首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We established a simple transformation system for C. guilliermondii by developing both an ura3 ATCC 6260-derived recipient strain as well as an URA3 blaster cassette. We demonstrated that this strategy allows efficient multiple gene disruption by homologous recombination with a convenient gene targeting frequency.  相似文献   

2.
The properties of mutants resistant to 7-methyl-8-trifluoromethyl-10-(1'-D-ribityl)-isoalloxazine (MTRY) were studied. The mutants were isolated from a genetic line of Pichia guilliermondii. Several of them were riboflavin overproducers and had derepressed flavinogenesis enzymes (GTP cyclohydrolase, 6.7-dimethyl-8-ribityllumazine synthase) in iron-rich medium. An additional derepression of these enzymes as well as derepression of riboflavin synthase occurred in iron-deficient medium. The characters "riboflavin oversynthesis" and "derepression of enzymes" were recessive in mutants of the 1st class, or dominant in those of the 2nd class. The hybrids of analogue-resistant strains of the 1st class with previously isolated regulatory mutants ribR (novel designation rib80) possessed the wild-type phenotype and were only capable of riboflavin overproduction under iron deficiency. Complementation analysis of the MTRY-resistant mutants showed that vitamin B2 oversynthesis and enzymes' derepression in these mutants are caused by impairment of a novel regulatory gene, RIB81. Thus, riboflavin biosynthesis in P. guilliermondii yeast is regulated at least by two genes of the negative action: RIB80 and RIB81. The meiotic segregants which contained rib80 and rib81 mutations did not show additivity in the action of the above regulatory genes. The hybrids of rib81 mutants with natural nonflavinogenic strain P. guilliermondii NF1453-1 were not capable of riboflavin oversythesis in the iron-rich medium. Apparently, the strain NF1453-1 contains an unaltered gene RIB81.  相似文献   

3.
The riboflavin overproducing mutants of the flavinogenic yeast Candida famata isolated by conventional selection methods are used for the industrial production of vitamin B2. Recently, a transformation system was developed for C. famata using the leu2 mutant as a recipient strain and Saccharomyces cerevislae LEU2 gene as a selective marker. In this paper the cloning of C. famata genes for riboflavin synthesis on the basis of developed transformation system for this yeast species is described. Riboflavin autotrophic mutants were isolated from a previously selected C. famata leu2 strain. C. famata genomic DNA library was constructed and used for cloning of the corresponding structural genes for riboflavin synthesis by complementation of the growth defects on a medium without leucine and riboflavin. As a result, the DNA fragments harboring genes RIB1, RIB2, RIB5, RIB6 and RIB7 encoding GTP cyclohydrolase, reductase, dimethylribityllumazine synthase, dihydroxybutanone phosphate synthase and riboflavin synthase, were isolated and subsequently subcloned to the smallest possible fragments. The plasmids with these genes successfully complemented riboflavin auxotrophies of the corresponding mutants of another flavinogenic yeast Pichia guilliermondii. This suggested that C. famata structural genes for riboflavin synthesis and not some of the supressor genes were cloned.  相似文献   

4.
Y Sakai  T Kazarimoto    Y Tani 《Journal of bacteriology》1991,173(23):7458-7463
An integrative transformation system was established for an asporogenous methylotrophic yeast, Candida boidinii. This system uses a uracil auxotrophic mutant of C. boidinii as the host strain in combination with its URA3 gene as the selectable marker. First, the C. boidinii URA3 gene coding for orotidine-5'-phosphate decarboxylase (ODCase) was cloned by using complementation of the pyrF mutation of Escherichia coli. Next, the host ODCase-negative mutant strains (ura3 strains) were isolated by mutagenesis and selection for 5-fluro-orotic acid (5-FOA) resistance. Five ura3 host strains that exhibited both a low reversion rate and good methylotrophic growth were obtained. All of these strains could be transformed to Ura+ phenotype with a C. boidinii URA3-harboring plasmid linearized within the Candida DNA. The transformants had a stable Ura+ phenotype after nonselective growth for 10 generations. These results and extensive Southern analysis indicated that the linearized plasmid was integrated into the host chromosomal DNA by homologous recombination at the URA3 locus in C. boidinii.  相似文献   

