共查询到20条相似文献,搜索用时 0 毫秒
1.
Botulinum neurotoxins (BoNTs) are zinc proteases that cleave SNARE proteins to elicit flaccid paralysis by inhibiting neurotransmitter-carrying vesicle fusion to the plasma membrane of peripheral neurons. Unlike other zinc proteases, BoNTs recognize extended regions of SNAP25 for cleavage; however, the molecular basis for this extended substrate recognition is unclear. Here, we define a multistep mechanism for recognition and cleavage of SNAP25 by BoNT/A. SNAP25 initially binds along the belt region of BoNT/A, which aligns the P5 residue to the S5 pocket at the periphery of the active site. Although the exact order of each step of recognition of SNAP25 by BoNT/A at the active site is not clear, the initial binding could subsequently orient the P4'-residue of SNAP25 to form a salt bridge with the S4'-residue, which opens the active site allowing the P1'-residue access to the S1'-pocket. Subsequent hydrophobic interactions between the P3 residue of SNAP25 and the S3 pocket optimize alignment of the scissile bond for cleavage. This explains how the BoNTs recognize and cleave specific coiled SNARE substrates and provides insight into the development of inhibitors to prevent botulism. 相似文献
2.
The seven serologically distinct Clostridium botulinum neurotoxins (BoNTs A-G) are zinc endopeptidases which block the neurotransmitter release by cleaving one of the three proteins of the soluble N-ethylmaleimide-sensitive-factor attachment protein receptor complex (SNARE complex) essential for the fusion of vesicles containing neurotransmitters with target membranes. These metallopeptidases exhibit unique specificity for the substrates and peptide bonds they cleave. Development of countermeasures and therapeutics for BoNTs is a priority because of their extreme toxicity and potential misuse as biowarfare agents. Though they share sequence homology and structural similarity, the structural information on each one of them is required to understand the mechanism of action of all of them because of their specificity. Unraveling the mechanism will help in the ultimate goal of developing inhibitors as antibotulinum drugs for the toxins. Here, we report the high-resolution structure of active BoNT/F catalytic domain in two crystal forms. The structure was exploited for modeling the substrate binding and identifying the S1' subsite and the putative exosites which are different from BoNT/A or BoNT/B. The orientation of docking of the substrate at the active site is consistent with the experimental BoNT/A-LC:SNAP-25 peptide model and our proposed model for BoNT/E-LC:SNAP-25. 相似文献
3.
BoNTs (botulinum neurotoxins) are both deadly neurotoxins and natural toxins that are widely used in protein therapies to treat numerous neurological disorders of dystonia and spinal spasticity. Understanding the mechanism of action and substrate specificity of BoNTs is a prerequisite to develop antitoxin and novel BoNT-derived protein therapy. To date, there is a lack of detailed information with regard to how BoNTs recognize and hydrolyse the substrate VAMP-2 (vesicle-associated membrane protein 2), even though it is known to be cleaved by four of the seven BoNT serotypes, B, D, F, G and TeNT (tetanus neurotoxin). In the present study we dissected the molecular mechanisms of VAMP-2 recognition by BoNT serotype F for the first time. The initial substrate recognition was mediated through sequential binding of VAMP-2 to the B1, B2 and B3 pockets in LC/F (light chain of BoNT serotype F), which directed VAMP-2 to the active site of LC/F and stabilized the active site substrate recognition, where the P2, P1' and P2' sites of VAMP-2 were specifically recognized by the S2, S1' and S2' pockets of LC/F to promote substrate hydrolysis. The understanding of the molecular mechanisms of LC/F substrate recognition provides insights into the development of antitoxins and engineering novel BoNTs to optimize current therapy and extend therapeutic interventions. 相似文献
4.
