40 and Cx43, the ratio of expressioncan vary depending on the cellular environment. We examined the effectof changing Cx40:Cx43 expression ratio on functional gap junctionproperties. Rin cells transfected with Cx40 or Cx43 (Rin40, Rin43) werecocultured with 6B5n, A7r5, A7r540C1, or A7r540C3 cells forelectrophysiological and dye coupling analysis. Cx40:Cx43 expressionratio in 6B5n, A7r5, A7r540C1, and A7r540C3 cells was ~1:1, 3:1, 5:1,and 10:1, respectively. When Rin43 cells were paired with coexpressingcells, there was an increasing asymmetry of voltage-dependent gatingand a shift toward smaller conductance events as Cx40:Cx43 ratioincreased in the coexpressing cell. These observations could not bepredicted by linear combinations of Cx40 and Cx43 properties inproportion to the expressed ratios of the two Cxs. When Rin40 cellswere paired with coexpressing cells, the net voltage gating andsingle-channel conductance behavior were similar to those ofRin40/Rin40 cell pairs. Dye permeability properties of cell monolayersdemonstrated that as Cx40:Cx43 expression ratio increased incoexpressing cells the charge and size selectivity of dye transferreflected that of Rin40 cells, as would be predicted. These dataindicate that the electrophysiological properties of heteromeric/heterotypic channels are not directly related to the proportions of Cx constituents expressed in the cell; however, the dyepermeability of these same channels can be predicted by the relative Cx contributions.

  相似文献   

3.
Recent evidence indicatingformation of functional homomeric/heterotypic gap junction channels byconnexin40 (Cx40) and connexin43 (Cx43) raises the question of whetherdata previously interpreted as support for heteromeric channelformation by these connexins might not instead reflect the activity ofhomomeric/heterotypic channels. To address this question and to furthercharacterize the behavior of these channels, we used dual whole cellvoltage-clamp techniques to examine the junctions formed between cellsthat express only Cx40 (Rin40) or Cx43 (Rin43) and compared the results with those obtained when either of these cell types was paired withcells that naturally express both connexins (A7r5 cells). Rin40/Rin43cell pairs formed functional gap junctions that displayed a stronglyasymmetric voltage-dependent gating response. Single-channel eventamplitudes ranged between 34 and 150 pS, with 90- to 130-pS eventspredominating. A7r5/Rin43 and A7r5/Rin40 cell pairs had voltage-dependent gating responses that varied greatly, with most pairsdemonstrating strong asymmetry. These cell pairs exhibited a variety ofsingle-channel events that were not consistent with homomeric/homotypicCx40 or Cx43 channels or homomeric/heterotypic Cx40/Cx43 channels.These data indicate that Cx40 and Cx43 form homomeric/heterotypic aswell as heteromeric/heterotypic channels that display unique gating andconductance properties.

  相似文献   

4.
Connexins (Cx) 40 and 43 are coexpressed by several cell types at ratios that vary as a function of development, aging, and disease. Because these connexins form heteromeric channels, changes in expression ratio might be expected to significantly alter the connexin composition of the gap junction channel population and, therefore, gap junction function. To examine this possibility, we stably transfected A7r5 cells, which naturally coexpress Cx43 and Cx40, with a vector encoding antisense Cx43. Cx43 mRNA continued to be expressed in the antisense transfected clones, although levels were inversely related to the number of copies of antisense DNA incorporated into the genome. Protein levels, quantified in the clones with the highest and lowest Cx43:Cx40 mRNA ratios, were not well predicted by the mRNA levels, although the trends predicted by the Cx43:Cx40 mRNA ratio were preserved. Electrical coupling did not differ significantly between clones, but the clone with elevated Cx43:Cx40 protein expression ratio and unchanged Cx43 banding pattern was significantly better dye coupled than the parental A7r5 cells. These results suggest that as the Cx43:Cx40 ratio increases, provided alterations of Cx43 banding pattern (phosphorylation) have not occurred, permeability to large molecules increases even though electrical coupling remains nearly constant.  相似文献   