5.
Li C  Rodriguez M  Banerjee D 《Gene》2000,254(1-2):97-103
Endomyces fibuliger is a yeast used in the production of Chinese rice wine. It secretes enzymes such as glucoamylase, alpha-amylase and acid protease. Very little is known of the genetics of E. fibuliger. In order to develop a transformation system for this yeast, orotidine-5'-phosphate decarboxylase mutant strains were obtained and characterized. Transformation of the E. fibuliger ura3 mutant F1 with an integrative plasmid that carried the wild-type URA3 gene of E. fibuliger gave complementation of this mutation. The E. fibuliger gene encodes the orotidine-5'-phosphate decarboxylase enzyme consisting of 266 amino acid residues with a 69.4% sequence identity with orotidine-5'-phosphate decarboxylase of Saccharomyces cerevisiae. Our finding that E. fibuliger URA3 complements the ura3 mutation in S. cerevisiae confirms that the URA3 gene of E. fibuliger encodes a protein that exerts a similar function.  相似文献   

6.
Pichia guilliermondii is a representative of a group of so-called flavinogenic yeast species that overproduce riboflavin (vitamin B(2)) in response to iron limitation. Using insertion mutagenesis, we isolated P. guilliermondii mutants overproducing riboflavin. Analysis of nucleotide sequence of recombination sites revealed that insertion cassettes integrated into the genome disrupting P. guilliermondii genes similar to the VMA1 gene of Ashbya gossypii and Saccharomyces cerevisiae and FES1 and FRA1 genes of S. cerevisiae. The constructed P. guilliermondiiΔvma1-17 mutant possessed five- to sevenfold elevated riboflavin production and twofold decreased iron cell content as compared with the parental strain. Pichia guilliermondiiΔfra1-45 mutant accumulated 1.8-2.2-fold more iron in the cells and produced five- to sevenfold more riboflavin as compared with the parental strain. Both Δvma1-17 and Δfes1-77 knockout strains could not grow at 37 °C in contrast to the wild-type strain and the Δfra1-45 mutant. Increased riboflavin production by the wild-type strain was observed at 37 °C. Although the Δfes1-77 mutant did not overproduce riboflavin, it showed partial complementation when crossed with previously isolated P. guilliermondii riboflavin-overproducing mutant rib80-22. Complementation analysis revealed that Δvma1-17 and Δfra1-45 mutants are distinct from previously reported riboflavin-producing mutants hit1-1, rib80-22 and rib81-31 of this yeast.  相似文献   

7.
KcURA3 was cloned from Kluyveromyces cicerisporus CBS4857 by complementation of the ura3 mutation in Saccharomyces cerevisiae. KcURA3 encodes a 267-amino-acid protein with 80% sequence identity to that of S. cerevisiae. An ura3 mutant strain from K. cicerisporus CBS4857, named Y179U, was obtained by selection on 5-fluoroorotic acid plates. Sequence analysis of this mutated gene revealed that it contained a point mutation at nucleotide position +277. Two vectors, pUK1 and pUKD, bearing KcURA3 were constructed. Either the lithium acetate method or electroporation could be used to transform pUK1 and pUKD intoY179U. The transformation efficiency using electroporation was higher than that using the lithium acetate method.  相似文献   

