首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Indirect effects of atmospheric CO2 concentration [CO2], onlongleaf pine (Pinus palustris Mill.) foliage respiration werestudied by growing trees in a factorial arrangement of low andhigh [CO2] (369 and 729µmol CO2 mol–1) and low andhigh N (40 and 400 kg ha–1 yr–1). Direct effectsof [CO2] on leaf respiration were tested by measuring respirationrates of foliage from all treatments at two CO2 levels (360and 720µmol CO2mol–1) at the time of measurement.Elevated CO2 did not directly or indirectly affect leaf respirationwhen expressed on a leaf area or mass basis, but a significantincrease in respiration per unit leaf N was observed in treesgrown in elevated [CO2] (indirect response to elevated [CO2]).The lack of a [CO2] effect on respiration, when analysed onan area or mass basis, may have resulted from combined effectsof [CO2] on factors that increase respiration (e.g. greateravailability of non-structural carbohydrates stimulating growthand carbon export from leaves) and on factors that decreaserespiration (e.g. lower N concentration leading to lower constructioncosts and maintenance requirements). Thus, [CO2] affected factorsthat influence respiration, but in opposing ways. Key words: Pinus palustris, elevated CO2, nitrogen, foliar, respiration  相似文献   

2.
徐胜  陈玮  何兴元  黄彦青  高江艳  赵诣  李波 《生态学报》2015,35(8):2452-2460
大气CO2浓度升高已成为世界范围内的重要环境问题。CO2浓度升高势必会对植物的生理生态变化产生重要影响。综述了国内外有关高浓度CO2对树木生理生态影响研究的最新进展,具体包括高浓度CO2对树木生长发育、光合和呼吸作用、抗氧化系统、树木代谢物质、挥发性有机化合物以及树木凋落物等方面的影响。高浓度CO2一般会促进树木地上植株的生长和发育,但也因树种差异而有所不同。最新研究表明,高浓度CO2促进了树木细根周转,树木根系生长在大气CO2浓度升高条件下表现为促进作用,这种作用加快了全球森林生态系统的C循环。高浓度CO2虽然在一定程度上促进树木光合速率的增加,但长期熏蒸也往往会发生光合驯化,这种现象产生的生理学机制目前仍无定论。高浓度CO2对树木呼吸作用尤其是根系呼吸的影响将是未来研究的重点和难点。高浓度CO2一般会提高树木抗氧化酶活性与抗氧化剂含量,但不同树种响应高浓度CO2的过程和机理也有所差异。研究表明,高浓度CO2一般对树木凋落物的分解产生不利影响,但也因树种而异。需要强调的是,目前关于树木地下部分、树木对高浓度CO2的适应机理和重要过程(碳氮水耦合及基因调控等)以及多个树种包括不同类型树种及不同品种之间比较研究较少;关于某一重要生理生态机制(如根系生理代谢)尤其是多个生态因子复合条件下缺乏长期深入的研究。在此基础上给出了大气CO2浓度升高下树木生理生态学研究的未来发展方向,包括高CO2浓度条件下树木根系生理代谢及机制、树木碳氮水耦合的生理过程及机制、不同生态因子复合作用对树木生理影响机制以及树木分子作用机理等方面的研究。这些研究不仅将丰富森林树木应对未来气候变化的有关科学理论,也为全球气候变化背景下实现森林树种生态功能的优化选择及森林生态系统的可持续发展与经营提供重要的生理生态学理论依据和参考。  相似文献   

