首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
More diverse biological communities may provide ecosystem services that are less variable over space or time. However, the mechanisms underlying this relationship are rarely investigated empirically in real‐world ecosystems. Here, we investigate how a potentially important stabilising mechanism, response diversity, the differential response to environmental change among species, stabilises pollination services against land‐use change. We measured crop pollination services provided by native bees across land‐use gradients in three crop systems. We found that bee species responded differentially to increasing agricultural land cover in all three systems, demonstrating that response diversity occurs. Similarly, we found response diversity in pollination services in two of the systems. However, there was no evidence that response diversity, in general, stabilised ecosystem services. Our results suggest that either response diversity is not the primary stabilising mechanism in our system, or that new measures of response diversity are needed that better capture the stabilising effects it provides.  相似文献   

2.
Biodiversity loss during the Anthropocene is a serious ecological challenge. Pollinators are important vectors that provide multiple essential ecosystem services but are declining rapidly in this changing world. However, several studies have argued that a high abundance of managed bee pollinators, such as honeybees (Apis mellifera), may be sufficient to provide pollination services for crop productivity, and sociological studies indicate that the majority of farmers worldwide do not recognize the contribution of wild pollinator diversity to agricultural yield. Here, we review the importance of pollinator diversity in natural and agricultural ecosystems that may be thwarted by the increase in abundance of managed pollinators such as honeybees. We also emphasize the additional roles diverse pollinator communities play in environmental safety, culture, and aesthetics. Research indicates that in natural ecosystems, pollinator diversity enhances pollination during environmental and climatic perturbations, thus alleviating pollen limitation. In agricultural ecosystems, pollinator diversity increases the quality and quantity of crop yield. Furthermore, studies indicate that many pollinator groups are useful in monitoring environmental pollution, aid in pest and disease control, and provide cultural and aesthetic value. During the uncertainties that may accompany rapid environmental changes in the Anthropocene, the conservation of pollinator diversity must expand beyond bee conservation. Similarly, the value of pollinator diversity maintenance extends beyond the provision of pollination services. Accordingly, conservation of pollinator diversity requires an interdisciplinary approach with contributions from environmentalists, taxonomists, and social scientists, including artists, who can shape opinions and behavior.  相似文献   

3.
1. Moths (Lepidoptera) are the major nocturnal pollinators of flowers. However, their importance and contribution to the provision of pollination ecosystem services may have been under‐appreciated. Evidence was identified that moths are important pollinators of a diverse range of plant species in diverse ecosystems across the world. 2. Moth populations are known to be undergoing significant declines in several European countries. Among the potential drivers of this decline is increasing light pollution. The known and possible effects of artificial night lighting upon moths were reviewed, and suggest how artificial night lighting might in turn affect the provision of pollination by moths. The need for studies of the effects of artificial night lighting upon whole communities of moths was highlighted. 3. An ecological network approach is one valuable method to consider the effects of artificial night lighting upon the provision of pollination by moths, as it provides useful insights into ecosystem functioning and stability, and may help elucidate the indirect effects of artificial light upon communities of moths and the plants they pollinate. 4. It was concluded that nocturnal pollination is an ecosystem process that may potentially be disrupted by increasing light pollution, although the nature of this disruption remains to be tested.  相似文献   

4.
Fruit set of highland coffee increases with the diversity of pollinating bees   总被引:13,自引:0,他引:13  
The worldwide decline of pollinators may negatively affect the fruit set of wild and cultivated plants. Here, we show that fruit set of the self-fertilizing highland coffee (Coffea arabica) is highly variable and related to bee pollination. In a comparison of 24 agroforestry systems in Indonesia, the fruit set of coffee could be predicted by the number of flower-visiting bee species, and it ranged from ca. 60% (three species) to 90% (20 species). Diversity, not abundance, explained variation in fruit set, so the collective role of a species-rich bee community was important for pollination success. Additional experiments showed that single flower visits from rare solitary species led to higher fruit set than with abundant social species. Pollinator diversity was affected by two habitat parameters indicating guild-specific nesting requirements: the diversity of social bees decreased with forest distance, whereas the diversity of solitary bees increased with light intensity of the agroforestry systems. These results give empirical evidence for a positive relationship between ecosystem functions such as pollination and biodiversity. Conservation of rainforest adjacent to adequately managed agroforestry systems could improve the yields of farmers.  相似文献   

