首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A Tetrahymena intron nucleotide connected to the GTP/arginine site.   总被引:2,自引:1,他引:1       下载免费PDF全文
M Yarus  J Levine  G B Morin    T R Cech 《Nucleic acids research》1989,17(17):6969-6981
  相似文献   

3.
Selection of small molecules by the Tetrahymena catalytic center.   总被引:2,自引:1,他引:1       下载免费PDF全文
The catalytic center in group I RNAs contains a selective binding site that accommodates both guanosine and L-arginine. In order to understand the specificity of the RNA for small molecules, we analyzed 6 RNAs that vary in this region. Specificity for nucleotides resides substantially in G264 rather than its paired nucleotide C311, and is expressed substantially in Km, with comparatively little variation in kcat. kcat is not notably perturbed even for RNAs with mispairs in the active-site helix. For 5 of 6 sequences, effects of RNA substitutions on arginine binding and GTP reactivity are proportional, confirming that arginine contacts a subset of the groups occupied by G. As a result of particular mutations, reaction with GTP is decreased, and reaction with the natural nucleotides UTP and ATP is enhanced. Molecular modeling of these effects suggests that exceptionally flexible placement of reactants may be an essential quality of RNA-catalyzed splicing. The specificity of the intron can be rationalized by a type of binding model not previously considered, in which the G/arginine site includes adjacent nucleotides (an 'axial' site), rather than a single nucleotide, G264.  相似文献   

4.
Amino acids are actively transported across the plasma membrane of plant cells by proton-coupled symports. Previously, we identified four amino acid symports in isolated plasma membrane vesicles, including two porters for the neutral amino acids. Here we investigated the effect of amino acid analogues on neutral amino acid transport to identify structural features that are important in molecular recognition by Neutral System I (isoleucine) and Neutral System II (alanine and leucine). D-Isomers of alanine and isoleucine were not effective transport antagonists of the L-isomers. These data are characteristic of stereospecificity and suggest that the positional relationship between the alpha-amino and carboxyl groups is an important parameter in substrate recognition. This conclusion was supported by the observation that beta-alanine and analogues with methylation at the alpha-carbon, at the carboxyl group, or at the alpha-amino group were not effective transport inhibitors. Specific binding reactions were also implicated in these experiments because substitution of the alpha-amino group with a space filling methyl or hydroxyl group eliminated transport inhibition. In contrast, analogues with various substitutions at the distal end of the amino acid were potent antagonists. Moreover, the relative activity of several analogues was influenced by the location of sidechain branches and Neutral Systems I and II were resolved based on differential sensitivity to branching at the beta-carbon. The kinetics of azaserine and p-nitrophenylalanine inhibition of leucine transport were competitive. We conclude that the binding site for the carboxyl end of the amino acid is a well-defined space that is characterized by compact, asymmetric positional relationships and specific ligand interactions. Although the molecular interactions associated with the distal portion of the amino acid were less restrictive, this component of the enzyme-substrate complex is also important in substrate recognition because the neutral amino acid symports are able to discriminate between specific neutral amino acids and exclude the acidic and basic amino acids.  相似文献   

5.
Glycosylasparaginase catalyzes the hydrolysis of the N-glycosylic bond in N(4)-(2-acetamido-2-deoxy-beta-D-glucopyranosyl)-L-asparagine in the catabolism of N-linked oligosaccharides. A deficiency, or absence, of enzyme activity gives rise to aspartylglycosaminuria, the most common disorder of glycoprotein metabolism. The enzyme catalyzes the hydrolysis of a variety of asparagine and aspartyl compounds containing a free alpha-carboxyl group and a free alpha-amino group; computational studies suggest that the alpha-amino group actively participates in the catalytic mechanism. In order to study the importance of the alpha-carboxyl group and the alpha-amino group on the natural substrate to the reaction catalyzed by the enzyme, 14 analogues of the natural substrate were studied where the structure of the aspartyl group of the substrate was changed. The incremental binding energy (DeltaDeltaGb) for those analogues that were substrates was calculated. The results show that the alpha-amino group may be substituted with a group of comparable size, for the alpha-amino group contributes little, if any, to the transition state binding energy of the natural substrate. The alpha-amino group position acts as an "anchor" in the binding site for the substrate. On the other hand, the alpha-carboxyl group is necessary for enzyme activity; removal of the alpha-carboxyl group or changing it to an alpha-carboxamide group results in no hydrolysis reaction. Also, N-acetyl-D-glucosamine is not sufficient for binding to the active site for efficient hydrolysis by the enzyme. These results provide supporting evidence for a proposed intramolecular autoproteolytic activation reaction for the enzyme. However, the results raise a question as to an important role for the alpha-amino group in the catalytic mechanism as indicated in computational studies.  相似文献   

