首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous studies have demonstrated that phenolic compounds, including genistein (4′,5,7-trihydroxyisoflavone) and resveratrol (3,4′,5-trihydroxystilbene), are able to protect against carcinogenesis in animal models. This study was undertaken to examine the ability of genistein and resveratrol to inhibit reactive oxygen species (ROS)-mediated strand breaks in φX-174 plasmid DNA. H2O2/Cu(II) and hydroquinone/Cu(II) were used to cause oxidative DNA strand breaks in the plasmid DNA. We demonstrated that the presence of genistein at micromolar concentrations resulted in a marked inhibition of DNA strand breaks induced by either H2O2/Cu(II) or hydroquinone/Cu(II). Genistein neither affected the Cu(II)/Cu(I) redox cycle nor reacted with H2O2 suggest that genistein may directly scavenge the ROS that participate in the induction of DNA strand breaks. In contrast to the inhibitory effects of genistein, the presence of resveratrol at similar concentrations led to increased DNA strand breaks induced by H2O2/Cu(II). Further studies showed that in the presence of Cu(II), resveratrol, but not genistein was able to cause DNA strand breaks. Moreover, both Cu(II)/Cu(I) redox cycle and H2O2 were shown to be critically involved in resveratrol/copper-mediated DNA strand breaks. The above results indicate that despite their similar in vivo anticarcinogenic effects, genistein and resveratrol appear to exert different effects on oxidative DNA damage in vitro.  相似文献   

2.
3.
The micronutrient copper is a catalytic cofactor for copper, zinc superoxide dismutase and ceruloplasmin, which are two important antioxidant enzymes. As such, a lack of copper may promote oxidative stress and damage. The purpose of this study was to determine the effect of copper deficiency on oxidative damage to DNA in Jurkat T-lymphocytes. To induce copper deficiency, cells were incubated for 48 h with 5-20 microM 2,3,2-tetraamine (2,3,2-tet), a high affinity copper chelator. Such treatment did not affect cell proliferation/viability, as assessed by measuring mitochondrial reduction of WST-1 reagent (4-[3-(4-Iodophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-1,3-ben zen e disulfonate). Furthermore, the induction of copper deficiency did not promote oxidative DNA damage as evaluated by the comet assay. Comet scores were 15 +/- 0 and 16 +/- 1 for control and copper-deficient cells, respectively. However, the copper-deficient cells sustained greater oxidative DNA damage than the control cells (comet scores of 175 +/- 15 and 50 +/- 10, respectively) when both were oxidatively challenged with 50 microM hydrogen peroxide (H(2)O(2)). Supplemental copper but not zinc or iron prevented the potentiation of the H(2)O(2)-induced oxidative DNA damage caused by 2,3,2-tet. These data suggest that copper deficiency compromises the antioxidant defense system of cells, thereby increasing their susceptibility to oxidative DNA damage.  相似文献   

4.
The indolinonic and quinolinic aromatic nitroxides synthesized by us are a novel class of biological antioxidants, which afford a good degree of protection against free radical-induced oxidation in different lipid and protein systems. To further our understanding of their antioxidant behavior, we thought it essential to have more information on their effects on DNA exposed to free radicals. Here, we report on the results obtained after exposure of plasmid DNA and calf thymus DNA to peroxyl radicals generated by the water-soluble radical initiator, 2,2'-azobis(2-amidinopropane)dihydrochloride (AAPH), and the protective effects of the aromatic nitroxides and their hydroxylamines, using a simple in vitro assay for DNA damage. In addition, we also tested for the potential of these nitroxides to inhibit hydroxyl radical-mediated DNA damage inflicted by Fenton-type reactions using copper and iron ions. The commercial aliphatic nitroxides 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO), 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL), and bis(2,2, 6,6-tetramethyl-1-oxyl-piperidin-4-yl)sebacate (TINUVIN 770) were included for comparison. The results show that the majority of compounds tested protect: (i) both plasmid DNA and calf thymus DNA against AAPH-mediated oxidative damage in a concentration-dependent fashion (1-0.1 mM), (ii) both Fe(II) and Cu(I) induced DNA oxidative damage. However, all compounds failed to protect DNA against damage inflicted by the presence of the transition metals in combination with H(2)O(2). The differences in protection between the compounds are discussed in relation to their molecular structure and chemical reactivity.  相似文献   