3.
Because of their prominent role in global bioproductivity andbecause of their complex structure and function, forests andtree species deserve particular attention in studies on thelikely impact of elevated atmospheric CO2on terrestrial vegetation.Besides a synoptic review of some of the most prominent above-groundresponse processes, particular attention is given to below-groundresponses of trees to elevated atmospheric CO2, while some feedbackprocesses and interactions with various biotic and abiotic factorsare also briefly summarized. At the leaf level there is littleevidence of the long-term loss of sensitivity to CO2that wassuggested by earlier experiments with tree seedlings in pots.Future studies on photosynthesis measurements will probablynot alter our conclusions about acclimation, but should focusmore on respiration under elevated CO2, which is still poorlyunderstood. At the tree level, the increase in growth observedin elevated CO2results from an increase in both leaf area andleaf photosynthetic rate (per unit leaf area). Tree growth enhancementis generally larger at high rates of nutrient supply; when nutrientsupply rates do not meet growth rates, tree nutrient statusdeclines and nutrients become limiting. In many studies at thecanopy level, a shift in whole-tree carbon allocation patterntowards below-ground parts has been associated with increasedatmospheric CO2concentrations. At the ecosystem level, a largeramount of carbon being allocated below-ground could show upby either (1) more root growth and turnover, (2) enhanced activityof root-associated microorganisms, (3) larger microbial biomasspools and enhanced microbial activity, or (4) increased lossesof soil carbon through soil respiration. Fine root productionis generally enhanced, but it is not clear whether this responsewould persist in a forest. As elevated CO2stimulates biomassproduction, litterfall and rhizodeposition also increase. Thisincreased delivery of labile organic matter to the soil couldinfluence soil microbial communities and subsequent decompositionrates, nutrient availability and carbon storage in soil. Thereare, however, contradictory hypothesis about the direction inwhich nutrient availability will be affected. Knowledge of theresponse of these and other ecophysiological processes to elevatedCO2is the key to understanding the functioning of the wholeforest ecosystem. Our current knowledge is sufficiently largewith regard to how the carbon uptake process and individualtree growth respond under atmospheric changes, but more emphasisshould be put in future experiments on the interactions betweenvarious processes, such as the carbon and nitrogen cycles, andon below-ground responses. Copyright 1999 Annals of Botany Company Global climatic changes, elevated CO2, forests, trees, below-ground processes, mycorrhizae, roots, decomposition.  相似文献   

4.
The mechanisms for species-specific growth responses to changes in atmospheric CO2 concentration within narrow ecological groups of species, such as shade-tolerant, late-successional trees, have rarely been addressed and are not well understood. In this study the underlying functional traits for interspecific variation in the biomass response to elevated CO2 were explored for seedlings of five late-successional temperate forest tree species (Fagus sylvatica, Acer pseudoplatanus, Quercus robur, Taxus baccata, Abies alba). The seedlings were grown in the natural forest understorey in very low and low light microsites (an average of 1.3% and 3.4% full sun in this experiment), and were exposed to either current ambient CO2 concentrations, 500, or 660 µl CO2 l-1 in 36 open-top chambers (OTC) over two growing seasons. Even across the narrow range of successional status and shade tolerance, the study species varied greatly in photosynthesis, light compensation point, leaf dark respiration (Rd), leaf nitrogen concentration, specific leaf area (SLA), leaf area ratio (LAR), and biomass allocation among different plant parts, and showed distinct responses to CO2 in these traits. No single species combined all characteristics traditionally considered as adaptive to low light conditions. At very low light, the CO2 stimulation of seedling biomass was related to increased LAR and decreased Rd, responses that were observed only in Fagus and Taxus. At slightly higher light levels, interspecific differences in the biomass response to elevated CO2 were reversed and correlated best with leaf photosynthesis. The data provided here contribute to a mechanistic process-based understanding of distinct response patterns in co-occurring tree species to elevated CO2 in natural deep shade. I conclude that the high variation in physiological and morphological traits among late-successional species, and the consequences for their responses to slight changes in resource availability, have previously been underestimated. The commonly used broad definitions of functional groups of species may not be sufficient for the understanding of recruitment success and dynamic changes in species composition of old-growth forests in response to rising concentrations of atmospheric CO2.  相似文献   

5.
Short-term effects of elevated CO2 during the early life phaseof plants may have long lasting consequences for growth andbiomass in later periods. We exposed hydroponically grown wheatseedlings to 5 d pulses of elevated CO2 while leaf expansiongrowth as well as shoot and root gas exchange were measuredsimultaneously and continuously. Shoot photosynthesis, night-timeshoot respiration and below-ground respiration (largely by roots)roughly doubled when atmospheric CO2 concentration was doubled.An interruption of CO2 enrichment caused CO2 assimilation andrespiration to return to control levels. However, while theresponse of photosynthesis was immediate, that of respirationshowed a hysteresis of about 3 d. Since shoot biomass increasedat elevated CO2 (with no change in allocation pattern) equalfluxes per shoot or root system after a return to control CO2concentrations indicate substantial downward adjustment of thecapacity for CO2 fixation and release in high-CO2 grown plants.Leaf expansion growth was completely unaffected by CO2 enrichment,whereas tiller initiation was significantly increased (doubledin 18 d). We conclude that leaf growth in these wheat plantswas already carbon-saturated at ambient CO2 concentration atoptimum mineral nutrient supply. The stimulation of growth ofwhole plants was exclusively due to enhanced tillering duringthis very early part of the life of these wheat plants. Key words: Allocation, atmospheric carbon dioxide enrichment, growth, photosynthesis, respiration, tillering, Triticum aestivum  相似文献   