5.
Connexin40 (Cx40) and connexin43 (Cx43) are co-expressed in the cardiovascular system, yet their ability to form functional heterotypic Cx43/Cx40 gap junctions remains controversial. We paired Cx43 or Cx40 stably-transfected N2a cells to examine the formation and biophysical properties of heterotypic Cx43/Cx40 gap junction channels. Dual whole cell patch clamp recordings demonstrated that Cx43 and Cx40 form functional heterotypic gap junctions with asymmetric transjunctional voltage (Vj) dependent gating properties. The heterotypic Cx43/Cx40 gap junctions exhibited less Vj gating when the Cx40 cell was positive and pronounced gating when negative. Endogenous N2a cell connexin expression levels were 1,000-fold lower than exogenously expressed Cx40 and Cx43 levels, measured by real-time PCR and Western blotting methods, suggestive of heterotypic gap junction formation by exogenous Cx40 and Cx43. Imposing a [KCl] gradient across the heterotypic gap junction modestly diminished the asymmetry of the macroscopic normalized junctional conductance – voltage (Gj-Vj) curve when [KCl] was reduced by 50% on the Cx43 side and greatly exacerbated the Vj gating asymmetries when lowered on the Cx40 side. Pairing wild-type (wt) Cx43 with the Cx40 E9,13K mutant protein produced a nearly symmetrical heterotypic Gj-Vj curve. These studies conclusively demonstrate the ability of Cx40 and Cx43 to form rectifying heterotypic gap junctions, owing primarily to alternate amino-terminal (NT) domain acidic and basic amino acid differences that may play a significant role in the physiology and/or pathology of the cardiovascular tissues including cardiac conduction properties and myoendothelial intercellular communication.  相似文献   

6.
Connexin40 (Cx40) and connexin43 (Cx43) are co-expressed in the cardiovascular system, yet their ability to form functional heterotypic Cx43/Cx40 gap junctions remains controversial. We paired Cx43 or Cx40 stably-transfected N2a cells to examine the formation and biophysical properties of heterotypic Cx43/Cx40 gap junction channels. Dual whole cell patch clamp recordings demonstrated that Cx43 and Cx40 form functional heterotypic gap junctions with asymmetric transjunctional voltage (Vj) dependent gating properties. The heterotypic Cx43/Cx40 gap junctions exhibited less Vj gating when the Cx40 cell was positive and pronounced gating when negative. Endogenous N2a cell connexin expression levels were 1,000-fold lower than exogenously expressed Cx40 and Cx43 levels, measured by real-time PCR and Western blotting methods, suggestive of heterotypic gap junction formation by exogenous Cx40 and Cx43. Imposing a [KCl] gradient across the heterotypic gap junction modestly diminished the asymmetry of the macroscopic normalized junctional conductance – voltage (Gj-Vj) curve when [KCl] was reduced by 50% on the Cx43 side and greatly exacerbated the Vj gating asymmetries when lowered on the Cx40 side. Pairing wild-type (wt) Cx43 with the Cx40 E9,13K mutant protein produced a nearly symmetrical heterotypic Gj-Vj curve. These studies conclusively demonstrate the ability of Cx40 and Cx43 to form rectifying heterotypic gap junctions, owing primarily to alternate amino-terminal (NT) domain acidic and basic amino acid differences that may play a significant role in the physiology and/or pathology of the cardiovascular tissues including cardiac conduction properties and myoendothelial intercellular communication.  相似文献   