5.
Biodiversity and ecosystem productivity: implications for carbon storage   总被引:8,自引:0,他引:8  
Recent experiments have found that Net Primary Productivity (NPP) can often be a positive saturating function of plant species and functional diversity. These findings raised the possibility that more diverse ecosystems might store more carbon as a result of increased photosynthetic inputs. However, carbon inputs will not only remain in plant biomass, but will be translocated to the soil via root exudation, fine root turnover, and litter fall. Thus, we must consider not just plant productivity (NPP), but also net productivity of the whole ecosystem (NEP), which itself measures net carbon storage. We currently know little about how plant diversity could influence soil processes that return carbon back to the atmosphere, such as heterotrophic respiration and decomposition of organic matter. Nevertheless, it is clear that any effects on such processes could make NPP a poor predictor of whole-ecosystem productivity, and potentially the ability of the ecosystem to store carbon. We examine the range of mechanisms by which plant diversity could influence net ecosystem productivity, incorporating processes involved with carbon uptake (productivity), loss (autotrophic and heterotrophic respiration), and residence time within the system (decomposition rate). Understanding the relationship between plant diversity and ecosystem carbon dynamics must be made a research priority if we wish to provide information relevant to global carbon policy decisions. This goal is entirely feasible if we utilize some basic methods for measuring the major fluxes of carbon into and out of the ecosystem.  相似文献   

6.
Global climate change is affecting and will continue to affect ecosystems worldwide. Specifically, temperature and precipitation are both expected to shift globally, and their separate and interactive effects will likely affect ecosystems differentially depending on current temperature, precipitation regimes, and other biotic and environmental factors. It is not currently understood how the effects of increasing temperature on plant communities may depend on either precipitation or where communities lie on soil moisture gradients. Such knowledge would play a crucial role in increasing our predictive ability for future effects of climate change in different systems. To this end, we conducted a multi‐factor global change experiment at two locations, differing in temperature, moisture, aspect, and plant community composition, on the same slope in the northern Mongolian steppe. The natural differences in temperature and moisture between locations served as a point of comparison for the experimental manipulations of temperature and precipitation. We conducted two separate experiments, one examining the effect of climate manipulation via open‐top chambers (OTCs) across the two different slope locations, the other a factorial OTC by watering experiment at one of the two locations. By combining these experiments, we were able to assess how OTCs impact plant productivity and diversity across a natural and manipulated range of soil moisture. We found that warming effects were context dependent, with the greatest negative impacts of warming on diversity in the warmer, drier upper slope location and in the unwatered plots. Our study is an important step in understanding how global change will affect ecosystems across multiple scales and locations.  相似文献   

7.
Predatory arthropods can exert strong top-down control on ecosystem functions. However, despite extensive theory and experimental manipulations of predator diversity, our knowledge about relationships between plant and predator diversity--and thus information on the relevance of experimental findings--for species-rich, natural ecosystems is limited. We studied activity abundance and species richness of epigeic spiders in a highly diverse forest ecosystem in subtropical China across 27 forest stands which formed a gradient in tree diversity of 25-69 species per plot. The enemies hypothesis predicts higher predator abundance and diversity, and concomitantly more effective top-down control of food webs, with increasing plant diversity. However, in our study, activity abundance and observed species richness of spiders decreased with increasing tree species richness. There was only a weak, non-significant relationship with tree richness when spider richness was rarefied, i.e. corrected for different total abundances of spiders. Only foraging guild richness (i.e. the diversity of hunting modes) of spiders was positively related to tree species richness. Plant species richness in the herb layer had no significant effects on spiders. Our results thus provide little support for the enemies hypothesis--derived from studies in less diverse ecosystems--of a positive relationship between predator and plant diversity. Our findings for an important group of generalist predators question whether stronger top-down control of food webs can be expected in the more plant diverse stands of our forest ecosystem. Biotic interactions could play important roles in mediating the observed relationships between spider and plant diversity, but further testing is required for a more detailed mechanistic understanding. Our findings have implications for evaluating the way in which theoretical predictions and experimental findings of functional predator effects apply to species-rich forest ecosystems, in which trophic interactions are often considered to be of crucial importance for the maintenance of high plant diversity.  相似文献   