6.
REY  ANA; JARVIS  PAUL G. 《Annals of botany》1997,80(6):809-816
A field experiment consisting of 18 birch trees grown in opentop chambers in ambient and elevated CO2concentrations was setup with the aim of testing whether the positive growth responseobserved in many short-term studies is maintained after severalgrowing seasons. We present the results of growth and biomassafter 4.5 years of CO2exposure, one of the longest studies sofar on deciduous tree species. We found that elevated CO2ledto a 58% increase in biomass at the end of the experiment. However,estimation of stem mass during the growing season showed thatelevated CO2did not affect relative growth rate during the fourthgrowing season, and therefore, that the large accumulation ofbiomass was the result of an early effect on relative growthrate in previous years. Trees grown in elevated CO2investedmore carbon into fine roots and had relatively less leaf areathan trees grown in ambient CO2. In contrast with previous studies,acceleration of growth did not involve a significant declinein nutrient concentrations of any plant tissue. It is likelythat increased fine root density assisted the trees in meetingtheir nutrient demands. Changes in the species composition ofthe ectomycorrhizal fungi associated with the trees grown inelevated CO2in favour of late successional species supportsthe hypothesis of an acceleration of the ontogeny of the treesin elevated CO2.Copyright 1997 Annals of Botany Company Betula pendula; silver birch; elevated CO2; growth; biomass allocation; ectomycorrhizas; tissue composition; nutrients; leaf morphology; specific leaf area; stomatal density; shoot structure  相似文献   

7.
In spite of the importance of respiration in forest carbon budgets,the mechanisms by which physiological factors control stem respirationare unclear. An experiment was set up in a Eucalyptus globulusplantation in central Portugal with monoculture stands of 5-year-oldand 10-year-old trees. CO2 efflux from stems under shaded andunshaded conditions, as well as the concentration of CO2 dissolvedin sap [CO2*], stem temperature, and sap flow were measuredwith the objective of improving our understanding of the factorscontrolling CO2 release from stems of E. globulus. CO2 effluxwas consistently higher in 5-year-old, compared with 10-year-old,stems, averaging 3.4 versus 1.3 µmol m–2 s–1,respectively. Temperature and [CO2*] both had important, andsimilar, influences on the rate of CO2 efflux from the stems,but neither explained the difference in the magnitude of CO2efflux between trees of different age and size. No relationshipwas found between efflux and sap flow, and efflux was independentof tree volume, suggesting the presence of substantial barriersto the diffusion of CO2 from the xylem to the atmosphere inthis species. The rate of corticular photosynthesis was thesame in trees of both ages and only reduced CO2 efflux by 7%,probably due to the low irradiance at the stem surface belowthe canopy. The younger trees were growing at a much fasterrate than the older trees. The difference between CO2 effluxfrom the younger and older stems appears to have resulted froma difference in growth respiration rather than a differencein the rate of diffusion of xylem-transported CO2. Key words: Eucalyptus globulus, refixation, stem respiration Received 19 May 2008; Revised 14 September 2008 Accepted 8 October 2008  相似文献   

