首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To develop a system for combinatorial biosynthesis of glycosylated macrolides, Streptomyces venezuelae was genetically manipulated to be deficient in the production of its macrolide antibiotics by deletion of the entire biosynthetic gene cluster encoding the pikromycin polyketide synthases and desosamine biosynthetic enzymes. Two engineered deoxysugar biosynthetic pathways for the biosynthesis of thymidine diphosphate (TDP)-d-quinovose or TDP-d-olivose in conjunction with the glycosyltransferase–auxiliary protein pair DesVII/DesVIII derived from S. venezuelae were expressed in the mutant strain. Feeding the representative 12-, 14-, and 16-membered ring macrolactones including 10-deoxymethynolide, narbonolide, and tylactone, respectively, to each mutant strain capable of producing TDP-d-quinovose or TDP-d-olivose resulted in the successful production of the corresponding quinovose- and olivose-glycosylated macrolides. In mutant strains where the DesVII/DesVIII glycosyltransferase–auxiliary protein pair was replaced by TylMII/TylMIII derived from Streptomyces fradiae, quinovosyl and olivosyl tylactone were produced; however, neither glycosylated 10-deoxymethynolide nor narbonolide were generated, suggesting that the glycosyltransferase TylMII has more stringent substrate specificity toward its aglycones than DesVII. These results demonstrate successful generation of structurally diverse hybrid macrolides using a S. venezuelae in vivo system and provide further insight into the substrate flexibility of glycosyltransferases. Won Seok Jung and Ah Reum Han contributed equally to this work.  相似文献   

2.
Streptomyces venezuelae has an inherent advantage as a heterologous host for polyketide production due to its fast rate of growth that cannot be endowed easily through metabolic engineering. However, the utility of S. venezuelae as a host has been limited thus far due to its inadequate intracellular reserves of the (2S)-ethylmalonyl-CoA building block needed to support the biosynthesis of polyketides preventing the efficient production of the desired metabolite, such as tylactone. Here, via precursor supply engineering, we demonstrated that S. venezuelae can be developed into a more efficient general heterologous host for the quick production of polyketides. We first identified and functionally characterized the ethylmalonyl-CoA pathway which plays a major role in supplying the (2S)-ethylmalonyl-CoA extender unit in S. venezuelae. Next, S. venezuelae was successfully engineered to increase the intracellular ethylmalonyl-CoA concentration by the deletion of the meaA gene encoding coenzyme B12-dependent ethylmalonyl-CoA mutase in combination with ethylmalonate supplementation and was engineered to upregulate the expression of the heterologous tylosin PKS by overexpression of the pathway specific regulatory gene pikD. Thus, a dramatic increase (~10-fold) in tylactone production was achieved. In addition, the detailed insights into the role of the ethylmalonyl-CoA pathway, which is present in most streptomycetes, provides a general strategy to increase the ethylmalonyl-CoA supply for polyketide biosynthesis in the most prolific family of polyketide-producing bacteria.  相似文献   

3.
Development of host microorganisms for heterologous expression of polyketide synthases (PKS) that possess the intrinsic capacity to overproduce polyketides with a broad spectrum of precursors supports the current demand for new tools to create novel chemical structures by combinatorial engineering of modular and other classes of PKS. Streptomyces fradiae is an ideal host for development of generic polyketide-overproducing strains because it contains three of the most common precursors—malonyl-CoA, methylmalonyl-CoA and ethylmalonyl-CoA—used by modular PKS, and is a host that is amenable to genetic manipulation. We have expanded the utility of an overproducing S. fradiae strain for engineered biosynthesis of polyketides by engineering a biosynthetic pathway for methoxymalonyl-ACP, a fourth precursor used by many 16-membered macrolide PKS. This was achieved by introducing a set of five genes, fkbG–K from Streptomyces hygroscopicus, putatively encoding the methoxymalonyl-ACP biosynthetic pathway, into the S. fradiae chromosome. Heterologous expression of the midecamycin PKS genes in this strain resulted in 1 g/l production of a midecamycin analog. These results confirm the ability to engineer unusual precursor pathways to support high levels of polyketide production, and validate the use of S. fradiae for overproduction of 16-membered macrolides derived from heterologous PKS that require a broad range of precursors.  相似文献   