6.
7.
In many biological systems substantial roles are played by interactions between amino acids and RNA. Among amino acids L-arginine seems to be particularly relevant, because the guanidinium group of arginine side chain can potentially form five hydrogen bonds with appropriately positioned acceptor groups of RNA. Extensive studies reveal that specific arginine recognition is achieved by many different RNAs over a broad range of binding affinities. Arginine is frequently found among amino acids in the nucleic acid-binding motifs in various proteins. For example, specific binding of the HIV-1 Tat protein to its RNA site (TAR) is mediated by a single arginine residue. Free arginine can be also bound by the guanosine site in the group I Tetrahymena ribosomal RNA intron catalytic centre, as well as by numerous RNA motifs, called arginine aptamers, which have been selected in vitro.  相似文献   

8.
Thirty-four spermidine (SPD) and spermine (SPM) derivatives with aromatic substituents were synthesized and tested as inhibitors of specific binding of the NMDA channel blocker [3H]MK-801 to membranes prepared from rat hippocampus and cerebral cortex. SPD and SPM derivatives with aromatic substituents at the primary amino groups were the most potent inhibitors (IC50 3.9-4.7 microM). These compounds most likely act directly at the NMDA ion channel, since 30 microM SPM had no pronounced influence on their inhibiting activities. SPD derivatives with aromatic substituents at the secondary amino group were either inactive or highly SPM-sensitive inhibitors (IC50 10-82 microM), depending on the size of the substituent. Our results support the hypothesis that an aromatic interaction site near the center of polyamine derivatives contributes to polyamine inverse agonism.  相似文献   

9.
A model of the Tetrahymena catalytic site predicts that nucleotide 262 (nt262) caps an RNA pocket in which nucleoside substrates and arginine-like competitive inhibitors reside. Here we show that substituted RNAs behave as if nt262 stacks on nucleoside substrates, supporting the model. The more frequent an nt262 is in natural sequences, the more reactive the corresponding Tetrahymena RNA is for both cognate and non-cognate nucleoside substrates. These more reactive RNAs with the majority nt262 also bind arginine more strongly, stereoselect more strongly in favor of L-arginine, and make a greater distinction between the somewhat similar side-chains of L-arginine and L-lysine. These parallel changes in interaction with nucleosides and arginine analogs seem best explained by stacking of the arginine's guanidino group under the nt262 base. One consequence is that selection for improved Tetrahymena catalysis with nucleosides should also yield an improved arginine site.  相似文献   

10.
The hepatitis C virus (HCV) polymerase is required for replication of the viral genome and is a key target for therapeutic intervention against HCV. We have determined the crystal structures of the HCV polymerase complexed with two indole-based allosteric inhibitors at 2.3- and 2.4-Angstroms resolution. The structures show that these inhibitors bind to a site on the surface of the thumb domain. A cyclohexyl and phenyl ring substituents, bridged by an indole moiety, fill two closely spaced pockets, whereas a carboxylate substituent forms a salt bridge with an exposed arginine side chain. Interestingly, in the apoenzyme, the inhibitor binding site is occupied by a small alpha-helix at the tip of the N-terminal loop that connects the fingers and thumb domains. Thus, these molecules inhibit the enzyme by preventing formation of intramolecular contacts between these two domains and consequently precluding their coordinated movements during RNA synthesis. Our structures identify a novel mechanism by which a new class of allosteric inhibitors inhibits the HCV polymerase and open the way to the development of novel antiviral agents against this clinically relevant human pathogen.  相似文献   