8.
Forest carbon balance under elevated CO2   总被引:10,自引:2,他引:8  
Free-air CO2 enrichment (FACE) technology was used to expose a loblolly pine (Pinus taeda L.) forest to elevated atmospheric CO2 (ambient + 200 µl l-1). After 4 years, basal area of pine trees was 9.2% larger in elevated than in ambient CO2 plots. During the first 3 years the growth rate of pine was stimulated by ~26%. In the fourth year this stimulation declined to 23%. The average net ecosystem production (NEP) in the ambient plots was 428 gC m-2 year-1, indicating that the forest was a net sink for atmospheric CO2. Elevated atmospheric CO2 stimulated NEP by 41%. This increase was primarily an increase in plant biomass increment (57%), and secondarily increased accumulation of carbon in the forest floor (35%) and fine root increment (8%). Net primary production (NPP) was stimulated by 27%, driven primarily by increases in the growth rate of the pines. Total heterotrophic respiration (Rh) increased by 165%, but total autotrophic respiration (Ra) was unaffected. Gross primary production was increased by 18%. The largest uncertainties in the carbon budget remain in separating belowground heterotrophic (soil microbes) and autotrophic (root) respiration. If applied to temperate forests globally, the increase in NEP that we measured would fix less than 10% of the anthropogenic CO2 projected to be released into the atmosphere in the year 2050. This may represent an upper limit because rising global temperatures, land disturbance, and heterotrophic decomposition of woody tissues will ultimately cause an increased flux of carbon back to the atmosphere.  相似文献   

9.
Two methods were used to estimate construction costs for leaves,stems, branches and woody roots of yellow-poplar (LiriodendrontulipiferaL.) trees grown at ambient (35 Pa) and elevated (65Pa) CO2for 2.7 years and trees of white oak (Quercus albaL.)grown at these same CO2partial pressures for 4 years. Samplecombustion in a bomb calorimeter combined with measurementsof ash and nitrogen content provided the primary method of estimatingtissue construction costs (WG; g glucose g-1dry mass). Thesevalues were compared with a second, simpler method in whichcost estimates were derived from tissue ash, carbon and nitrogencontent (VG). Estimates of WGwere lower for leaves, branchesand roots of yellow-poplar and for leaves of white oak grownat elevated compared with ambient CO2partial pressures. TheseCO2-induced differences in WGranged from 3.7% in yellow-poplarroots to 2.1% in white oak leaves. Only in the case of yellow-poplarleaves, however, were differences in VGobserved between CO2treatments.Leaf VGwas 1.46 g glucose g-1dry mass in ambient-grown treescompared with 1.41 g glucose g-1dry mass for CO2-enriched trees.Although paired-estimates of WGand VGclustered about a 1:1 linefor leaves and branches, estimates of VGwere consistently lowerthan WGfor stems and roots. Construction costs per unit leafarea were 95 g glucose m-2for yellow-poplar trees grown at ambientCO2and 106 g glucose m-2for trees grown at elevated CO2partialpressures. No differences in area-based construction costs wereobserved for white oak. Whole-plant energy content was 1220g glucose per tree in ambient-grown white oak compared with2840 g glucose per tree for those grown at elevated CO2partialpressures. These differences were driven largely by CO2-inducedchanges in total biomass. We conclude that while constructioncosts were lower at elevated CO2partial pressures, the magnitudeof this response argues against an increased efficiency of carbonuse in the growth processes of trees exposed to CO2enrichment. Bomb calorimeter; construction costs; elevated CO2; energy allocation; global change; growth respiration; heat of combustion; respiration; Liriodendron tulipifera; Quercus alba  相似文献   

10.
Elevated atmospheric carbon dioxide partial pressures have been shown to have variable direct and indirect effects on plant respiration rates. In this study, growth, leaf respiration, and leaf nitrogen and carbohydrate partitioning were measured in Gossypium hirsutum L. grown in 35 and 65 Pa CO2 for 30d. Growth and maintenance coefficients of leaf respiration were estimated using gas exchange techniques both at night and during the day. Elevated CO2 stimulated biomass production (107%) and net photo-synthetic rates (35–50%). Total day-time respiration (Rd) was not significantly affected by growth CO2 partial pressure. However, night respiration (Rn) of leaves grown in 65 Pa CO2 was significantly greater than that of plants grown in 35 Pa CO2. Correlation of Rd and Rn with leaf expansion rates indicated that plants in both CO2 treatments had equivalent growth respiration coefficients but maintenance respiration was significantly greater in elevated CO2. Increased maintenance coefficients in elevated CO2 appeared to be related to increased starch accumulation rather than to changes in leaf nitrogen.  相似文献   