7.
Many cardiovascular cells coexpress multiple connexins (Cx), leading to the potential formation of mixed (heteromeric) gap junction hemichannels whose biophysical properties may differ from homomeric channels containing only one connexin type. We examined the potential interaction of connexin Cx43 and Cx40 in HeLa cells sequentially stably transfected with these two connexins. Immunoblots verified the production of comparable amounts of both connexins, cross-linking showed that both connexins formed oligomers, and immunofluorescence showed extensive colocalization. Moreover, Cx40 copurified with (His)(6)-tagged Cx43 by affinity chromatography of detergent-solubilized connexons, demonstrating the presence of both connexins in some hemichannels. The dual whole cell patch-clamp method was used to compare the gating properties of gap junctions in HeLa Cx43/Cx40 cells with homotypic (Cx40-Cx40 and Cx43-Cx43) and heterotypic (Cx40-Cx43) gap junctions. Many of the observed single channel conductances resembled those of homotypic or heterotypic channels. The steady-state junctional conductance (g(j,ss)) in coexpressing cell pairs showed a reduced sensitivity to the voltage between cells (V(j)) compared with homotypic gap junctions and/or an asymmetrical V(j) dependence reminiscent of heterotypic gap junctions. These gating properties could be fit using a combination of homotypic and heterotypic channel properties. Thus, whereas our biochemical evidence suggests that Cx40 and Cx43 form heteromeric connexons, we conclude that they are functionally insignificant with regard to voltage-dependent gating.  相似文献   

8.
Three gap junctional proteins have been identified in canine ventricular myocytes: connexin 43 (Cx43), connexin 45 (Cx45), and connexin 40 (Cx40). We have characterized the functional properties of canine Cx45 and examined how Cx45 functionally interacts with Cx43 in Xenopus oocyte pairs. Homotypic pairs expressing Cx45 were well coupled. Heterotypic pairs composed of Cx45 paired with either Cx43 or Cx38 also developed high levels of conductance. Junctional currents in the heterotypic pairs displayed a highly asymmetrical voltage dependence. The kinetics and steady-state voltage dependence of the heterotypic channels more closely resembled those of the Cx45 channels when the Cx45 cRNA-injected cell was relatively negative suggesting that the Cx45 connexon closes for relative negativity at the cytoplasmic end of the channel. We also show that homotypic and heterotypic channels composed of Cx45 and Cx43 exhibit differences in pH i sensitivity. Received: 18 August 1995/Revised: 21 November 1995  相似文献   

9.
Connexins (Cxs) 40, 43, and 45 are expressed in many different tissues, but most abundantly in the heart, blood vessels, and the nervous system. We examined formation and gating properties of heterotypic gap junction (GJ) channels assembled between cells expressing wild-type Cx40, Cx43, or Cx45 and their fusion forms tagged with color variants of green fluorescent protein. We show that these Cxs, with exception of Cxs 40 and 43, are compatible to form functional heterotypic GJ channels. Cx40 and Cx43 hemichannels are unable or effectively impaired in their ability to dock and/or assemble into junctional plaques. When cells expressing Cx45 contacted those expressing Cx40 or Cx43 they readily formed junctional plaques with cell-cell coupling characterized by asymmetric junctional conductance dependence on transjunctional voltage, V(j). Cx40/Cx45 heterotypic GJ channels preferentially exhibit V(j)-dependent gating transitions between open and residual states with a conductance of approximately 42 pS; transitions between fully open and closed states with conductance of approximately 52 pS in magnitude occur at substantially lower ( approximately 10-fold) frequency. Cx40/Cx45 junctions demonstrate electrical signal transfer asymmetry that can be modulated between unidirectional and bidirectional by small changes in the difference between holding potentials of the coupled cells. Furthermore, both fast and slow gating mechanisms of Cx40 exhibit a negative gating polarity.  相似文献   