4.
5.
Epothilones, produced from the myxobacterium Sorangium cellulosum, are potential anticancer agents that stabilize microtubules in a similar manner to paclitaxel. The entire epothilone biosynthetic gene cluster was heterologously expressed in an engineered strain of Streptomyces venezuelae bearing a deletion of pikromycin polyketide synthase gene cluster. The resulting strains produced approximately 0.1 μg/l of epothilone B as a sole product after 4 days cultivation. Deletion of an epoF encoding the cytochrome P450 epoxidase gave rise to a mutant that selectively produces 0.4 μg/l of epothilone D. To increase the production level of epothilones B and D, an additional copy of the positive regulatory gene pikD was introduced into the chromosome of both S. venezuleae mutant strains. The resulting strains showed enhanced production of corresponding compounds (approximately 2-fold). However, deletion of putative transport genes, orf3 and orf14 in the epothilone D producing S. venezuelae mutant strain, led to an approximately 3-fold reduction in epothilone D production. These results introduce S. venezuelae as an alternative heterologous host for the production of these valuable anticancer agents and demonstrate the possibility of engineering this strain as a generic heterologous host for the production of polyketides and hybrid polyketide-nonribosomal peptides.  相似文献   

6.
Using metabolic engineering, we developed Streptomyces venezuelae YJ028 as an efficient heterologous host to increase the malonyl-CoA pool to be directed towards enhanced production of various polyketides. To probe the applicability of newly developed hosts in the heterologous production of polyketides, we expressed type III polyketide synthase, 1,3,6,8-tetrahydroxynaphthalene synthase, in these hosts. Flaviolin production was doubled by expression of acetyl-CoA carboxylase (ACCase) and 4-fold by combined expression of ACCase, metK1-sp and afsR-sp. Thus, the newly developed Streptomyces venezuelae YJ028 hosts produce heterologous polyketides more efficiently than the parent strain.  相似文献   

7.
The macrolide antibiotics are biosynthesized by initial assembly of a macrolactone ring, followed by a series of post-polyketide (PKS) modifications. In general, the additional hydroxyl or epoxy groups are installed by cytochrome P450 enzymes, improving the bioactivity profile through structural diversification of natural products. The biosynthetic gene cluster for the 16-membered macrolide antibiotic dihydrochalcomycin (DHC) has been cloned from Streptomyces sp. KCTC 0041BP. Three cytochrome P450 genes are found in the DHC biosynthetic gene (ger) cluster. Two P450 enzymes were characterized from this cluster. Disruption of gerPI accumulated predominantly 12,13-de-epoxydihydrochalcomycin while disruption of gerPII accumulated 8-dehydroxy-12,13-de-epoxydihydrochalcomycin; DHC production was abolished in both cases. The results suggest that GerPII P450 catalyzes hydroxylation at the C8 position followed by an epoxidation reaction catalyzed by GerPI P450 at the C12–C13 position.  相似文献   

8.
Genes for biosynthesis of a Streptomyces sp. FR-008 heptaene macrolide antibiotic with antifungal and mosquito larvicidal activity were cloned in Escherichia coli using heterologous DNA probes. The cloned genes were implicated in heptaene biosynthiesis by gene replacement. The FR-008 antibiotic contains a 38-membered, poiyketide-derived macrolide ring. Southern hybridization using probes encoding domains of the type i modular erythromycin polyketide synthase (PKS) showed that the Streptomyces sp. FR-008 PKS gene cluster contains repeated sequences spanning c. 105 kb of contiguous DNA; assuming c. 5 kb for each PKS module, this is in striking agreement with the expectation for the 21-step condensation process required for synthesis of the FR-008 carbon chain. The methods developed for transformation and gene replacement in Streptomyces sp. FR-008 make it possible to genetically manipulate polyene macrolide production, and may later lead to the biosynthesis of novel polyene macrolides.  相似文献   