11.
The effects of elevated CO2 were studied on the photosyntheticgas exchange behaviour and leaf physiology of two contrastingpoplar (Populus) hybrids grown and treated in open top chambers(OTCs in Antwerp, Belgium) and in closed glasshouse cabinets(GHCs in Sussex, UK). The CO2 concentrations used in the OTCswere ambient and ambient +350 µmol mol–1 while inthe GHCs they were c. 360 µmol mol–1 versus 719µmol mol–1. Measurements of photosynthetic gas exchangewere made for euramerican and interamerican poplar hybrids incombination with measurements of dark respiration rate and Rubiscoactivity. Significant differences in the leaf anatomy and structure(leaf mass per area and chlorophyll content) were observed betweenthe leaves grown in the OTCs and those grown in the GHCs. ElevatedCO2 stimulated net photosynthesis in the poplar hybrids after1 month in the GHCs and after 4 months in the OTCs, and therewas no evidence of downward acclimation (or down-regulation)of photosynthesis when the plants in the two treatments weremeasured in their growth CO2 concentration. There was also noevidence of down-regulation of Rubisco activity and there wereeven examples of increases in Rubisco activity. Rubisco exerteda strong control over the light-saturated rate of photosynthesis,which was demonstrated by the close agreement between observednet photosynthetic rates and those that were predicted fromRubisco activities and Michaelis-Menten kinetics. After 17 monthsin elevated CO2 in the OTCs there was a significant loss ofRubisco activity for one of the hybrid clones, i.e. Beaupr,but not for clone Robusta. The effect of the CO2 measurementconcentration (i.e. the short-term treatment effect) on netphotosynthesis was always larger than the effect of the growthconcentration in both the OTCs or GHCs (i.e. the longterm growthCO2 effect), with one exception. For the interamerican hybridBeaupr dark respiration rates in the OTCs were not significantlyaffected by the elevated CO2 concentrations. The results suggestthat for rapidly growing tree species, such as poplars, thereis little evidence for downward acclimation of photosynthesiswhen plants are exposed to elevated CO2 for up to 4 months;longer term exposure reveals loss of Rubisco activity. Key words: Elevated CO2, Populus, Rubisco, photosynthesis, chlorophyll content  相似文献   

12.
Agrostis capillaris L.5, Festuca vivipara L. and Poaalpina L.were grown in outdoor open-top chambers at either ambient (340 3µmol mol–1) or elevated (6804µmol mol–1)concentrations of atmospheric carbon dioxide (CO2) for periodsfrom 79–189 d. Photosynthetic capacity of source leaves of plants grown atboth ambient and elevated CO2 concentrations was measured atsaturating light and 5% CO2. Dark respiration of leaves wasmeasured using a liquid phase oxygen electrode with the buffersolution in equilibrium with air (21% O2, 0.034% CO2). Photo-syntheticcapacity of P. alpina was reduced by growth at 680 µmolmol–1 CO2 by 105 d, and that of F. vivipara was reducedat 65 d and 189 d after CO2 enrichment began, suggesting down-regulationor acclimation. Dark respiration of successive leaf blades ofall three species was unaltered by growth at 680 relative to340 µmol mol–1 CO2. In F. vivipara, leaf respirationrate was markedly lower at 189 d than at either 0 d or 65 d,irrespective of growth CO2 concentration. There was a significantlylower total non-structural carbohydrate (TNC) concentrationin the leaf blades and leaf sheaths of A. capillaris grown at680µmol mol–1 CO2. TNC of roots of A. capillariswas unaltered by CO2 treatment. TNC concentration was increasedin both leaves and sheaths of P. alpina and F. vivipara after105 d and 65 d growth, respectively. A 4-fold increase in thewater-soluble fraction (fructan) in P. alpina and in all carbohydratefractions in F. vivipara accounted for the increased TNC content. In F. vivipara the relationship between leaf photosyn-theticcapacity and leaf carbohydrate concentration was such that therewas a strong positive correlation between photosynthetic capacityand total leaf N concentration (expressed on a per unit structuraldry weight basis), and total nitrogen concentration of successivemature leaves reduced with time. Multiple regression of leafphotosynthetic capacity upon leaf nitrogen and carbohydrateconcentrations further confirmed that leaf photosynthetic capacitywas mainly determined by leaf N concentration. In P. alpina,leaf photosynthetic capacity was mainly determined by leaf CHOconcentration. Thus there is evidence for down-regulation ofphotosynthetic capacity in P. alpina resulting from increasedcarbohydrate accumulation in source leaves. Leaf dark respiration and total N concentration were positivelycorrelated in P. alpina and F. vivipara. Leaf dark respirationand soluble carbohydrate concentration of source leaves werepositively correlated in A. capillaris. Changes in source leafphotosynthetic capacity and carbohydrate concentration of plantsgrown at ambient or elevated CO2 are discussed in relation toplant growth, nutrient relations and availability of sinks forcarbon. Key words: Elevated CO2, Climate change, grasses, carbohydrate partitioning, photosynthesis, respiration  相似文献   