10.
Gap junctions are collections of intercellular channels composed of structural proteins called connexins (Cx). We have examined the functional interactions of the three rodent connexins present in the lens, Cx43, Cx46, and Cx50, by expressing them in paired Xenopus oocytes. Homotypic channels containing Cx43, Cx46, or Cx50 all developed high conductance. heterotypic channels composed of Cx46 paired with either Cx43 or Cx50 were also well coupled, whereas Cx50 did not form functional channels with Cx43. We also examined the functional response of homotypic and heterotypic channels to transjunctional voltage and cytoplasmic acidification. We show that all lens connexins exhibited sensitivity to cytoplasmic acidification as well as to voltage, and that voltage-dependent closure of heterotypic channels for a given connexin was dramatically influenced by its partner connexins in the adjacent cell. Based on the observation that Cx43 can discriminate between Cx46 and Cx50, we investigated the molecular determinants that specify compatibility by constructing chimeric connexins from portions of Cx46 and Cx50 and testing them for their ability to form channels with Cx43. When the second extracellular (E2) domain in Cx46 was replaced with the E2 of Cx50, the resulting chimera could no longer form heterotypic channels with Cx43. A reciprocal chimera, where the E2 of Cx46 was inserted into Cx50, acquired the ability to functionally interact with Cx43. Together, these results demonstrate that formation of intercellular channels is a selective process dependent on the identity of the connexins expressed in adjacent cells, and that the second extracellular domain is a determinant of heterotypic compatibility between connexins.  相似文献   

11.
We examined the permeabilities of homotypic and heterotypic gap junction (GJ) channels formed of rodent connexins (Cx) 30.2, 40, 43, and 45, which are expressed in the heart and other tissues, using fluorescent dyes differing in net charge and molecular mass. Combining fluorescent imaging and electrophysiological recordings in the same cell pairs, we evaluated the single-channel permeability (P(gamma)). All homotypic channels were permeable to the anionic monovalent dye Alexa Fluor-350 (AF(350)), but mCx30.2 channels exhibited a significantly lower P(gamma) than the others. The anionic divalent dye Lucifer yellow (LY) remained permeant in Cx40, Cx43, and Cx45 channels, but transfer through mCx30.2 channels was not detected. Heterotypic channels generally exhibited P(gamma) values that were intermediate to the corresponding homotypic channels. P(gamma) values of mCx30.2/Cx40, mCx30.2/Cx43, or mCx30.2/Cx45 heterotypic channels for AF(350) were similar and approximately twofold higher than P(gamma) values of mCx30.2 homotypic channels. Permeabilities for cationic dyes were assessed only qualitatively because of their binding to nucleic acids. All homotypic and heterotypic channel configurations were permeable to ethidium bromide and 4,6-diamidino-2-phenylindole. Permeability for propidium iodide was limited only for GJ channels that contain at least one mCx30.2 hemichannel. In summary, we have demonstrated that Cx40, Cx43, and Cx45 are permeant to all examined cationic and anionic dyes, whereas mCx30.2 demonstrates permeation restrictions for molecules with molecular mass over approximately 400 Da. The ratio of single-channel conductance to permeability for AF(350) was approximately 40- to 170-fold higher for mCx30.2 than for Cx40, Cx43, and Cx45, suggesting that mCx30.2 GJs are notably more adapted to perform electrical rather than metabolic cell-cell communication.  相似文献   

12.
In addition to providing a pathway for intercellular communication, the gap junction-forming proteins, connexins, can serve a growth-suppressive function that is both connexin and cell-type specific. To assess its potential growth-suppressive function, we stably introduced connexin 37 (Cx37) into connexin-deficient, tumorigenic rat insulinoma (Rin) cells under the control of an inducible promoter. Proliferation of these iRin37 cells, when induced to express Cx37, was profoundly slowed: cell cycle time increased from 2 to 9 days. Proliferation and cell cycle time of Rin cells expressing Cx40 or Cx43 did not differ from Cx-deficient Rin cells. Cx37 suppressed Rin cell proliferation irrespective of cell density at the time of induced expression and without causing apoptosis. All phases of the cell cycle were prolonged by Cx37 expression, and progression through the G(1)/S checkpoint was delayed, resulting in accumulation of cells at this point. Serum deprivation augmented the effect of Cx37 to accumulate cells in late G(1). Cx43 expression also affected cell cycle progression of Rin cells, but its effects were opposite to Cx37, with decreases in G(1) and increases in S-phase cells. These effects of Cx43 were also augmented by serum deprivation. Cx-deficient Rin cells were unaffected by serum deprivation. Our results indicate that Cx37 expression suppresses cell proliferation by significantly increasing cell cycle time by extending all phases of the cell cycle and accumulating cells at the G(1)/S checkpoint.  相似文献   