Structural and biochemical studies of botulinum neurotoxin serotype C1 light chain protease: implications for dual substrate specificity 总被引:1,自引:0,他引:1
Clostridial neurotoxins are the causative agents of the neuroparalytic disease botulism and tetanus. They block neurotransmitter release through specific proteolysis of one of the three soluble N-ethylmaleimide-sensitive-factor attachment protein receptors (SNAREs) SNAP-25, syntaxin, and synaptobrevin, which constitute part of the synaptic vesicle fusion machinery. The catalytic component of the clostridial neurotoxins is their light chain (LC), a Zn2+ endopeptidase. There are seven structurally and functionally related botulinum neurotoxins (BoNTs), termed serotype A to G, and tetanus neurotoxin (TeNT). Each of them exhibits unique specificity for their target SNAREs and peptide bond(s) they cleave. The mechanisms of action for substrate recognition and target cleavage are largely unknown. Here, we report structural and biochemical studies of BoNT/C1-LC, which is unique among BoNTs in that it exhibits dual specificity toward both syntaxin and SNAP-25. A distinct pocket (S1') near the active site likely achieves the correct register for the cleavage site by only allowing Ala as the P1' residue for both SNAP-25 and syntaxin. Mutations of this SNAP-25 residue dramatically reduce enzymatic activity. The remote alpha-exosite that was previously identified in the complex of BoNT/A-LC and SNAP-25 is structurally conserved in BoNT/C1. However, mutagenesis experiments show that the alpha-exosite of BoNT/C1 plays a less stringent role in substrate discrimination in comparison to that of BoNT/A, which could account for its dual substrate specificity. 相似文献
5.
The Clostridium botulinum neurotoxins (BoNTs) cleave SNARE proteins, which inhibit binding and thus fusion of neurotransmitter vesicles to the plasma membrane of peripheral neurons. BoNTs comprise an N-terminal light chain (LC) and C-terminal heavy chain, which are linked by a disulfide bond. There are seven serotypes (A-G) of BoNTs based upon immunological neutralization. Although the binding and entry of BoNT/A into neurons has been subjected to considerable investigation, the intracellular events that allow BoNT/A to efficiently cleave SNAP-25 within neurons is less well understood. Earlier studies showed that intracellular LC/A bound to the plasma membrane of neurons. In this study, intracellular LC/A is shown to directly bind SNAP-25 on the plasma membrane. Solid phase binding showed that the N-terminal residues of LC/A bound residues 80-110 of SNAP-25, which was also observed in cultured neurons. Association of the N-terminal 8 amino acids of LC/A and residues 80-110 of SNAP-25 also enhanced substrate cleavage. These findings explain how LC/A associates with SNAP-25 on the plasma membrane and provide a basis for LC/A cleavage of SNAP-25 within the SNARE complex. 相似文献
6.
Burnett JC Schmidt JJ McGrath CF Nguyen TL Hermone AR Panchal RG Vennerstrom JL Kodukula K Zaharevitz DW Gussio R Bavari S 《Bioorganic & medicinal chemistry》2005,13(2):333-341
Botulinum neurotoxins (BoNTs) are the most potent of the known biological toxins, and consequently are listed as category A biowarfare agents. Currently, the only treatments against BoNTs include preventative antitoxins and long-term supportive care. Consequently, there is an urgent need for therapeutics to counter these enzymes--post exposure. In a previous study, we identified a number of small, nonpeptidic lead inhibitors of BoNT serotype A light chain (BoNT/A LC) metalloprotease activity, and we identified a common pharmacophore for these molecules. In this study, we have focused on how the dynamic movement of amino acid residues in and surrounding the substrate binding cleft of the BoNT/A LC might affect inhibitor binding modes. The X-ray crystal structures of two BoNT/A LCs (PDB refcodes=3BTA and 1E1H) were examined. Results from these analyses indicate that the core structural features of the examined BoNT/A LCs, including alpha-helices and beta-sheets, remained relatively unchanged during 1 ns dynamics trajectories. However, conformational flexibility was observed in surface loops bordering the substrate binding clefts in both examined structures. Our analyses indicate that these loops may possess the ability to decrease the solvent accessibility of the substrate binding cleft, while at the same time creating new residue contacts for the inhibitors. Loop movements and conformational/positional analyses of residues within the substrate binding cleft are discussed with respect to BoNT/A LC inhibitor binding and our common pharmacophore for inhibition. The results from these studies may aid in the future identification/development of more potent small molecule inhibitors that take advantage of new binding contacts in the BoNT/A LC. 相似文献
7.