13.
To elucidate how atmospheric CO2 enrichment, enhanced nutrient supply and soil quality interact to affect regrowth of temperate forests, young Fagus sylvatica and Picea abies trees were grown together in large model ecosystems. Identical communities were established on a nutrient-poor acidic and on a more fertile calcareous soil and tree growth, leaf area index, fine root density and soil respiration monitored over four complete growing seasons. Biomass responses to CO2 enrichment and enhanced N supply at the end of the experiment reflected compound interest effects of growth stimulation during the first two to three seasons rather than persistent stimulation over the whole duration of the experiment. Whereas biomass of Picea was enhanced in elevated CO2 on both soils, Fagus responded negatively to CO2 on acidic but positively on calcareous soil. Biomass of both species profited from enhanced N supply on the poor acidic soil only. Leaf area index on both soils was greater in high N supply as a consequence of a stimulation early in the experiment, but was unaffected by CO2 enrichment. Fine root density on acidic soil was increased in high N supply, but this did not stimulate soil respiration rate. In contrast, elevated CO2 stimulated both fine root density and soil CO2 efflux on calcareous soil, especially towards the end of the experiment. Our experiment suggests that future species dominance in beech-spruce forests is likely to change in response to CO2 enrichment, but this response is subject to complex interactions with environmental factors other than CO2, particularly soil type.  相似文献   

14.
Scots pine (Pinus sylvestris L.) seedlings were grown for 3years in the ground in open top chambers and exposed to twoconcentrations of atmospheric CO2(ambient or ambient + 400 µmol mol-1) without addition of nutrients and water. Biomassproduction (above-ground and below-ground) and allocation, aswell as canopy structure and tissue nitrogen concentrationsand contents, were examined by destructive harvest after 3 years.Elevated CO2increased total biomass production by 55%, reducedneedle area and needle mass as indicated, respectively, by lowerleaf area ratio and leaf mass ratio. A relatively smaller totalneedle area was produced in relation to fine roots under elevatedCO2. The proportion of dry matter in roots was increased byelevated CO2, as indicated by increased root-to-shoot ratioand root mass ratio. Within the root system, there was a significantshift in the allocation towards fine roots. Root litter constituteda much higher fraction of fine roots in trees grown in the elevatedCO2than in those grown in ambient CO2. Growth at elevated CO2causeda significant decline in nitrogen concentration only in theneedles, while nitrogen content significantly increased in branchesand fine roots (with diameter less than 1 mm). There were nochanges in crown structure (branch number and needle area distribution).Based upon measurements of growth made throughout the 3 years,the greatest increase in biomass under elevated CO2took placemainly at the beginning of the experiment, when trees grownin elevated CO2had higher relative growth rates than those grownunder ambient CO2; these differences disappeared with time.Symptoms of acclimation of trees to growth in the elevated CO2treatmentwere observed and are discussed. Copyright 2000 Annals of BotanyCompany Elevated CO2, Pinus sylvestris, biomass production, allocation, fine roots, root litter, crown structure, nitrogen, C/N ratio  相似文献   

15.
Four-year-old Gingko (Ginkgo biloba L.) trees were exposed to ambient and elevated concentrations of CO2 and O3, and their combination for 1 year, using open-top chambers in Shenyang, China in 2006. Growth parameters and endogenous plant hormones were measured simultaneously over the experiment period. Elevated CO2 increased leaf area and leaf dry weight but had no effect on shoot length, increased indole-3-acetic acid (IAA), gibberellins A3 (GA3), zeatin riboside (ZR), dihydrozeatin (DHZR) and isopentenyl-adenosine (iPA) content but decreased abscisic acid (ABA) content. Elevated O3 significantly decreased leaf area, leaf dry weight, shoot length, and decreased IAA, GA3, ZR content but increased ABA content and had a little effect on iPA, DHZR content. Elevated CO2 + O3 decreased IAA, iPA and DHZR content while increased ABA and GA3 content in the early stage of the exposure and then decreased in the late stage. The evidence from this study indicates that elevated CO2 ameliorated the effects of elevated ozone on tree growth, and elevated CO2 may have a largely positive impact on forest tree growth while elevated O3 will likely have a negative impact.  相似文献   