8.
We established a novel and convenient method to construct a ura3 strain (ura3/ura3) of the asporogenous and diploid yeast, Candida tropicalis, that produces dicarboxylic acid. One copy of the URA3 gene was disrupted using a mutated hygromycin B resistance gene (HYG#). The obtained hygromycin-resistant strain was further transformed with a URA3 disruption cassette and selected on a plate containing 5-fluoroorotic acid. The obtained strains were analyzed and the disruption of the gene was confirmed by PCR and Southern blot analysis. The results showed that the strains were obtained in which allelic URA3 genes were simultaneously disrupted. Furthermore, we established a cotransformation method for this gene disruption, using HYG# in C. tropicalis. In order to disrupt the allelic POX4 genes (encoding acyl-CoA oxidase) of dicarboxylic acid-producing strains, the ARS plasmid (which contained HYG#) and a POX4 disruption cassette (which carried the LAC4 gene encoding beta-galactosidase of Kluyveromyces lactis) were simultaneously introduced by transformation. As a result, the allelic POX4 gene was successfully disrupted.  相似文献   

9.
We developed the alkane and fatty-acid utilizing yeast Candida tropicalis as a host for DNA transformations. The system is based on an auxotrophic mutant host of C. tropicalis which is defective in orotidine monophosphate decarboxylase (ura3). The ura3 host was isolated by mutagenesis and a double-selection procedure that combined nystatin enrichment selection and 5-fluoro-orotic acid resistance selection. As a selectable marker, we isolated and characterized the C. tropicalis URA3 gene. Plasmid vectors that contained the C. tropicalis URA3 gene transformed the C. tropicalis mutant host at a frequency of 10(3) to 10(4) transformants per micrograms of plasmid DNA. Vectors that contained the Saccharomyces cerevisiae URA3 gene could not transform C. tropicalis. DNA transfer was accomplished by modified versions of either spheroplast generation (CaCl2-polyethylene glycol)-fusion or cation (LiCl) procedures developed for S. cerevisiae. Plasmid vectors that had been cut within the C. tropicalis URA3 fragment integrated by homologous recombination at the URA3 locus.  相似文献   

10.
This paper describes the first high-efficiency transformation system for the xylose-fermenting yeast Pichia stipitis. The system includes integrating and autonomously replicating plasmids based on the gene for orotidine-5'-phosphate decarboxylase (URA3) and an autonomous replicating sequence (ARS) element (ARS2) isolated from P. stipitis CBS 6054. Ura- auxotrophs were obtained by selecting for resistance to 5-fluoroorotic acid and were identified as ura3 mutants by transformation with P. stipitis URA3. P. stipitis URA3 was cloned by its homology to Saccharomyces cerevisiae URA3, with which it is 69% identical in the coding region. P. stipitis ARS elements were cloned functionally through plasmid rescue. These sequences confer autonomous replication when cloned into vectors bearing the P. stipitis URA3 gene. P. stipitis ARS2 has features similar to those of the consensus ARS of S. cerevisiae and other ARS elements. Circular plasmids bearing the P. stipitis URA3 gene with various amounts of flanking sequences produced 600 to 8,600 Ura+ transformants per micrograms of DNA by electroporation. Most transformants obtained with circular vectors arose without integration of vector sequences. One vector yielded 5,200 to 12,500 Ura+ transformants per micrograms of DNA after it was linearized at various restriction enzyme sites within the P. stipitis URA3 insert. Transformants arising from linearized vectors produced stable integrants, and integration events were site specific for the genomic ura3 in 20% of the transformants examined. Plasmids bearing the P. stipitis URA3 gene and ARS2 element produced more than 30,000 transformants per micrograms of plasmid DNA. Autonomously replicating plasmids were stable for at least 50 generations in selection medium and were present at an average of 10 copies per nucleus.  相似文献   

11.
Natural strains of Saccharomyces cerevisiae are prototrophic homothallic yeasts that sporulate poorly, are often heterozygous, and may be aneuploid. This genomic constitution may confer selective advantages in some environments. Different mechanisms of recombination, such as meiosis or mitotic rearrangement of chromosomes, have been proposed for wine strains. We studied the stability of the URA3 locus of a URA3/ura3 wine yeast in consecutive grape must fermentations. ura3/ura3 homozygotes were detected at a rate of 1 x 10(-5) to 3 x 10(-5) per generation, and mitotic rearrangements for chromosomes VIII and XII appeared after 30 mitotic divisions. We used the karyotype as a meiotic marker and determined that sporulation was not involved in this process. Thus, we propose a hypothesis for the genome changes in wine yeasts during vinification. This putative mechanism involves mitotic recombination between homologous sequences and does not necessarily imply meiosis.  相似文献   