The seven serotypes (A-G) of botulinum neurotoxins (BoNTs) function through their proteolytic cleavage of one of three proteins (SNAP-25, Syntaxin, and VAMP) that form the SNARE complex required for synaptic vesicle fusion. The different BoNTs have very specific protease recognition requirements, between 15 and 50 amino acids in length depending on the serotype. However, the structural details involved in substrate recognition remain largely unknown. Here is reported the 1.65 A resolution crystal structure of the catalytic domain of BoNT serotype D (BoNT/D-LC), providing insight into the protein-protein binding interaction and final proteolysis of VAMP-2. Structural analysis has identified a hydrophobic pocket potentially involved in substrate recognition of the P1' VAMP residue (Leu 60) and a second remote site for recognition of the V1 SNARE motif that is critical for activity. A structural comparison of BoNT/D-LC with BoNT/F-LC that also recognizes VAMP-2 one residue away from the BoNT/D-LC site provides additional molecular details about the unique serotype specific activities. In particular, BoNT/D prefers a hydrophobic interaction for the V1 motif of VAMP-2, while BoNT/F adopts a more hydrophilic strategy for recognition of the same V1 motif. 相似文献
8.
Ahmed SA Byrne MP Jensen M Hines HB Brueggemann E Smith LA 《Journal of Protein Chemistry》2001,20(3):221-231
Highly purified recombinant zinc-endopeptidase light chain of the botulinum neurotoxin serotype A underwent autocatalytic proteolytic processing and fragmentation. In the absence of added zinc, initially 10-28 residues were cleaved from the C-terminal end of the 448-residue protein followed by the appearance of an SDS-stable dimer and finally fragmentation near the middle of the molecule. In the presence of added zinc, the rate of fragmentation was accelerated but the specificity of the cleavable bond changed, suggesting a structural role for zinc in the light chain. The C-terminal proteolytic processing was reduced, and fragmentation near the middle of the molecule was prevented by adding the metal chelator TPEN to the light chain. Similarly, adding a competitive peptide inhibitor (CRATKML) of the light-chain catalytic activity also greatly reduced the proteolysis. With these results, for the first time, we provide clear evidence that the loss of C-terminal peptides and fragmentation of the light chain are enzymatic and autocatalytic. By isolating both the large and small peptides, we sequenced them by Edman degradation and ESIMS-MS, and mapped the sites of proteolysis. We also found that proteolysis occurred at F266-G267, F419-T420, F423-E424, R432-G433, and C430-V431 bonds in addition to the previously reported Y250-Y251 and K438-T439 bonds. 相似文献
9.
《Bioorganic & medicinal chemistry》2020,28(18):115659
The botulinum neurotoxin (BoNT) is the most lethal protein known to man causing the deadly disease botulinum. The neurotoxin, composed of a heavy (HC) and light (LC) chain, work in concert to cause muscle paralysis. A therapeutic strategy to treat individuals infected with the neurotoxin is inhibiting the catalytic activity of the BoNT LC. We report the synthesis, inhibition study and computational docking analysis of novel small molecule BoNT/A LC inhibitors. A structure activity relationship study resulted in the discovery of d-isoleucine functionalized with a hydroxamic acid on the C-terminal and a biphenyl with chlorine at C- 2 connected by a sulfonamide linker at the N-terminus. This compound has a measured IC50 of 0.587 µM for the BoNT/A LC. Computational docking analysis indicates the sulfonamide linker adopts a geometry that is advantageous for binding to the BoNT LC active site. In addition, Arg363 is predicted to be involved in key binding interactions with the scaffold in this study. 相似文献
10.
Botulinum neurotoxins (BoNTs) are zinc proteases that cleave SNARE proteins to elicit flaccid paralysis by inhibiting the fusion of neurotransmitter-carrying vesicles to the plasma membrane of peripheral neurons. There are seven serotypes of BoNT, termed A-G. The molecular basis for SNAP25 recognition and cleavage by BoNT serotype E is currently unclear. Here we define the multiple pocket recognition of SNAP25 by LC/E. The initial recognition of SNAP25 is mediated by the binding of the B region of SNAP25 to the substrate-binding (B) region of LC/E comprising Leu166, Arg167, Asp127, Ala128, Ser129, and Ala130. The mutations at these residues affected substrate binding and catalysis. Three additional residues participate in scissile bond cleavage of SNAP25 by LC/E. The P3 site residues, Ile178, of SNAP25 interacted with the S3 pocket in LC/E through hydrophobic interactions. The S3 pocket included Ile47, Ile164, and Ile182 and appeared to align the P1' and P2 residues of SNAP25 with the S1' and S2 pockets of LC/E. The S1' pocket of LC/E included three residues, Phe191, Thr159, and Thr208, which contribute hydrophobic and steric interactions with the SNAP25 P1' residue Ile181. The S2 pocket residue of LC/E, Lys224, binds the P2 residue of SNAP25, Asp179, through ionic interactions. Deletion mapping indicates that main chain interaction(s) of residues 182-186 of SNAP25 contribute to substrate recognition by LC/E. Understanding the mechanism for substrate specificity provides insight for the development of inhibitors against the botulinum neurotoxins. 相似文献
11.