16.
The nitrogen budget of a pine forest under free air CO2 enrichment   总被引:2,自引:0,他引:2  
Elevated concentrations of atmospheric CO2 increase plant biomass, net primary production (NPP) and plant demand for nitrogen (N). The demand for N set by rapid plant growth under elevated CO2 could be met by increasing soil N availability or by greater efficiency of N uptake. Alternatively, plants could increase their nitrogen-use efficiency (NUE), thereby maintaining high rates of growth and NPP in the face of nutrient limitation. We quantified dry matter and N budgets for a young pine forest exposed to 4 years of elevated CO2 using free-air CO2 enrichment technology. We addressed three questions: Does elevated CO2 increase forest NPP and the demand for N by vegetation? Is demand for N met by greater uptake from soils, a shift in the distribution of N between plants, microbes, and soils, or increases in NUE under elevated CO2? Will soil N availability constrain the NPP response of this forest as CO2 fumigation continues? A step-function increase in atmospheric CO2 significantly increased NPP during the first 4 years of this study. Significant increases in NUE under elevated CO2 modulated the average annual requirement for N by vegetation in the first and third growing seasons under elevated CO2; the average stimulation of NPP in these years was 21% whereas the average annual stimulation of the N requirement was only 6%. In the second and fourth growing seasons, increases in NPP increased the annual requirement for N by 27-33%. Increases in the annual requirement for N were largely met by increases in N uptake from soils. Retranslocation of nutrients prior to senescence played only a minor role in supplying the additional N required by trees growing under elevated CO2. NPP was highly correlated with between-plot variation in the annual rate of net N mineralization and CO2 treatment. This demonstrates that NPP is co-limited by C availability, as CO2 from the atmosphere, and N availability from soils. There is no evidence that soil N mineralization rates have increased under elevated CO2. The correlation between NPP and N mineralization rates and the increase in the annual requirement for N in certain years imply that soil N availability may control the long-term productivity response of this ecosystem to elevated CO2. Although we have no evidence suggesting that NPP is declining in response to >4 years of CO2 fumigation, if the annual requirement of N continues to be stimulated by elevated CO2, we predict that the productivity response of this forest ecosystem will decline over time.  相似文献   

17.
Young individuals of a single clone of black cottonwood, in Iceland, were exposed for 3 years to elevated atmospheric CO2 concentrations [CO2] in whole-tree chambers at natural and high nutrient availability. No treatment effects were found at bud break or the start of shoot extension in spring. Autumn phenology was, however, affected both by elevated [CO2] and changes in nutrient status. The time of annual growth cessation was linearly related to leaf nitrogen concentration, irrespective of CO2 treatment. At low (natural) nutrient availability, elevated [CO2] accelerated growth cessation and bud set, which reduced the period of active growth. An earlier and more pronounced leaf senescence and corresponding loss of photosynthetic capacity further decreased carbon acquisition in elevated [CO2]. The negative [CO2] effect on duration of shoot extension and leaf senescence existed, but was not as pronounced, when trees grew at higher nutrient availability. Improved nutrient availability extended the shoot extension period and delayed leaf senescence. It is suggested that trees grown in elevated [CO2] altered their autumn phenology as an effect of a signal similar to that in trees growing at low nutrient availability, i.e. an imbalance between carbon and nitrogen sources. These alterations in autumn phenology may be important when predicting how trees will grow in a future CO2 environment.  相似文献   