8.
Large, herbivorous mammals have profound effects on ecosystem structure and function and often act as keystone species in ecosystems they inhabit. Density-dependent processes associated with population structure of large mammals may interact with ecosystem functioning to increase or decrease biodiversity, depending on the relationship of herbivore populations relative to the carrying capacity (K) of the ecosystem. We tested for indirect effects of population density of large herbivores on plant species richness and diversity in a montane ecosystem, where increased net aboveground primary productivity (NAPP) in response to low levels of herbivory has been reported. We documented a positive, linear relationship between plant-species diversity and richness with NAPP. Structural equation modeling revealed significant indirect relationships between population density of herbivores, NAPP, and species diversity. We observed an indirect effect of density-dependent processes in large, herbivorous mammals and species diversity of plants through changes in NAPP in this montane ecosystem. Changes in species diversity of plants in response to herbivory may be more indirect in ecosystems with long histories of herbivory. Those subtle or indirect effects of herbivory may have strong effects on ecosystem functioning, but may be overlooked in plant communities that are relatively resilient to herbivory.  相似文献   

9.
Predators significantly affect ecosystem functions, but our understanding of to what extent findings can be transferred from experiments and low‐diversity systems to highly diverse, natural ecosystems is limited. With a particular threat of biodiversity loss at higher trophic levels, however, knowledge of spatial and temporal patterns in predator assemblages and their interrelations with lower trophic levels is essential for assessing effects of trophic interactions and advancing biodiversity conservation in these ecosystems. We analyzed spatial and temporal variability of spider assemblages in tree species‐rich subtropical forests in China, across 27 study plots varying in woody plant diversity and stand age. Despite effects of woody plant richness on spider assemblage structure, neither habitat specificity nor temporal variability of spider richness and abundance were influenced. Rather, variability increased with forest age, probably related to successional changes in spider assemblages. Our results indicate that woody plant richness and theory predicting increasing predator diversity with increasing plant diversity do not necessarily play a major role for spatial and temporal dynamics of predator assemblages in such plant species‐rich forests. Diversity effects on biotic or abiotic habitat conditions might be less pronounced across our gradient from medium to high plant diversity than in previously studied less diverse systems, and bottom‐up effects might level out at high plant diversity. Instead, our study highlights the importance of overall (diversity‐independent) environmental heterogeneity in shaping spider assemblages and, as indicated by a high species turnover between plots, as a crucial factor for biodiversity conservation at a regional scale in these subtropical forests.  相似文献   

10.
Flower‐visiting insects provide essential pollination services to many plant species. It is thus of critical importance to understand the effects of anthropogenic landscape modification on these animals. Particularly at the landscape scale, we still lack information on how flower visitors are affected by different intensities of human disturbance. In this study, we chose six representative types of forest modification across a heterogeneous South African landscape. At 36 study sites we observed insect visitation to Celtis africana flowers in two consecutive years. This generalist tree species has small unspecialized flowers which we found to be pollinated by a diverse array of insects as well as by wind. Visitation rates to flowers of C. africana differed significantly among the six forest types and between two study years. Visitation rates were enhanced in modified forests, facilitated by a high abundance of feral honeybees (Apis mellifera). Fruit set in C. africana showed significant positive associations with insect visitation and with the diversity of flower visitors, but was only weakly predicted by forest type. Our findings imply that even though forest modification can strongly alter flower visitors, pollination services for trees with unspecialized flowers may persist at a landscape scale. We advise conservation managers to maintain modified forest fragments in addition to natural forests as these may contribute to sustain pollination services in human‐modified landscapes.  相似文献   

11.
12.
The pollinator-driven ecological speciation model has frequently been invoked to explain plant richness in biodiversity hotspots. Here, by focusing on Gladiolus (260 species), a flagship example of a clade with diverse pollination biology, we test the hypothesis that high species diversity in southern Africa, one of the world's most floristically rich regions, has primarily been driven by ecological shifts in pollination systems. We use phylogenetic methods to estimate rates of transition between the seven highly specialized pollination strategies in Gladiolus. We find that pollination systems have evolved multiple times and that some pollination strategies arose by a variety of evolutionary pathways. Pollination shifts account for up to one-third of all lineage splitting events in the genus, providing partial support for the pollinator-driven speciation model. Transitions from the ancestral pollination mode to derived systems have also resulted in increased rates of diversification, suggesting that certain pollination systems may speed up speciation processes, independently of pollination shifts per se. This study suggests that frequent pollination shifts have played a role in driving high phenotypic and species diversity but indicates that additional factors need to be invoked to account for the spectacular diversification in southern African Gladiolus.  相似文献   