Clostridial neurotoxins are zinc endopeptidases, and each contains one Zn(2+)/molecule. To investigate the structural/functional role of Zn(2+) in botulinum neurotoxin light chain (the enzymatic subunit of the neurotoxin), the effect of the removal of zinc on protein folding and enzyme kinetics was investigated. The active site Zn(2+), which was easily displaced from the active site by ethylenediaminetetraacetate, reversibly binds to the BoNT/A light chain (LC) in a stoichiometric manner. Enzymatic activity was completely abolished in the zinc-depleted light chain (apo-LC). However, Zn(2+) replenishment partially restored the activity in the re-Zn(2+)-LC (k(cat) = 72 min(-)(1)) compared to the holo-LC (k(cat) = 140 min(-)(1)). Comparable K(m) values in the holo- and re-Zn(2+)-LC were observed (41 and 55 microM, respectively), indicating a similar substrate binding ability. We investigated the structural basis of a 3-fold difference in the catalytic efficiency of the native holo-LC and re-Zn(2+)-LC by analyzing secondary and tertiary structural parameters. Removal of the zinc causes irreversible tertiary structural change while the secondary structure remains unchanged. Zinc binding leads to enhanced thermal stability of the LC, which is not identical in the native holo-LC and re-Zn(2+)-LC. 相似文献
12.
M V Stepanova N S Bystrov N V Severtsova V G Korobko T I Bulatova T M Zubova V I Evstigneev E V Smirnov Iu V Vertiev 《Molekuliarnaia genetika, mikrobiologiia i virusologiia》1990,(6):11-14
To obtain the information on the genetic control of toxin production in the botulism causative agents, the oligonucleotides were synthesized as the molecular probes by translation of the amino acid sequence of the botulinic type A neurotoxin. The optimal conditions for hybridization of botulinic DNA with the synthetic DNA probes were determined and the probes specificity was demonstrated. The DNA fragments homologous to the probes used were shown to belong to bacterial genome, but not to bacteriophage one. 相似文献
13.
Light chain of botulinum neurotoxin serotype A: structural resolution of a catalytic intermediate 总被引:5,自引:0,他引:5
Fu Z Chen S Baldwin MR Boldt GE Crawford A Janda KD Barbieri JT Kim JJ 《Biochemistry》2006,45(29):8903-8911
Botulinum neurotoxin serotype A (BoNT/A, 1296 residues) is a zinc metalloprotease that cleaves SNAP25 to inhibit the fusion of neurotransmitter-carrying vesicles to the plasma membrane of peripheral neurons. BoNT/A is a disulfide-linked di-chain protein composed of an N-terminal, thermolysin-like metalloprotease light chain domain (LC/A, 448 residues) and a C-terminal heavy chain domain (848 residues) that can be divided into two subdomains, a translocation subdomain and a receptor binding subdomain. LC/A cleaves SNAP25 between residues Gln197-Arg198 and, unlike thermolysin, recognizes an extended region of SNAP25 for cleavage. The structure of a recombinant LC/A (1-425) treated with EDTA (No-Zn LC/A) was determined. The overall structure of No-Zn LC/A is similar to that reported for the holotoxin, except that it lacks the Zn ion, indicating that the role of Zn is catalytic not structural. In addition, structures of a noncatalytic mutant LC/A (Arg362Ala/Tyr365Phe) complexed with and without an inhibitor, ArgHX, were determined. The overall structure and the active site conformation for the mutant are the same as wild type. When the inhibitor binds to the active site, the carbonyl and N-hydroxyl groups form a bidentate ligand to the Zn ion and the arginine moiety binds to Asp369, suggesting that the inhibitor-bound structure mimics a catalytic intermediate with the Arg moiety binding at the P1' site. Consistent with this model, mutation of Asp369 to Ala decreases the catalytic activity of LC/A by approximately 600-fold, and the residual activity is not inhibited by ArgHX. These results provide new information on the reaction mechanism and insight into the development of strategies for small molecule inhibitors of BoNTs. 相似文献
14.