18.
Single, seed-grown plants of ryegrass (Lolium perenne L. cv.Melle) were grown for 49 d from the early seedling stage ingrowth cabinets at a day/night temperature of 20/15 C, witha 12 h photoperiod, and a CO2 concentration of either 340 or680µI 1–1 CO2. Following complete acclimation tothe environmental regimes, leaf and whole plant CO2 effluxesand influxes were measured using infra-red gas analysis techniques.Elevated CO2 increased rates of photosynthesis of young, fullyexpanded leaves by 35–46% and of whole plants by morethan 50%. For both leaves and whole plants acclimation to 680µI–1 CO2 reduced rates of photosynthesis in bothCO2 regimes, compared with plants acclimated to 340µll–1. There was no significant effect of CO2 regime onrespiration rates of either leaves or whole plants, althoughleaves developed in elevated CO2 exhibited generally lower ratesthan those developed in 340µI I–1 CO2. Initially the seedling plants in elevated CO2 grew faster thantheir counterparts in 340µI I–1 CO2, but this effectquickly petered out and final plant weights differed by onlyc. 10%. Since the total area of expanded and unexpanded laminaewas unaffected by CO2 regime, specific leaf area was persistently13–40% lower in elevated CO2 while, similarly, root/shootratio was also reduced throughout the experiment. Elevated CO2reduced tissue nitrogen contents of expanded leaves, but hadno effect on the nitrogen contents of unexpanded leaves, sheathsor roots. The lack of a pronounced effect of elevated CO2 on plant growthwas primarily due to the fact that CO2 concentration did notinfluence tiller (branch) numbers. In the absence of an effecton tiller numbers, any possible weight increment was restrictedto the c. 2.5 leaves of each tiller. The reason for the lackof an effect on tillering is not known. Key words: Lolium perenne, ryegrass, elevated CO2, photosynthesis, respiration, growth, development  相似文献   

19.
A Transport-resistance Model of Forest Growth and Partitioning   总被引:8,自引:0,他引:8  
THORNLEY  J H M 《Annals of botany》1991,68(3):211-226
The transport-resistance approach to dry-matter partitioningis used to construct a model of forest growth The model is atthe stand level for a monoculture of identical trees of thesame age There are five major organ compartments in the modelfoliage, branches, stem, coarse roots, and fine roots and mycorrhizasThe matter in each compartment is further subdivided into menstem,structure, carbon substrate, and nitrogen substrate The modelis driven by daily radiation including day length, ambient CO2concentration, and daily means of air and soil temperature Thefine roots are provided with constant values of soil mineralnitrogen pools (ammonium and nitrate) from which uptake occursGrowth over about 100 years is simulated for various environmentalconditions and soil mineral nitrogen levels, thinning is alsosimulated Natural tree death occurs within the model Particularattention is paid to dry matter partitioning patterns, and tothe dry matter per stem when death occurs The model is robustand responsive, and provides a framework for further developmentand application to many ecological and environmental scenarios,as well as to some forest management problems Model, forest, growth, partitioning  相似文献   

20.
We examined changes in dry weight and leaf area within Dactylisglomerata L. plants using allometric analysis to determine whetherobserved patterns were truly affected by [CO2] and N supplyor merely reflect ontogenetic drift. Plants were grown hydroponicallyat four concentrations of in controlled environment cabinets at ambient (360 µll–1) or elevated (680 µl l–1) atmospheric[CO2]. Both CO2and N enrichment stimulated net dry matter production.Allometric analyses revealed that [CO2] did not affect partitioningof dry matter between shoot and root at high N supply. However,at low N supply there was a transient increase in dry matterpartitioning into the shoot at elevated compared to ambient[CO2] during early stages of growth, which is inconsistent withpredictions based on optimal partitioning theory. In contrast,dry matter partitioning was affected by N supply throughoutontogeny, such that at low N supply dry matter was preferentiallyallocated to roots, which is in agreement with optimal partitioningtheory. Independent of N supply, atmospheric CO2enrichment resultedin a reduction in leaf area ratio (LAR), solely due to a decreasein specific leaf area (SLA), when plants of the same age werecompared. However, [CO2] did not affect allometric coefficientsrelating dry weight and leaf area, and effects of elevated [CO2]on LAR and SLA were the result of an early, transient stimulationof whole plant and leaf dry weight, compared to leaf area production.We conclude that elevated [CO2], in contrast to N supply, changesallocation patterns only transiently during early stages ofgrowth, if at all. Copyright 2000 Annals of Botany Company Allometric growth, carbon dioxide enrichment, Cocksfoot, Dactylis glomerata L., dry weight partitioning, leaf area ratio, nitrogen supply, shoot:root ratio, specific leaf area  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号