5.
Guibourt N  Boiteux S 《Biochimie》2000,82(1):59-64
The biological relevance of oxidative DNA damage has been unveiled by the identification of genes such as fpg of E. coli or OGG1 of Saccharomyces cerevisiae. Both Fpg and Ogg1 proteins are DNA glycosylases/AP lyases that excise 7,8-dihydro-8-oxoguanine (8-OxoG) and 2,6-diamino-4-hydroxy-5-N-methylformamidopyrimidine (Me-FapyG) from damaged DNA. Although similar, the enzymatic and biological properties of Fpg and Ogg1 proteins are not identical. Furthermore, the Fpg and Ogg1 proteins do not show significant sequence homologies. In this study, we investigated the ability of the Fpg protein of E. coli to complement phenotypes thought to be due to oxidative DNA damage in Saccharomyces cerevisiae. To express Fpg in yeast, the coding sequence of the fpg gene was placed under the control of a strong yeast promoter in the expression vector pCM190 to generate the pFPG240 plasmid. The Ogg1-deficient yeast strain CD138, ogg1::TRP1, was transformed with pFPG240 and the expression of Fpg was measured. Expression of Fpg in yeast harboring pFPG240 was revealed by efficient release of Me-FapyG and cleavage of 8-OxoG-containing duplexes by cell free protein extracts. The production of the Fpg protein in yeast cells was further demonstrated by immunoblotting analysis using anti-Fpg antibodies. Fpg expression suppresses the spontaneous mutator phenotype of ogg1- yeast for the production of canavanin resistant mutants (CanR) and Lys+ revertants. Fpg expression also restores the capacity of plasmid DNA treated with methylene blue plus visible light (MB-light) to transform the yeast ogg1- rad1- double mutant.  相似文献   

6.
ATM is one of the sentries at the gate of genome stability. This multifunctional protein kinase orchestrates the intricate array of cellular responses to DNA double-strand breaks. Absence or inactivation of ATM leads to the pleiotropic genetic disorder ataxia-telangiectasia (A-T), whose hallmarks are neuronal degeneration, immunodeficiency, genomic instability, premature aging and cancer predisposition. Several features of the complex clinical and cellular phenotype of A-T are reminiscent of other syndromes involving neurodegeneration, premature aging or genomic instability. A common denominator of many of these conditions is the perturbation of the cellular balance of reactive oxygen species, which leads to constant oxidative stress. Of these disorders, ATM deficiency is one of the most extensively studied with regard to the genome instability-oxidative stress connection. This connection may provide new insights into the phenotypes associated with genetic deficiencies of DNA damage responses, and point to new strategies to alleviate some of their clinical symptoms.  相似文献   

7.
DNA damage responses to oxidative stress   总被引:12,自引:0,他引:12  
Barzilai A  Yamamoto K 《DNA Repair》2004,3(8-9):1109-1115
The DNA damage response is a hierarchical process. DNA damage is detected by sensor proteins such as the MRN complex that transmit the information to transducer proteins such as ATM and ATR, which control the damage response through the phosphorylation of effector proteins. The extent of the DNA damage determines cell fate: cell cycle arrest and DNA repair or the activation of apoptotic pathways. In aerobic cells, reactive oxygen species (ROS) are generated as a by-product of normal mitochondrial activity. If not properly controlled, ROS can cause severe damage to cellular macromolecules, especially the DNA. We describe here some of the cellular responses to alterations in the cellular redox state during hypoxia or oxidative stress. Oxidative damage in DNA is repaired primarily via the base excision repair (BER) pathway which appears to be the simplest of the three excision repair pathways. To allow time for DNA repair, the cells activate their cell cycle checkpoints, leading to cell cycle arrest and preventing the replication of damage and defective DNA.  相似文献   

8.
Oxidant stress has been shown to play an important role in the pathogenesis of iron deficiency anemia. The aim of this study was to investigate the association between lymphocyte DNA damage, total antioxidant capacity and the degree of anemia in patients with iron deficiency anemia. Twenty-two female with iron deficiency anemia and 22 healthy females were enrolled in the study. Peripheral DNA damage was assessed using alkaline comet assay and plasma total antioxidant capacity was determined using an automated measurement method. Lymphocyte DNA damage of patients with iron deficiency anemia was significantly higher than controls (p<0.05), while total antioxidant capacity was significantly lower (p<0.001). While there was a positive correlation between total antioxidant capacity and hemoglobin levels (r=0.706, p<0.001), both total antioxidant capacity and hemoglobin levels were negatively correlated with DNA damage (r=-0.330, p<0.05 and r=-0.323, p<0.05, respectively). In conclusion, both oxidative stress and DNA damage are increased in IDA patients. Increased oxidative stress seems as an important factor that inducing DNA damage in those IDA patients. The relationships of oxidative stress and DNA damage with the severity of anemia suggest that both oxidative stress and DNA damage may, in part, have a role in the pathogenesis of IDA.  相似文献   