13.
The effects of herbivores and diversity on plant communities have been studied separately but rarely in combination. We conducted two concurrent experiments over 3 years to examine how tree seedling diversity, density and herbivory affected forest regeneration. One experiment factorially manipulated plant diversity (one versus 15 species) and the presence/absence of deer (Odocoileus virginianus). We found that mixtures outperformed monocultures only in the presence of deer. Selective browsing on competitive dominants and associational protection from less palatable species appear responsible for this herbivore-driven diversity effect. The other experiment manipulated monospecific plant density and found little evidence for negative density dependence. Combined, these experiments suggest that the higher performance in mixture was owing to the acquisition of positive interspecific interactions rather than the loss of negative intraspecific interactions. Overall, we emphasize that realistic predictions about the consequences of changing biodiversity will require a deeper understanding of the interaction between plant diversity and higher trophic levels. If we had manipulated only plant diversity, we would have missed an important positive interaction across trophic levels: diverse seedling communities better resist herbivores, and herbivores help to maintain seedling diversity.  相似文献   

14.
In a recent Forum paper, Wardle (Journal of Vegetation Science, 2016) questions the value of biodiversity–ecosystem function (BEF) experiments with respect to their implications for biodiversity changes in real world communities. The main criticism is that the previous focus of BEF experiments on random species assemblages within each level of diversity has ‘limited the understanding of how natural communities respond to biodiversity loss.’ He concludes that a broader spectrum of approaches considering both non‐random gains and losses of diversity is essential to advance this field of research. Wardle's paper is timely because of recent observations of frequent local and regional biodiversity changes across ecosystems. While we appreciate that new and complementary experimental approaches are required for advancing the field, we question criticisms regarding the validity of BEF experiments. Therefore, we respond by briefly reiterating previous arguments emphasizing the reasoning behind random species composition in BEF experiments. We describe how BEF experiments have identified important mechanisms that play a role in real world ecosystems, advancing our understanding of ecosystem responses to species gains and losses. We discuss recent examples where theory derived from BEF experiments enriched our understanding of the consequences of biodiversity changes in real world ecosystems and where comprehensive analyses and integrative modelling approaches confirmed patterns found in BEF experiments. Finally, we provide some promising directions in BEF research.  相似文献   

15.
There is an increasing interest to combine phylogenetic data with distributional and ecological records to assess how natural communities arrange under an evolutionary perspective. In the microbial world, there is also a need to go beyond the problematic species definition to deeply explore ecological patterns using genetic data. We explored links between evolution/phylogeny and community ecology using bacterial 16S rRNA gene information from a high‐altitude lakes district data set. We described phylogenetic community composition, spatial distribution, and β‐diversity and biogeographical patterns applying evolutionary relatedness without relying on any particular operational taxonomic unit definition. High‐altitude lakes districts usually contain a large mosaic of highly diverse small water bodies and conform a fine biogeographical model of spatially close but environmentally heterogeneous ecosystems. We sampled 18 lakes in the Pyrenees with a selection criteria focused on capturing the maximum environmental variation within the smallest geographical area. The results showed highly diverse communities nonrandomly distributed with phylogenetic β‐diversity patterns mainly shaped by the environment and not by the spatial distance. Community similarity based on both bacterial taxonomic composition and phylogenetic β‐diversity shared similar patterns and was primarily structured by similar environmental drivers. We observed a positive relationship between lake area and phylogenetic diversity with a slope consistent with highly dispersive planktonic organisms. The phylogenetic approach incorporated patterns of common ancestry into bacterial community analysis and emerged as a very convenient analytical tool for direct inter‐ and intrabiome biodiversity comparisons and sorting out microbial habitats with potential application in conservation studies.  相似文献   

16.
海岛植被在全球生物多样性研究中起重要作用,研究海岛植被多样性对于理解海陆相互作用下植物群落的多样性维持机制有重要意义.本研究以庙岛群岛的麻栎群落、刺槐群落、黑松群落、荆条群落4种典型植物群落为对象,采用物种多样性指数、功能多样性指数和结构多样性指数,在群落尺度上探讨了海岛典型植物群落物种、功能、结构多样性间的关系及其对环境因子的响应.结果表明: 黑松群落的物种丰富度与Rao指数高于刺槐群落与麻栎群落,而结构多样性却较低;荆条灌丛的物种、结构多样性均低于森林群落,而功能多样性高于部分森林群落.物种丰富度与Rao指数以及树高多样性间呈显著正相关,与功能均匀度呈显著负相关.结构多样性主要由坡度决定且与坡度呈负相关;功能均匀度与坡度呈正相关,而功能异质性、功能离散度和物种多样性则更多地受土壤理化性质的影响,与土壤容重及土壤总碳呈正相关,与土壤含水率呈负相关.总体而言,庙岛群岛的植物群落多样性格局既有与大陆植被相似的特征,但也有其海岛特殊性.  相似文献   