12.
The monogenic rib83 mutation blocked riboflavin oversynthesis in the yeast Pichia guilliermondii and lowered iron acquisition by cells, their ferric reductase activity, and the growth rate in iron-deficient media. Mutants with the combined mutations of rib83 with rib80 and rib81 (the last two mutations impair the negative control of riboflavin synthesis and thus cause its oversynthesis) were unable to depress the enzymes of flavinogenesis (GTP cyclohydrolase and riboflavin synthase) and to overproduce riboflavin in both iron-deficient and iron-sufficient media. This suggests that the rib83 mutation is epistatic with respect to the rib80 and rib81 mutations. The RIB83 gene may positively control both riboflavin synthesis and iron acquisition in the yeast P. guilliermondii.  相似文献   

13.
Vector for pop-in/pop-out gene replacement in Pichia pastoris   总被引:3,自引:0,他引:3  
Soderholm J  Bevis BJ  Glick BS 《BioTechniques》2001,31(2):306-10, 312
Gene replacement in yeast is often accomplished by using a counterselectable marker such as URA3. Although ura3 strains of Pichia pastoris have been generated, these strains are inconvenient to work with because they grow slowly, even in the presence of uracil. To overcome this limitation, we have developed an alternative counterselectable marker that can be used in any P. pastoris strain. This marker is the T-urf13 gene from the mitochondrial genome of male-sterile maize. Previous work showed that expression of a mitochondrially targeted form of T-urf13 in Saccharomyces cerevisiae rendered the cells sensitive to the insecticide methomyl, and similar results have now been obtained with P. pastoris. We have incorporated T-urf13 into a vector that also contains an ARG4 marker for positive selection. The resulting plasmid allows for pop-in/pop-out gene replacement in P. pastoris.  相似文献   

14.
New shuttle vectors for direct cloning in Saccharomyces cerevisiae   总被引:1,自引:0,他引:1  
P Silar  D J Thiele 《Gene》1991,104(1):99-102
  相似文献   

15.
16.
We have constructed viable Saccharomyces cerevisiae strains containing a reciprocal translocation between the URA2 site of chromosome X and the HIS3 site of chromosome XV. Our methodology is an extension of the method originally developed to introduce an altered cloned sequence at the chromosomal location from which the parent sequence was derived (S. Scherer and R.W. Davis, Proc. Natl. Acad. Sci. U.S.A. 76:4951-4955, 1979). It comprises three essential steps. First, a nonreverting ura2- strain was constructed by deleting a 3.7-kilobase fragment from the coding sequence of the wild-type URA2 gene. Second, part of the coding sequence of the wild-type URA2 gene (without promotor) was inserted at the HIS3 locus of the ura2- strain. Third, after several generations of growth on uracil-supplemented medium, ura2+ colonies were selected which resulted from mitotic recombination between the nonoverlapping deletions of URA2 located on chromosomes X and XV.  相似文献   