9.
10.
11.
Cellular genomes suffer extensive damage from exogenous agents and reactive oxygen species formed during normal metabolism. The MutT homologs (MutT/MTH) remove oxidized nucleotide precursors so that they cannot be incorporated into DNA during replication. Among many repair pathways, the base excision repair (BER) pathway is the most important cellular protection mechanism responding to oxidative DNA damage. The 8-oxoG glycosylases (Fpg or MutM/OGG) and the MutY homologs (MutY/MYH) glycosylases along with MutT/MTH protect cells from the mutagenic effects of 8-oxoG, the most stable and deleterious product known caused by oxidative damage to DNA. The key enzymes in the BER process are DNA glycosylases, which remove different damaged bases by cleavage of the N-glycosylic bonds between the bases and the deoxyribose moieties of the nucleotide residues. Biochemical and structural studies have demonstrated the substrate recognition and reaction mechanism of BER enzymes. Cocrystal structures of strated the substrate recognition and reaction mechanism of BER enzymes. Cocrystal structures of several glycosylases show that the substrate base flips out of the sharply bent DNA helix and the minor groove is widened to be accessed by the glycosylases. To complete the repair after glycosylase action, the apurinic/apyrimidinic (AP) site is further processed by an incision step, DNA synthesis, an excision step, and DNA ligation through two alternative pathways. The short-patch BER (1-nucleotide patch size) and long-patch BER (2–6-nucleotide patch size) pathways need AP endonuclease to generate a 3′ hydroxyl group but require different sets of enzymes for DNA synthesis and ligation. Protein-protein interactions have been reported among the enzymes involved in BER. It is possible that the successive players in the repair pathway are assembled in a complex to perform concerted actions. The BER pathways are proposed to protect cells and organisms from mutagenesis and carcinogenesis.  相似文献   

12.
Phenolic phytochemicals are natural plant substances whose cellular effects have not been completely determined. Nordihydroguaiaretic acid (NDGA) and curcumin are two phenolic phytochemicals with similar molecular structures, suggesting that they possess comparable chemical properties particularly in terms of antioxidant activity. To examine this possibility in a cellular system, this study evaluated the capacities of NDGA and curcumin to function as antioxidants in inhibiting oxidative damage to DNA. Jurkat T-lymphocytes were pre-incubated for 30 min with 0-25 microM of either NDGA or curcumin to allow for uptake. The phenolic phytochemical-treated cells were then oxidatively challenged with 25 microM hydrogen peroxide (H2O2). Afterwards, cells were subjected to alkaline micro-gel electrophoresis (i.e. comet assay) to assess the extent of single-strand breaks in DNA. In a concentration-dependent manner, NDGA inhibited H2O2-induced DNA damage, whereas curcumin did not. In fact, incubating Jurkat T-lymphocytes with curcumin alone actually induced DNA damage. This effect of curcumin on DNA did not appear to reflect the DNA fragmentation associated with apoptosis because there was no proteolytic cleavage of poly-(ADP-ribose)-polymerase, which is considered an early marker of apoptosis. Curcumin-induced damage to DNA was prevented by pre-treatment of the cells with the lipophilic antioxidant, alpha-tocopherol, suggesting that curcumin damaged DNA through oxygen radicals. Therefore, it is concluded that NDGA has antioxidant activity but curcumin has prooxidant activity in cultured cells based on their opposite effects on DNA.  相似文献   

13.
Studies on dithiothreitol-induced oxidative damage to thymine and DNA in solution are reported. The major thymine products, cis- and trans-5,6-dihydroxy-5,6-dihydrothymine (thymine glycols), are produced rapidly in 37 degrees C neutral solutions of 10mM thymine and 10mM dithiothreitol. Iron-EDTA enhances while the iron chelator, diethylenetriaminepentaacetic acid, inhibits the reaction. In experiments using 3H-TdR-labeled Escherichia coli DNA, DNA damage was measured as increased ethanol-soluble radioactivity after treatment of the DNA with 5mM dithiothreitol at 45 degrees C. The findings are important with respect to current research interest in thiol radioprotection and thiol-plus-heat toxicity.  相似文献   