9.
The Colletotrichum lagenarium PKS1 gene was expressed in the heterologous fungal host, Aspergillus oryzae, under the starch-inducible α-amylase promoter to identify the direct product of polyketide synthase (PKS) encoded by the PKS1 gene. The main compound produced by an A. oryzae transformant was isolated and characterized to be 1,3,6,8-tetrahydroxynaphthalene (T4HN) as its tetraacetate. Since the PKS1 gene was cloned from C. lagenarium to complement the nonmelanizing albino mutant, T4HN was assumed to be an initial biosynthetic intermediate, and thus the product of the PKS reaction, but had not been isolated from the fungus. The production of T4HN by the PKS1 transformant unambiguously identified the gene to encode a PKS of pentaketide T4HN. In addition, tetraketide orsellinic acid and pentaketide isocoumarin were isolated, the latter being derived from a pentaketide monocyclic carboxylic acid, as by-products of the PKS1 PKS reaction. Production of the pentaketide carboxylic acid provided insights into the mechanism for the PKS1 polyketide synthase reaction to form T4HN.  相似文献   

10.
Development of natural products for therapeutic use is often hindered by limited availability of material from producing organisms. The speed at which current technologies enable the cloning, sequencing, and manipulation of secondary metabolite genes for production of novel compounds has made it impractical to optimize each new organism by conventional strain improvement procedures. We have exploited the overproduction properties of two industrial organisms—Saccharopolyspora erythraea and Streptomyces fradiae, previously improved for erythromycin and tylosin production, respectively—to enhance titers of polyketides produced by genetically modified polyketide synthases (PKSs). An efficient method for delivering large PKS expression vectors into S. erythraea was achieved by insertion of a chromosomal attachment site (attB) for φC31-based integrating vectors. For both strains, it was discovered that only the native PKS-associated promoter was capable of sustaining high polyketide titers in that strain. Expression of PKS genes cloned from wild-type organisms in the overproduction strains resulted in high polyketide titers whereas expression of the PKS gene from the S. erythraea overproducer in heterologous hosts resulted in only normal titers. This demonstrated that the overproduction characteristics are primarily due to mutations in non-PKS genes and should therefore operate on other PKSs. Expression of genetically engineered erythromycin PKS genes resulted in production of erythromycin analogs in greatly superior quantity than obtained from previously used hosts. Further development of these hosts could bypass tedious mutagenesis and screening approaches to strain improvement and expedite development of compounds from this valuable class of natural products.  相似文献   

11.
Polyketides comprise one of the major families of natural products. They are found in a wide variety of bacteria, fungi, and plants and include a large number of medically important compounds. Polyketides are biosynthesized by polyketide synthases (PKSs). One of the major groups of polyketides are the macrolides, the activities of which are derived from the presence of a macrolactone ring to which one or more 6-deoxysugars are attached. The core macrocyclic ring is biosynthesized from acyl-CoA precursors by PKS. Genetic manipulation of PKS-encoding genes can result in predictable changes in the structure of the macrolactone component, many of which are not easily achieved through standard chemical derivatization or total synthesis. Furthermore, many of the changes, including post-PKS modifications such as glycosylation and oxidation, can be combined for further structural diversification. This review highlights the current state of novel macrolide production with a focus on the genetic engineering of PKS and post-PKS tailoring genes. Such engineering of the metabolic pathways for macrolide biosynthesis provides attractive alternatives for the production of diverse non-natural compounds. Other issues of importance, including the engineering of precursor pathways and heterologous expression of macrolide biosynthetic genes, are also considered.  相似文献   

12.
Macrolides have been effective clinical antibiotics for over 70 years. They inhibit protein biosynthesis in bacterial pathogens by narrowing the nascent protein exit tunnel in the ribosome. The macrolide class of natural products consist of a macrolactone ring linked to one or more sugar molecules. Most of the macrolides used currently are semi-synthetic erythromycin derivatives, composed of a 14- or 15-membered macrolactone ring. Rapidly emerging resistance in bacterial pathogens is among the most urgent global health challenges, which render many antibiotics ineffective, including next-generation macrolides. To address this threat and advance a longer-term plan for developing new antibiotics, we demonstrate how 16-membered macrolides overcome erythromycin resistance in clinically isolated Staphylococcus aureus strains. By determining the structures of complexes of the large ribosomal subunit of Deinococcus radiodurans (D50S) with these 16-membered selected macrolides, and performing anti-microbial studies, we identified resistance mechanisms they may overcome. This new information provides important insights toward the rational design of therapeutics that are effective against drug resistant human pathogens.  相似文献   