13.
Murine connexin 40 (Cx40) and connexin 43 (Cx43) do not form functional heterotypic gap junction channels. This property may contribute to the preferential propagation of action potentials in murine conductive myocardium (expressing Cx40) which is surrounded by working myocardium, expressing Cx43. When mouse Cx40 and Cx43 were individually expressed in cocultured human HeLa cells, no punctate immunofluorescent signals were detected on apposed plasma membranes between different transfectants, using antibodies specific for each connexin, suggesting that Cx40 and Cx43 hemichannels do not dock to each other. We wanted to identify domains in these connexin proteins which are responsible for the incompatibility. Thus, we expressed in HeLa cells several chimeric gene constructs in which different extracellular and intracellular domains of Cx43 had been spliced into the corresponding regions of Cx40. We found that exchange of both extracellular loops (E1 and E2) in this system (Cx40*43E1,2) was required for formation of homotypic and heterotypic conductive channels, although the electrical properties differed from those of Cx40 or Cx43 channels. Thus, the extracellular domains of Cx43 can be directed to form functional homo- and heterotypic channels. Another chimeric construct in which both extracellular domains and the central cytoplasmic loop (E1, E2, and C2) of Cx43 were spliced into Cx40 (Cx40*43E1,2,C2) led to heterotypic coupling only with Cx43 and not with Cx40 transfectants. Thus, the central cytoplasmic loop of Cx43 contributed to selectivity. A third construct, in which only the C-terminal domain (C3) of Cx43 was spliced into Cx40, i.e., Cx40*43C3, showed neither homotypic nor heterotypic coupling with Cx40 and Cx43 transfectants, suggesting that the C-terminal region of Cx43 determined incompatibility.  相似文献   

14.
Summary Gap junctions contain intercellular channels which are formed by members of a group of related proteins called connexins. Connexins contain conserved transmembrane and extracellular domains, but unique cytoplasmic regions which may provide connexin-specific physiologic properties. We used polymerase chain reaction (PCR) amplification and cDNA library screening to clone DNA encoding a novel member of this gene family, rat connexin40 (Cx40). The derived rat Cx40 polypeptide contains 356 amino acids, with a predicted molecular mass of 40,233 Da. Sequence comparisons suggest that Cx40 is the mammalian homologue of chick connexin42, but it has predicted cytoplasmic regions that differ from previously described mammalian connexins. Southern blots of rat genomic DNA suggest that Cx40 is encoded by a single copy gene containing no introns within its coding region. Northern blots demonstrate that Cx40 is expressed in multiple tissues (including lung, heart, uterus, ovary, and blood vessels) and in primary cultures and established lines of vascular smooth muscle cells. Cx40 is coexpressed with connexin43 in several cell types, including A7r5 cells, which contain two physiologically distinct gap junctional channels. To demonstrate that Cx40 could form functional channels, we stably transfected communication-deficient Neuro2A cells with Cx40 DNA. These Cx40-transfected cells showed intercellular passage of microinjected Lucifer yellow CH. The expression of multiple connexins (such as Cx40 and Cx43) by a single cell may provide a mechanism by which cells regulate intercellular coupling through the formation of multiple channels  相似文献   

15.
Although a functional pore domain is required for connexin 37 (Cx37)–mediated suppression of rat insulinoma (Rin) cell proliferation, it is unknown whether functional hemichannels would be sufficient or if Cx37 gap junction channels are required for growth suppression. To test this possibility, we targeted extracellular loop cysteines for mutation, expecting that the mutated protein would retain hemichannel, but not gap junction channel, functionality. Cysteines at positions 61 and 65 in the first extracellular loop of Cx37 were mutated to alanine and the mutant protein (Cx37-C61,65A) expressed in Rin cells. Although the resulting iRin37-C61,65A cells expressed the mutant protein comparably to Cx37 wild-type (Cx37-WT)–expressing Rin cells (iRin37), Cx37-C61,65A expression did not suppress the proliferation of Rin cells. As expected, iRin37-C61,65A cells did not form functional gap junction channels. However, functional hemichannels also could not be detected in iRin37-C61,65A cells by either dye uptake or electrophysiological approaches. Thus, failure of Cx37-C61,65A to suppress the proliferation of Rin cells is consistent with previous data demonstrating the importance of channel functionality to Cx37’s growth-suppressive function. Moreover, failure of the Cx37-C61,65A hemichannel to function, even in low external calcium, emphasizes the importance of extracellular loop cysteines not only in hemichannel docking but also in determining the ability of the hemichannel to adopt a closed configuration that can open in response to triggers, such as low external calcium, effective at opening Cx37-WT hemichannels.  相似文献   