17.
A yeast cDNA genetic library in a bacteriophage expression vector was screened using an antiserum reacting with fructose 1,6-bisphosphate aldolase from Saccharomyces cerevisiae. Radio-labelled probes of selected immunopositive clones were used for screening of a yeast genomic library. From the genomic clones a yeast/Escherichia coli shuttle plasmid was constructed containing on a 1990-base-pair fragment the entire structural gene FBA1 coding for yeast aldolase. The primary structure of the FBA1 gene was determined. An open reading frame comprises 1077 base pairs coding for a protein of 359 amino acids with a predicted molecular mass of 39,608 Da. As observed for other strongly expressed yeast genes, codon usage is extremely biased. The 810 base pairs at the 5' end and the 90 base pairs at the 3' end of the coding region of the cloned FBA1 gene are sufficient for normal expression and show characteristic elements present in the noncoding sequences of other yeast genes. Aldolase is the major protein in yeast cells transformed with a high-copy-number plasmid containing the FBA1 gene. The aldolase gene was disrupted by insertion of the yeast URA3 gene into the coding region of one FBA1 allele in a homozygous diploid ura3 strain. The haploid offsprings with the defective aldolase allele fba1::URA3 lack aldolase enzymatic activity and fail to grow in media containing as a carbon source metabolites of only one side of the aldolase reaction.  相似文献   

18.
Endomyces fibuliger is a dimorphic yeast which is homothallic and exists predominantly in the diploid phase with a brief haploid phase. A repeat unit of the ribosomal RNA genes, or rDNA, from E. fibuliger 8014 met has been isolated, cloned and sequenced. In this report, the sequences of the 17S, 5.8S and 26S rRNA genes are presented. Homology between the sequenced rRNA genes and those of closely-related yeast strains, particularly Saccharomyes cerevisiae and Candida albicans, was observed. As a step towards the eventual development of a transformation system for the yeast E. fibuliger, an integrative plasmid containing the 5.8S and a part of the 26S rRNA gene, a selectable marker conferring resistance to the G418 antibiotic and a reporter gene, the α-amylase (ALP1) gene of E. fibuliger, was constructed. This plasmid was linearized at a unique restriction site within the 26S rRNA gene, and transformed into S. cerevisiae INVSC2 MATa his3 ura3 using the lithium acetate method to test the functionality of the vector system. Transformation into S. cerevisiae INVSC2 MATa his3 ura3 was by virtue of the extensive homology between the sequenced 26S rRNA gene of E. fibuliger 8014 met and that of S. cerevisiae, so that homologous pairing and integration into the recipient chromosome was possible. The G418-resistant S. cerevisiae transformants produced halos on starch medium due to hydrolysis by α-amylase, and they were further analysed by Southern hybridization with the ALP1 gene and the gene encoding the aminoglycoside 3′- phosphotransferase I enzyme which confers resistance to the G418 antibiotic. A band of 13.7 kb which corresponded to the linearized size of the transforming plasmid DNA was obtained on the autoradiogram, suggesting that tandem copies of the plasmid DNA are present in the chromosome. Finally, an assay of the α-amylase enzyme secreted extracellularly was performed on the transformants.  相似文献   

19.
A host-vector system for the yeast Hansenula anomala was developed. The system was based on an auxotrophic mutant host of H. anomala which was defective in orotidine-5′-phosphate decarboxylase (ODCase) activity. The H. anomala ODCase-negative mutant strains (ura3 strains) were isolated based on 5-fluoroorotic acid (5-FOA) resistance. A plasmid vector containing the H. anomala URA3 gene was used for transformation. Using this plasmid, all of the H. anomala ura3 strains tested could be transformed to Ura+ phenotypes. In all of Ura+ transformants, the introduced plasmid was integrated into the chromosomal URA3 locus by homologous recombination. The Ura+ phenotype of the transformants was stably maintained after nonselective growth.  相似文献   

20.
We describe the isolation and characterization of three new biosynthetic genes-ARG4, ADE1, and URA3-from the methylotrophic yeast Pichia pastoris. The predicted products of the genes share significant sequence similarity to their Saccharomyces cerevisiae counterparts, namely argininosuccinate lyase, PR-aminoimidazolesuccinocarboxamide synthase, and orotidine-5'-phosphate decarboxylase, respectively. Along with the previously described HIS4 gene, each gene was incorporated as the yeast selectable marker into a set of shuttle vectors designed to express foreign genes in P. pastoris. In addition, we have constructed a series of host strains containing all possible combinations of ade1, arg4, his4, and ura3 auxotrophies to be used with these new vectors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号