13.
A sensitive fluorescent assay was developed to measure the extent of phosphopantetheinylation of polyketide synthase (PKS) acyl carrier protein (ACP) domains in polyketide production strains. The in vitro assay measures PKS fluorescence after transfer of fluorescently labeled phosphopantetheine from coenzyme A to PKS ACP domains in crude protein extracts. The assay was used to determine the extent of phosphopantetheinylation of ACP domains of the erythromycin precursor polyketide synthase, 6-deoxyerythronolide B synthase (DEBS), expressed in a heterologous Escherichia coli polyketide production strain. The data showed that greater than 99.9% of DEBS is phosphopantetheinylated. The assay was also used to interrogate the extent of phosphopantetheinylation of the lovastatin nonaketide synthase (LNKS) heterologously expressed in Saccharomyces cerevisiae. The data showed that LNKS was efficiently phosphopantetheinylated in S. cerevisiae and that lack of production of the lovastatin precursor polyketide was not due to insufficient phosphopantetheinylation of the expressed synthase.  相似文献   

14.
Streptomyces venezuelae ISP5230 produces a group of jadomycin congeners with cytotoxic activities. To improve jadomycin fermentation process, a genetic engineering strategy was designed to replace a 3.4-kb regulatory region of jad gene cluster that contains four regulatory genes (3′ end 272 bp of jadW2, jadW3, jadR2, and jadR1) and the native promoter upstream of jadJ (PJ) with the ermEp* promoter sequence so that ermEp* drives the expression of the jadomycin biosynthetic genes from jadJ in the engineered strain. As expected, the mutant strain produced jadomycin B without ethanol treatment, and the yield increased to about twofold that of the stressed wild-type. These results indicated that manipulation of the regulation of a biosynthetic gene cluster is an effective strategy to increase product yield.  相似文献   

15.
The biological activity of polyketide antibiotics is often strongly dependent on the presence and type of deoxysugar residues attached to the aglycone core. A system is described here, based on the erythromycin-producing strain of Saccharopolyspora erythraea, for detection of hybrid glycoside formation, and this system has been used to demonstrate that an amino sugar characteristic of 14-membered macrolides (D-desosamine) can be efficiently attached to a 16-membered aglycone substrate. First, the S. erythraea mutant strain DM was created by deletion of both eryBV and eryCIII genes encoding the respective ery glycosyltransferase genes. The glycosyltransferase OleG2 from Streptomyces antibioticus, which transfers L-oleandrose, has recently been shown to transfer rhamnose to the oxygen at C-3 of erythronolide B and 6-deoxyerythronolide B. In full accordance with this finding, when oleG2 was expressed in S. erythraea DM, 3-O-rhamnosyl-erythronolide B and 3-O-rhamnosyl-6-deoxyerythronolide B were produced. Having thus validated the expression system, endogenous aglycone production was prevented by deletion of the polyketide synthase (eryA) genes from S. erythraea DM, creating the triple mutant SGT2. To examine the ability of the mycaminosyltransferase TylM2 from Streptomyces fradiae to utilise a different amino sugar, tylM2 was integrated into S. erythraea SGT2, and the resulting strain was fed with the 16-membered aglycone tylactone, the normal TylM2 substrate. A new hybrid glycoside was isolated in good yield and characterized as 5-O-desosaminyl-tylactone, indicating that TylM2 may be a useful glycosyltransferase for combinatorial biosynthesis. 5-O-glucosyl-tylactone was also obtained, showing that endogenous activated sugars and glycosyltransferases compete for aglycone in these cells.  相似文献   