14.
Impaired DNA repair may fuel up malignant transformation of breast cells due to the accumulation of spontaneous mutations in target genes and increasing susceptibility to exogenous carcinogens. Moreover, the effectiveness of DNA repair may contribute to failure of chemotherapy and resistance of breast cancer cells to drugs and radiation. The breast cancer susceptibility genes BRCA1 and BRCA2 are involved in DNA repair. To evaluate further the role of DNA repair in breast cancer we determined: (1) the kinetics of removal of DNA damage induced by hydrogen peroxide and the anticancer drug doxorubicin, and (2) the level of basal, oxidative and alkylative DNA damage before and during/after chemotherapy in the peripheral blood lymphocytes of breast cancer patients and healthy individuals. The level of DNA damage and the kinetics of DNA repair were evaluated by alkaline single cell gel electrophoresis (comet assay). Oxidative and alkylative DNA damage were assayed with the use of DNA repair enzymes endonuclease III (Endo III) and formamidopyrimidine-DNA glycosylase (Fpg), recognizing oxidized DNA bases and 3-methyladenine-DNA glycosylase II (AlkA) recognizing alkylated bases. We observed slower kinetics of DNA repair after treatment with hydrogen peroxide and doxorubicin in lymphocytes of breast cancer patients compared to control individuals. The level of basal, oxidative and alkylative DNA damage was higher in breast cancer patients than in the control and the difference was more pronounced when patients after chemotherapy were engaged, but usually the level of DNA damage in these patients was too high to be measured with our system. Our results indicate that peripheral blood lymphocytes of breast cancer patients have more damaged DNA and display decreased DNA repair efficacy. Therefore, these features can be considered as risk markers for breast cancer, but the question whether they are the cause or a consequence of the illness remains open. Nevertheless, our results suggest that research on the mutagen sensitivity and efficacy of DNA repair could impact the development of new diagnostic and screening strategies as well as indicate new targets to prevent and cure cancer. Moreover, the comet assay may be applied to evaluate the suitability of a particular mode of chemotherapy to a particular cancer patient.  相似文献   

15.
Gliotoxin causes oxidative damage to plasmid and cellular DNA   总被引:5,自引:0,他引:5  
The cytotoxic effects of gliotoxin (Müllbacher, A., and Eichner, R. D. (1984) Proc. Natl. Acad. Sci. U.S.A. 81, 3835-3837), a fungal secondary metabolite, and related epipolythiodioxopiperazines have been investigated using plasmid and eukaryotic DNA. Incubation of the dithiol derivative of these compounds with DNA and Fe3+ is sufficient to cause single- and double-stranded breaks as determined by neutral agarose gel electrophoresis. The disulfide form is inactive except in the presence of a suitable reducing agent, such as reduced glutathione, dithiothreitol, or reduced pyridine coenzymes. The autooxidation of these dithiols produces reducing equivalents as evidenced by (i) the production of H2O2 and (ii) the generation of thiobarbituric acid reactive products when incubated with deoxyribose. The latter process is inhibited by ethanol and desferrioxamine. The DNA damage is abrogated by metal chelators and catalase. We conclude that the antiproliferative action of gliotoxin may be caused by DNA damage effected by reactive oxygen species or other radicals generated through redox cycling.  相似文献   

16.
Approximately 12% of Americans do not consume the recommended level of zinc and could be at risk for marginal zinc deficiency. Zinc functions in antioxidant defense and DNA repair and could be important for prostate health. We hypothesized that marginal zinc deficiency sensitizes the prostate to oxidative stress and DNA damage. Rats were fed a zinc-adequate (ZA; 30 mg Zn/kg) or marginally zinc-deficient (MZD; 5–6 mg Zn/kg) diet for 6 weeks. MZD increased p53 and PARP expression but no change in 8-hydroxy-2′-deoxyguanosine levels was detected. To examine the susceptibility to exogenous oxidative stress, rats fed a ZA or MZD diet were assigned to exercising (EXE) or sedentary (SED) groups for 9 weeks. MZD or EXE alone did not affect oxidative DNA damage in the prostate; however, combined MZD + EXE increased DNA damage in the dorsolateral lobe. PARP and p53 expression was not further induced with MZD + EXE, suggesting that MZD interferes with DNA repair responses to stress. Finally, the addition of phytase to the MZD diet successfully restored zinc levels in the prostate and decreased DNA damage back to ZA levels. Overall, this study suggests that marginal zinc deficiency sensitizes the prostate to oxidative stress and demonstrates the importance of maintaining optimal zinc nutrition in physically active populations.  相似文献   