Translocation of botulinum neurotoxin light chain protease through the heavy chain channel 总被引:17,自引:0,他引:17
Clostridial botulinum neurotoxins (BoNTs) abort the process of neurotransmitter release at presynaptic motor nerve terminals, causing muscle paralysis. An enigmatic step in the intoxication process is the mechanism by which the neurotoxin heavy chain (HC) forms the conduit for the translocation of the light chain (LC) protease across the endosomal membrane into the cytosol, its site of action. Here we investigate the mechanism of LC translocation by using the combined detection of channel currents and substrate proteolysis, the two hallmark activities of BoNT. Our data are consistent with the translocation of the LC through the HC channel and show that the LC protease activity is retrieved in the trans compartment after translocation. We propose that the BoNT HC-LC complex embedded in the membrane is a transmembrane chaperone, a dynamic structural device that prevents aggregation and achieves translocation of the LC. In this regard, the complex is similar to the protein conducting/translocating channels of the endoplasmic reticulum, mitochondria and chloroplasts. 相似文献
15.
Site-directed mutagenesis identifies active-site residues of the light chain of botulinum neurotoxin type A. 总被引:2,自引:0,他引:2
M Rigoni P Caccin E A Johnson C Montecucco O Rossetto 《Biochemical and biophysical research communications》2001,288(5):1231-1237
Botulinum neurotoxins (BoNTs) are metalloproteases which block neuroexocytosis via specific cleavage and inactivation of SNARE proteins. Such proteolysis accounts for the extreme toxicity of these neurotoxins and of their prolonged effect. The recently determined structures of BoNT/A and/B allows one to design active-site mutants to probe the role of specific residues in the proteolysis of SNARE proteins. Here we present the results of mutations of the second glutamyl residue involved in zinc coordination and of a tyrosine and a phenylalanine residues that occupy critical positions within the active site of BoNT/A. The spectroscopic properties of the purified mutants are closely similar to those of the wild-type molecule indicating the acquisition of a correct tertiary structure. Mutation of the Glu-262* nearly abolishes SNAP-25 hydrolysis as expected for a residue involved in zinc coordination. The Phe-266 and Tyr-366 mutants have reduced proteolytic activity indicating a direct participation in the proteolytic reaction, and their possible role in catalysis is discussed. 相似文献
16.
Clostridial botulinum neurotoxins (BoNTs) cause neuroparalysis by blocking neurotransmitter release at the neuromuscular junctions. While the toxin's heavy chain (HC) is involved in binding and internalization, the light chain (LC) acts as a unique Zn(2+)-endopeptidase against a target protein in the exocytotic docking/fusion machinery. During the translocation of the LC to the cytosol, it is exposed to the endosomal low pH. Low pH showed a dramatic change in the BoNT/A LC polypeptide folding as indicated by differential heat denaturation. Furthermore, binding of 1-anilinonaphthalenesulfonate (ANS) revealed exposure of hydrophobic domains of BoNT/A LC at low pH. Low-pH-induced structural (and by implication the endopeptidase activity) changes were completely reversible. Exposure of BoNT/A LC to low pH (4.7) did not, however, evoke the loss of Zn(2+) bound to its active site. Implications of these observations to the delivery of active BoNT/A LC to the nerve cell are discussed. We further analyzed the nature of low-pH-induced change in the polypeptide folding of BoNT/A LC by Trp fluorescence measurements. The Trp fluorescence peak was observed at 322 nm, and the two fluorescence lifetime components estimated at 2.1 ns (88%) and 0.6 ns (12%) did not change much at low pH. These observations suggested that the two Trp residues are buried and constrained in a hydrophobic environment, and it is likely that the core of the BoNT/A LC protein matrix does not participate in the low-pH-induced structural alteration. This conclusion was further supported by the near-UV circular dichroism spectra under two pH conditions. 相似文献
17.