17.
Jimena Dorado  Diego P. Vázquez 《Oikos》2014,123(9):1137-1143
The diversity–stability hypothesis posits that species diversity confers redundancy in function, so that richer communities show higher temporal stability in ecosystem processes than poorer communities. The diversity–stability relationship has not been studied in terms of flower production before. A diverse flower community may stabilize the availability of floral resources along the floral season. Considering this type of stability is important because it could promote the stability and persistence of the pollination service. We evaluated 1) the diversity–stability relationship in floral production along a flowering season; 2) the effect of additional factors that could blur the diversity–stability relationship, such as flower abundance, elevation, and the time elapsed since the last fire, a common human disturbance in the study area; and 3) whether the most important plants for pollinators in terms of interspecific interactions contribute differentially to temporal stability. The most diverse communities were more stable in floral resource production along the flowering season. Stability of flower production was also influenced by a positive indirect effect of elevation. The plants that contributed the most to temporal stability were the most abundant and densely connected species, those at the core of the plant–pollinator network. Our study shows that species richness enhances the availability of floral resources for pollinators, providing a strong support for the diversity–stability hypothesis.  相似文献   

18.
The effects of increasing plant diversity on the population of the coffee leaf-miner Leucoptera coffeella (Guérin-Mèneville) were investigated in two organic coffee production systems. One system consisted of coffee intercropped with banana trees (shaded system) and the other one of coffee intercropped with pigeon pea (unshaded system). The increase in plant diversity on both systems was achieved via introduction of green manures such a perennial pea nut, sunn hemp and Brazilian lucerne. The population of L. coffeella, predation and parasitism of L. coffeella mines were biweekly evaluated during eight months. The increase in plant diversity on both systems did not affect the attack of L. coffeella on coffee leaves and the mine parasitism rate. However, there was a positive and significant relationship between increasing plant diversity and coffee leaf mine predation by wasps on unshaded coffee system and a negative relationship on shaded coffee system.  相似文献   

19.
Ecological theory predicts a positive and asymptotic relationship between plant diversity and ecosystem productivity based on the ability of more diverse plant communities to use limiting resources more fully. This is supported by recent empirical evidence. Additionally, in natural ecosystems, plant productivity is often a function of the presence and composition of mycorrhizal associations. Yet, the effect of mycorrhizal fungi on the relationship between plant diversity and productivity has not been investigated. We predict that in the presence of AMF, productivity will saturate at lower levels of species richness because AMF increase the ability of plant species to utilize nutrient resources. In this study we manipulated old-field plant species richness in the presence and absence of two species of AMF. We found that in the absence of AMF, the relationship between plant species richness and productivity is positive and linear. However, in the presence of AMF, the relationship is positive but asymptotic, even though the maximum plant biomass was significantly different between the two AMF treatments. This is consistent with the hypothesis that AMF increase the redundancy of plant species in the productivity of plant communities, and indicates that these symbionts must be considered in future investigations of plant biodiversity and ecosystem function.  相似文献   

20.
Experimental studies have shown that deposition of reactive nitrogen is an important driver of plant community change, however, most of these experiments are of short duration with unrealistic treatments, and conducted in regions with elevated ambient deposition. Studies of spatial gradients of pollution can complement experimental data and indicate whether the potential impacts demonstrated by experiments are actually occurring in the ‘real world’. However, targeted surveys exist for only a very few habitats and are not readily comparable. In a coordinated campaign, we determined the species richness and plant community composition of five widespread, semi-natural habitats across Great Britain in sites stratified along gradients of climate and pollution, and related these ecological parameters to major drivers of biodiversity, including climate, pollution deposition, and local edaphic factors. In every habitat, we found reduced species richness and changed species composition associated with higher nitrogen deposition, with remarkable consistency in relative species loss across ecosystem types. Whereas the diversity of mosses, lichens, forbs, and graminoids declines with N deposition in different habitats, the cover of graminoids generally increases. Considered alongside previous experimental studies and survey work, our results provide a compelling argument that nitrogen deposition is a widespread and pervasive threat to terrestrial ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号