16.
Direct cell-to-cell transfer of ions and small signaling molecules via gap junctions plays a key role in vessel wall homeostasis. Vascular endothelial gap junctional channels are formed by the connexin (Cx) proteins Cx37, Cx40, and Cx43. The mechanisms regulating connexin expression and assembly into functional channels have not been fully identified. We investigated the dynamic regulation of endothelial gap junctional intercellular communication (GJIC) by fluid flow and the participation of each vascular connexin in functional human endothelial gap junctions in vitro. Human aortic endothelial cells (HAEC) were exposed for 5, 16, and 24 h to physiological flows in a parallel-plate flow chamber. Connexin protein expression and localization were evaluated by immunocytochemistry, and functional GJIC was evaluated by dye injection. Connexin-mimetic peptide inhibitors were used to assess the specific connexin composition of functional channels. HAEC monolayers in culture exhibited baseline functional communication at a striking low level despite abundant expression of Cx43 and Cx40 localized at cell-to-cell appositions. Upon exposure to flow, GJIC by dye spread demonstrated a significant time-dependent increase from baseline levels, reaching 7.5-fold in 24 h. Inhibition studies revealed that this response was mediated primarily by Cx40, with lesser contributions of the other two vascular connexins assembled into functional homotypic and/or heterotypic channels. This is the first study to demonstrate that flow simultaneously and differentially regulates expression of the Cx37, Cx40, and Cx43 proteins and their involvement in the augmentation of intercellular communication by dye transfer in human endothelial cells in vitro.  相似文献   

17.
Immunohistochemical co-localization of distinct connexins (Cxs) in junctional areas suggests the formation of heteromultimeric channels. To determine the docking effects of the heterotypic combination of Cx43 and Cx45 on the voltage-gating properties of their channels, we transfected DNA encoding Cx43 or Cx45 into N2A neuroblastoma or HeLa cells. Using a double whole-cell voltage-clamp technique, we determined macroscopic and single-channel gating properties of the intercellular channels formed. Cx43-Cx45 heterotypic channels had rectifying properties where Cx45 connexons inactivated rapidly upon hyperpolarizing voltage pulses applied to the Cx45-expressing cell. During depolarizing pulses to the Cx45-expressing cell, Cx43 connexons inactivated with substantially reduced kinetics as compared with homotypic Cx43 channels. Similar slow kinetics was observed for homotypic Cx43M257 (truncation mutant). Heterotypic channels had a main conductance whose value was predicted by the sum of corresponding homomeric connexon conductances; it was not voltage dependent and had no detectable residual conductance. The voltage-gating kinetics of heterotypic channels and their single-channel behavior implicate a role for the Cx43 carboxyl-terminal domain in the fast gating mechanism and in the establishment of residual conductance. Our results also suggest that heterotypic docking may lead to conformational changes that inhibit this action of the Cx43 carboxyl-terminal domain.  相似文献   