11.
As a means of comparing the functional properties of an enzyme in dilute solution in vitro with those for the same enzyme acting in its normal cellular environment, a study was conducted with 4-substituted pyrazoles as inhibitors of rat liver alcohol dehydrogenase in vitro and ethanol oxidation in isolated rat hepatocytes. Inhibitor constants (Ki's) for the same set of pyrazole derivatives were also determined for human liver alcohol dehydrogenase. The best-fitting equations were derived to relate the Ki's to the chemical nature of substituents. These quantitative structure-activity relationships show that pyrazoles with stronger electron-withdrawing substituents are weaker inhibitors both for the enzyme in vitro and, to an equal extent, for ethanol oxidation by intact cells. Inhibitor effectiveness is also dependent on substituent hydrophobicity, but, while increasing hydrophobicity makes stronger inhibitors of the enzyme in vitro, it can diminish the effectiveness in vivo by decreasing permeability through the cell membrane. A structure-activity analysis of published Ki's for pyrazoles acting against human pi-ADH indicates that its active site differs from those in other alcohol dehydrogenases.  相似文献   

12.
A variety of amino acid and peptide amides have been shown to be inhibitors of dipeptidyl aminopeptidase. Among these compounds derivatives of strongly hydrophobic amino acids are the strongest inhibitors (Phe-NH2, Ki = 1.0 +/- 0.2 mM), while amides of basic amino acids were somewhat less effective (Lys-NH2, Ki = 36 +/- 3 mM). Short chain amino acid amides are notably weaker inhibitors (Gly-NH2, Ki = 293 +/- 50 mM). The interaction of the side chains of compounds with the enzyme appears to be at a site other than that at which the side chain of the amino-penultimate residue of the substrate interacts since the specificity of binding is different. Primary amines have been shown to inhibit, e.g., butylamine, Ki = 340 +/- 40 mM, and aromatic compounds have been shown to stimulate activity toward Gly-Gly-NH2 and Gly-Gly-OEt (phenol, 35% stimulation of activity at a 1:1 molar ratio with the substrate). The data suggest that inhibition involves binding at the site occupied by the free alpha-amino group and the N-terminal amino acid.  相似文献   

13.
In a continuing effort to unravel the structural basis for isoform-selective inhibition of nitric oxide synthase (NOS) by various inhibitors, we have determined the crystal structures of the nNOS and eNOS heme domain bound with two D-nitroarginine-containing dipeptide inhibitors, D-Lys-D-Arg(NO)2-NH(2) and D-Phe-D-Arg(NO)2-NH(2). These two dipeptide inhibitors exhibit similar binding modes in the two constitutive NOS isozymes, which is consistent with the similar binding affinities for the two isoforms as determined by K(i) measurements. The D-nitroarginine-containing dipeptide inhibitors are not distinguished by the amino acid difference between nNOS and eNOS (Asp 597 and Asn 368, respectively) which is key in controlling isoform selection for nNOS over eNOS observed for the L-nitroarginine-containing dipeptide inhibitors reported previously [Flinspach, M., et al. (2004) Nat. Struct. Mol. Biol. 11, 54-59]. The lack of a free alpha-amino group on the D-nitroarginine moiety makes the dipeptide inhibitor steer away from the amino acid binding pocket near the active site. This allows the inhibitor to extend into the solvent-accessible channel farther away from the active site, which enables the inhibitors to explore new isoform-specific enzyme-inhibitor interactions. This might be the structural basis for why these D-nitroarginine-containing inhibitors are selective for nNOS (or eNOS) over iNOS.  相似文献   

14.
The gene (dppA) encoding the binding protein of the di-tripeptide ABC transporter of Lactococcus lactis (DppA) was cloned under the control of the nisin promoter. Amplified expression ( approximately 200-fold increase) of the protein fused to a carboxyl-terminal six-histidine tag allowed the purification of DppA-(His)(6) by nickel-chelate affinity and anion-exchange chromatography. Ligand binding to DppA-(His)(6) elicited an electrophoretic mobility shift, a decrease in the intrinsic fluorescence, and a blue shift of the emission maximum. Each of these parameters detected conformational changes in the protein that reflect ligand binding, and these were used to determine the structural requirements of DppA-(His)(6) for binding peptides. The major features of peptide binding include (i) high affinity for di- and tripeptides, (ii) requirement of a free N-terminal alpha-amino group and an alpha-peptide bound contiguous with the N-terminal amino group, (iii) stereospecificity for L-isomers, and (iv) preference for dipeptides containing methionine or arginine, followed by hydrophobic tripeptides consisting of leucine or valine residues. Maximal binding affinity was detected at pH 6.0, and the K(d) for binding increased 1 order of magnitude for every unit increase in pH. This suggests that the ionization of protein residues (pK > 6.0) in or in close proximity to the binding site is critical in the binding mechanism.  相似文献   