Botulinum neurotoxin light chain (BoNT LC, 50 kDa) is responsible for the zinc endopeptidase activity specific for proteins of neuroexocytosis apparatus. We describe the expression of recombinant type A BoNT LC in Escherichia coli as well as the purification and characterization of the recombinant protein. A high level of expression of BoNT/A LC was obtained by an extended postinduction time of 15 h at 30 degrees C. Recombinant BoNT/A LC was isolated from an Ni(2+) column. Due to its high pI ( approximately 8.7), purification was achieved by a single step of passing the protein through anion-exchange chromatography at pH 8.0 without the need of elution. The purified recombinant BoNT/A LC retained proteolytic activity and had a secondary structure similar to that of native LC determined by CD measurement. 相似文献
18.
Stancombe PR Masuyer G Birch-Machin I Beard M Foster KA Chaddock JA Acharya KR 《The FEBS journal》2012,279(3):515-523
Targeted secretion inhibitors (TSI) are a new class of biopharmaceuticals designed from a botulinum neurotoxin protein scaffold. The backbone consists of the 50-kDa endopeptidase light chain and translocation domain (N-terminal portion of the heavy chain), lacks neuronal toxicity, but retains the ability to target cytoplasmic soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. TSI are produced as single-chain proteins and then cleaved post-translationally to generate functional heterodimers. Precise proteolytic cleavage is essential to activate the protein to a dichain form. TSI are themselves highly specific proteases. We have exploited this activity to create self-activating enzymes by replacing the native proteolytic site with a substrate SNARE peptide for the TSI protease. We have also created cross-activating backbones. By replacing the proteolytic activation site in one backbone with the substrate SNARE peptide for another serotype, controlled activation is achieved. SNARE peptides encompassing the whole of the coiled-coil region enabled complete activation and assembly of the dichain backbone. These engineered TSI backbones are capable of translocating their enzymatic domains to target intracellular SNARE proteins. They are also investigative tools with which to further the understanding of endopeptidase activity of light chain in SNARE interactions. 相似文献
19.
Jacobson MJ Lin G Raphael B Andreadis J Johnson EA 《Applied and environmental microbiology》2008,74(9):2778-2786
Neurotoxin cluster gene sequences and arrangements were elucidated for strains of Clostridium botulinum encoding botulinum neurotoxin (BoNT) subtypes A3, A4, and a unique A1-producing strain (HA(-) Orfx(+) A1). These sequences were compared to the known neurotoxin cluster sequences of C. botulinum strains that produce BoNT/A1 and BoNT/A2 and possess either a hemagglutinin (HA) or an Orfx cluster, respectively. The A3 and HA(-) Orfx(+) A1 strains demonstrated a neurotoxin cluster arrangement similar to that found in A2. The A4 strain analyzed possessed two sets of neurotoxin clusters that were similar to what has been found in the A(B) strains: an HA cluster associated with the BoNT/B gene and an Orfx cluster associated with the BoNT/A4 gene. The nucleotide and amino acid sequences of the neurotoxin cluster-specific genes were determined for each neurotoxin cluster and compared among strains. Additionally, the ntnh gene of each strain was compared on both the nucleotide and amino acid levels. The degree of similarity of the sequences of the ntnh genes and corresponding amino acid sequences correlated with the neurotoxin cluster type to which the ntnh gene was assigned. 相似文献
20.
The zinc-endopeptidase light chain of botulinum A neurotoxin undergoes autocatalytic fragmentation that is accelerated by the presence of the metal cofactor, zinc [Ahmed, S. A. et al. (2001) J. Protein Chem. 20, 221-231]. We show in this paper that >95% fragmented light chain obtained in the absence of added zinc retained 100% of its original catalytic activity against a SNAP-25-derived synthetic peptide substrate. In the presence of zinc chloride, when >95% of the light chain had undergone autocatalytic fragmentation, the preparation retained 35% of its original catalytic activity. On the other hand, in the presence of glycerol, the light chain did not display autocatalysis and retained 100% of the original activity. These results suggest that the activity loss by incubation with zinc was not a direct consequence of autocatalysis and that the environment of the active site was not affected significantly by the fragmentation. The optimum pH 4.2-4.6 for autocatalysis was different than that (pH 7.3) for intrinsic catalytic activity. Inhibition of autocatalysis at low pH by a competitive inhibitor of catalytic activity rules out the presence of a contaminating protease but suggests a rate-limiting step of low pH-induced conformational change suitable for autocatalysis. Our results of LC concentration dependence of the fragmentation reaction indicate that the autocatalysis occurs by both intramolecular and intermolecular mechanisms. 相似文献