16.
The polyketide aglycone, tylactone (protylonolide), does not normally accumulate during tylosin production in Streptomyces fradiae, suggesting that the capacity of the organism to glycosylate tylactone exceeds the capacity for polyketide synthesis. Consistent with this model, tylosin yields were significantly increased (due to bioconversion of the added material) when exogenous tylactone was added to fermentations. However, tylosin yield improvements were also observed (albeit at lower levels) in solvent controls to which dimethylsulfoxide (DMSO) was added. At least in part, the latter effect resulted from stimulation of polyketide metabolism by DMSO. This was revealed when the solvent was added to fermentations containing the tylA mutant, S. fradiae GS14, which normally accumulates copious quantities of tylactone. Journal of Industrial Microbiology & Biotechnology (2001) 27, 46–51. Received 18 March 2001/ Accepted in revised form 29 May 2001  相似文献   

17.
Tylosin is a macrolide antibiotic used as veterinary drug and growth promoter. Attempts were made for hyper production of tylosin by a strain of Streptomyces fradiae NRRL-2702 through irradiation mutagenesis. Ultraviolet (UV) irradiation of wild-type strain caused development of six morphologically altered colony types on agar plates. After screening using Bacillus subtilis bioassay only morphological mutants indicated the production of tylosin. An increase of 2.7±0.22-fold in tylosin production (1500 mg/l) in case of mutant UV-2 in complex medium was achieved as compared to wild-type strain (550 mg/l). Gamma irradiation of mutant UV-2 using 60Co gave one morphologically altered colony type γ-1, which gave 2500 mg/l tylosin yield in complex medium. Chemically defined media promoted tylosin production upto 3800 mg/l. Maximum value of qp (3.34 mg/gh) was observed by mutant γ-1 as compared to wild strain (0.81 mg/gh). Moreover, UV irradiation associated changes were unstable with loss of tylosin activity whereas mutant γ-1 displayed high stability on subsequent culturing.  相似文献   

18.
Trichoderma reesei endoglucanase I (EGI) was used as a reporter enzyme for screening mutagenized yeast strains for increased ability to produce protein. Sixteen haploid Saccharomyces cerevisiae strains, transformed with a yeast multicopy vector pALK222, containing the EGI cDNA under the ADH1 promoter, produced EGI activity of 10-5–10-4 g/l. On the average 93% of the total activity was secreted into the culture medium. Two strains with opposite mating types were mutagenized, and several mutants were isolated possessing up to 45-fold higher EGI activity. The best mutants were remutagenized and a second-generation mutant, strain 2804, with an additional twofold increase in EGI activity was selected. The mutant strain 2804 grew more slowly and reached a lower final cell density than the parental strain. In the selective minimal medium, the 2804 strain produced 40 mg/l immunoreactive EGI protein, but only 2% was active enzyme. In the rich medium the secreted EGI enzyme stayed active, but without selection pressure the EGI production ceased after 2 days of cultivation, when the strain 2804 had produced 10 mg/l of EGI. A sevenfold difference was found between the parental and the 2804 strain in their total EGI production relative to cell density. The difference in favour of the mutant strain was also detected on the mRNA level. The 2804 mutant was found to be more active than the parental strain also in the production of T. reesei cellulases, cellobiohydrolase I, and cellobiohydrolase II. Received: 22 December 1995/Received revision: 26 February 1996/Accepted: 17 March 1996  相似文献   

19.
Xue Y  Wilson D  Sherman DH 《Gene》2000,245(1):203-211
The methymycin and pikromycin series of antibiotics are structurally related macrolides produced by several Streptomyces species, including Streptomyces venezuelae ATCC 15439, which produces both 12-membered ring macrolides methymycin, neomethymycin, and 14-membered ring macrolides pikromycin and narbomycin. Cloning and sequencing of the biosynthetic gene clusters for these macrolides from three selected Streptomyces strains revealed a common genetic architecture of their polyketide synthases (PKSs). Unlike PKS clusters of other 14-membered ring macrolides such as erythromycin and oleandomycin, each of the pikromycin series producers harbors a six module PKS cluster, in which modules 5 and 6 are encoded on two separate proteins instead of one bimodular protein, as well as a thioesterase II gene immediately downstream of the main PKS gene. The results shed new light on the evolution of modular PKSs and provide further evidence on the regulation of methymycin and pikromycin production in S. venezuelae ATCC 15439.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号