15.
An RNA-amino acid complex and the origin of the genetic code   总被引:4,自引:0,他引:4  
M Yarus 《The New biologist》1991,3(2):183-189
The group I RNAs, of which the Tetrahymena ribosomal RNA intron is the most investigated example, catalyze their own splicing reactions. Splicing is initiated at a conserved site on the RNA that facilitates attack by exogenous guanosine (or its nucleotides) on the exon-intron junction. The guanosine site in the RNA's catalytic center also binds arginine, and is quite selective for the arginine side chain. This amino acid-RNA interaction is stereoselective, and L-arginine is preferred. Immediately at the site at which arginine binds there is one of only four RNA triplets in 92 group I RNA sequences: AGA/G and CGA/G. Thus the arginine contact site is within any of four different codons for arginine. Mutation of the conserved G in the middle of the triplet decreases affinity for the amino acid, showing that binding is sequence-specific. A pathway for the origin of the genetic code for arginine is suggested, based on the existence and properties of this sequence-specific, amino acid-specific RNA complex. The existence of a proto-ribosome related to the group I RNAs seems the most likely hypothesis. This notion is used to distinguish three periods in the development of the code. Restrained and exuberant hypotheses about the origin of the genetic code are distinguished, and some objections to these hypotheses are considered.  相似文献   

16.
Chemical modification was used to elucidate the essential amino acids in the catalytic activity of arginine kinase (AK) from Migratoria manilensis. Among six cysteine (Cys) residues only one Cys residue was determined to be essential in the active site by Tsou's method. Furthermore, the AK modified by DTNB can be fully reactivated by dithiothreitol (DTT) in a monophasic kinetic course. At the same time, this reactivation can be slowed down in the presence of ATP, suggesting that the essential Cys is located near the ATP binding site. The ionizing groups at the AK active site were studied and the standard dissociation enthalpy (ΔH°) was 12.38 kcal/mol, showing that the dissociation group may be the guanidino of arginine (Arg). Using the specific chemical modifier phenylglyoxal (PG) demonstrated that only one Arg, located near the ATP binding site, is essential for the activity of AK.  相似文献   

17.
18.
19.
Amiloride is a weak inhibitor of Na+/Ca2+ exchange in isolated plasma membrane vesicles prepared from GH3 rat anterior pituitary cells. However, substitution on either a terminal guanidino nitrogen atom or the 5-amino nitrogen atom can increase inhibitory potency ca. 100-fold (I50 approximately 10 microM). A structure-activity study indicates that defined structural modifications of guanidino substituents are associated with increases in inhibitory activity. In contrast, analogues bearing 5-amino substituents generally increase in potency with increasing hydrophobicity of the substitution. Specificity in action of either class is indicated by several criteria. These inhibitors do not disrupt the osmotic integrity of the membrane, nor do they significantly interfere with plasmalemmal Ca2+-ATPase-driven Ca2+ uptake, Na+,K+-ATPase enzymatic activity, or the function of Ca2+ or K+ channels. Inhibition is freely reversible, further indicating a lack of nonspecific membrane effects. The mechanism by which each inhibitor class blocks exchange was found to be identical. Protonation of the guanidino moiety (i.e., cationic charge) is essential for activity. Analysis of transport inhibition as a function of Ca2+ concentration indicates noncompetitive kinetics. However, inhibition was reversed by elevating intravesicular Na+, indicating a competitive interaction with this ion. These results suggest that the inhibitors function as Na+ analogues, interact at a Na+ binding site on the carrier (presumably the site at which the third Na+ binds), and reversibly tie up the transporter in an inactive complex. In addition to blocking pituitary exchange, these analogues are effective inhibitors of the bovine brain and porcine cardiac transport systems.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号