17.
Although the cause of amyotrophic lateral sclerosis (ALS) is unknown, substantial evidence indicates that oxidative toxicity is associated with neuronal death in this disease. We examined levels of a well-established marker of oxidative damage to DNA, 8-hydroxy-2'-deoxyguanosine (8OH2'dG) in plasma, urine, and cerebrospinal fluid (CSF) at a single time point from subjects with ALS, other neurological diseases, or no known disorders. We also measured the rate of change of 8OH2'dG levels in plasma and urine from ALS and in urine from control subjects over 9 months and examined the relationship to disease severity. In each fluid, 8OH2'dG levels were significantly elevated in the ALS group as compared to control subjects. In all subjects, the plasma and CSF 8OH2'dG levels increased with age, providing further evidence for a role of oxidative damage in normal aging. Plasma and urine 8OH2'dG levels increased significantly with time in the ALS group only. The rate of increase in urine 8OH2'dG levels with time was significantly correlated with disease severity. These findings are consistent with the hypothesis that oxidative pathology accompanies the neurodegenerative process in ALS and suggest that 8OH2'dG may provide a useful tool for monitoring therapeutic interventions in this disease.  相似文献   

18.
19.
Johnson MK  Loo G 《Mutation research》2000,459(3):211-218
Phenolic phytochemicals are thought to promote optimal health, partly via their antioxidant effects in protecting cellular components against free radicals. The aims of this study were to assess the free radical-scavenging activities of several common phenolic phytochemicals, and then, the effects of the most potent phenolic phytochemicals on oxidative damage to DNA in cultured cells. Epigallocatechin gallate (EGCG) scavenged the stable free radical, alpha,alpha-diphenyl-beta-picrylhydrazyl (DPPH), most effectively, while quercetin was about half as effective. Genistein, daidzein, hesperetin, and naringenin did not scavenge DPPH appreciably. Jurkat T-lymphocytes that were pre-incubated with relatively low concentrations of either EGCG or quercetin were less susceptible to DNA damage induced by either a reactive oxygen species or a reactive nitrogen species, as evaluated by the comet assay. More specifically, control cells had a comet score of only 17+/-5, indicating minimal DNA damage. Cells challenged with 25 microM hydrogen peroxide (H(2)O(2)) or 100 microM 3-morpholinosydnonimine (SIN-1, a peroxynitrite generator) had comet scores of 188+/-6 and 125+/-12, respectively, indicating extensive DNA damage. The H(2)O(2)-induced DNA damage was inhibited with 10 microM of either EGCG (comet score: 113+/-23) or quercetin (comet score: 82+/-7). Similarly, the SIN-1-mediated DNA damage was inhibited with 10 microM of either EGCG (comet score: 79+/-13) or quercetin (comet score: 72+/-17). In contrast, noticeable DNA damage was induced in Jurkat T-lymphocytes by incubating with 10-fold higher concentrations (i.e., 100 microM) of either EGCG (comet score: 56+/-17) or quercetin (comet score: 64+/-13) by themselves. Collectively, these data suggest that low concentrations of EGCG and quercetin scavenged free radicals, thereby inhibiting oxidative damage to cellular DNA. But, high concentrations of either EGCG or quercetin alone induced cellular DNA damage.  相似文献   

20.
Analysis of DNA oxidative damage related to cell proliferation   总被引:5,自引:0,他引:5  
In vivo and in vitro cell populations exhibit a different sensitivity and a heterogeneous response to many genotoxic agents. Several studies have been carried out to evaluate the possibility that the different sensitivity of the cells is related to their proliferative status. In this study, the sensitivity of proliferating (P) and quiescent (Q) C3H10T1/2 cells to oxidative damage and their repair capability has been investigated by single cell gel electrophoresis (SCGE) and micronucleus test. Furthermore the possibility to simultaneously detect DNA damage and cell cycle position has been evaluated. Our results showed a dose-related increase of DNA damage in exponential and plateau phase cells treated with hydrogen peroxide (doses ranging between 2.5 and 100 microM). DNA damage was almost completely repaired within 2 h after treatment in both culture conditions. The percentage of cells in the various phases of the cell cycle has been determined by comet assay and by flow cytometry, and a good agreement between the results of the two techniques was found. Untreated exponentially growing cells in G1 phase showed a lower tail moment than S and G2/M cells. The same cell cycle dependence was evidenced in cells treated with low doses of H(2)O(2), while, at the higher doses, all cells showed a similar level of damage. These results confirm the sensitivity of the Comet Assay in assessing DNA damage, and support its usefulness in evaluating cell cycle-related differential sensitivity to genotoxic agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号