18.
Gap junctions have traditionally been characterized as nonspecific pores between cells passing molecules up to 1 kDa in molecular mass. Nonetheless, it has become increasingly evident that different members of the connexin (Cx) family mediate quite distinct physiological processes and are often not interchangeable. Consistent with this observation, differences in permeability to natural metabolites have been reported for different connexins, although the physical basis for selectivity has not been established. Comparative studies of different members of the connexin family have provided evidence for ionic charge selectivity, but surprisingly little is known about how connexin composition affects the size of the pore. We have employed a series of Alexa dyes, which share similar structural characteristics but range in size from molecular weight 350 to 760, to probe the permeabilities and size limits of different connexin channels expressed in Xenopus oocytes. Correlated dye transfer and electrical measurements on each cell pair, in conjunction with a three-dimensional mathematical model of dye diffusion in the oocyte system, allowed us to obtain single channel permeabilities for all three dyes in six homotypic and four heterotypic channels. Cx43 and Cx32 channels passed all three dyes with similar efficiency, whereas Cx26, Cx40, and Cx45 channels showed a significant drop-off in permeability with the largest dye. Cx37 channels only showed significant permeability for the smaller two dyes, but at two- to sixfold lower levels than other connexins tested. In the heterotypic cases studied (Cx26/Cx32 and Cx43/Cx37), permeability characteristics were found to resemble the more restrictive parental homotypic channel. The most surprising finding of the study was that the absolute permeabilities calculated for all gap junctional channels in this study are, with one exception, at least 2 orders of magnitude greater than predicted purely on the basis of hindered pore diffusion. Consequently, affinity between the probes and the pore creating an energetically favorable in-pore environment, which would elevate permeant concentration within the pore and hence the flux, is strongly implicated.  相似文献   

19.
The goals of the current study were to determine whether the conductance of Cx40 and Cx40-Cx43 mixed composition junctions was regulated by platelet-derived growth factor (PDGF)-activated signaling cascades, to ascertain the minimum number of Cx43 subunits/connexon required to confer PDGF sensitivity, and to identify specific residues in Cx43 required for this regulation. Junctional and channel conductances (gjand γj, respectively) were determined for Cx40/Cx40, Cx43/Cx43, Cx40/Cx43, and Cx40-Cx43/Cx40-Cx43 mixed composition channels. PDGF had no effect on gjin Cx40/Cx40 pairs, but decreased gjin the remaining combinations by 53% (Cx43/Cx43), 48% (Cx40/Cx43), 41% (4:1 Cx40:Cx43 expression ratio) and 24% (10:1 Cx40:Cx43 expression ratio). Based on the predicted connexin composition of channels in cells expressing Cx40 and Cx43 at either 4:1 or 10:1 ratios, these decreases in gjsuggest that a single subunit of Cx43 is sufficient to confer PDGF sensitivity. The effect of PDGF on gjinvolved a decrease in both γjand Po and required serine 368 in the C-terminus. These data implicate protein kinase C as the mediator of the PDGF effect and strongly suggest that acute regulation of gap junction function by PDGF-activated signaling cascades is conferred by low levels of expression of a sensitive connexin in cells that otherwise express insensitive connexins.  相似文献   

20.
The permselectivity (permeance/conductance) of Cx43-comprised gap junctions is a variable parameter of junctional function. To ascertain whether this variability in junctional permselectivity is explained by heterogeneous charge or size selectivity of the comprising channels, the permeance of individual Cx43 gap junctions to combinations of two dyes differing in either size or charge was determined in four cell types: Rin43, NRKe, HeLa43, and cardiac myocytes. The results show that Cx43 junctions are size- but not charge-selective and that both selectivities are constant parameters of junctional function. The consistency of dye selectivities indicates that the large continuum of measured junctional permselectivities cannot be ascribed to an equivalent continuum of individual channel selectivities. Further, the relative dye permeance sequence of NBD-M-TMA approximately Alexa 350 > Lucifer yellow > Alexa 488 > Alexa 594 (Stokes radii of 4.3 A, 4.4 A, 4.9 A, 5.8 A, and 7.4 A, respectively) and the conductance sequence of KCl > TEACl approximately Kglutamate are well described by hindered diffusion through an aqueous pore with radius approximately 10 A and length 160 A. The permselectivity and dye selectivity data suggest the variable presence in Cx43-comprised junctions of conductive channels that are either dye-impermeable or dye-permeable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号