首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The mechanism of binding of blood coagulation cofactor factor Va to acidic-lipid-containing membranes has been addressed. Binding isotherms were generated at room temperature using the change in fluorescence anisotropy of pyrene-labeled bovine factor Va to detect binding to sonicated membrane vesicles containing either bovine brain phosphatidylserine (PS) or 1,2-dioleoyl-3-sn-phosphatidylglycerol (DOPG) in combination with 1-palmitoyl-2-oleoyl-3-sn-phosphatidylcholine (POPC). The composition of the membranes was varied from 0 to 40 mol% for PS/POPC and from 0 to 65 mol % for DOPG/POPC membranes. Fitting the data to a classical Langmuir adsorption model yielded estimates of the dissociation constant (Kd) and the stoichiometry of binding. The values of Kd defined in this way displayed a maximum at low acidic lipid content but were nearly constant at intermediate to high fractions of acidic lipid. Fitting the binding isotherms to a two-process binding model (nonspecific adsorption in addition to binding of acidic lipids to sites on the protein) suggested a significant acidic-lipid-independent binding affinity in addition to occupancy of three protein sites that bind PS in preference to DOPG. Both analyses indicated that interaction of factor Va with an acidic-lipid-containing membrane is much more complex than those of factor Xa or prothrombin. Furthermore, a change in the conformation of bound pyrene-labeled factor Va with surface concentration of acidic lipid was implied by variation of both the saturating fluorescence anisotropy and the binding parameters with the acidic lipid content of the membrane. Finally, the results cannot support the contention that binding occurs through nonspecific adsorption to a patch or domain of acidic lipids in the membrane. Factor Va is suggested to associate with membranes by a complex process that includes both acidic-lipid-specific and acidic-lipid-independent sites and a protein structure change induced by occupancy of acidic-lipid-specific sites on the factor Va molecule.  相似文献   

2.
There are clusters of basic amino acids on many cytoplasmic proteins that bind transiently to membranes (e.g., protein kinase C) as well as on the cytoplasmic domain of many intrinsic membrane proteins (e.g., glycophorin). To explore the possibility that these basic residues bind electrostatically to monovalent acidic lipids, we studied the binding of the peptides Lysn and Argn (n = 1-5) to bilayer membranes containing phosphatidylserine (PS) or phosphatidylglycerol (PG). We made electrophoretic mobility measurements using multilamellar vesicles, fluorescence and equilibrium binding measurements using large unilamellar vesicles, and surface potential measurements using monolayers. None of the peptides bound to vesicles formed from the zwitterionic lipid phosphatidylcholine (PC) but all bound to vesicles formed from PC/PS or PC/PG mixtures. None of the peptides exhibited specificity between PS and PG. Each lysine residue that was added to Lys2 decreased by one order of magnitude the concentration of peptide required to reverse the charge on the vesicle; equivalently it increased by one order of magnitude the binding affinity of the peptides for the PS vesicles. The simplest explanation is that each added lysine binds independently to a separate PS with a microscopic association constant of 10 M-1 or a free energy of approximately 1.4 kcal/mol. Similar, but not identical, results were obtained with the Argn peptides. A simple theoretical model combines the Gouy-Chapman theory (which accounts for the nonspecific electrostatic accumulation of the peptides in the aqueous diffuse double layer adjacent to the membrane) with mass action equations (which account for the binding of the peptides to greater than 1 PS). This model can account qualitatively for the dependence of binding on both the number of basic residues in the peptides and the mole fraction of PS in the membrane.  相似文献   

3.
We have investigated the binding of a new dansylcadaverine derivative of substance P (DNC-SP) with negatively charged small unilamellar vesicles composed of a mixture of phosphatidylcholine (PC) and either phosphatidylglycerol (PG) or phosphatidylserine (PS) using fluorescence spectroscopic techniques. The changes in fluorescence properties were used to obtain association isotherms at variable membrane negative charges and at different ionic strengths. The experimental association isotherms were analyzed using two binding approaches: (i) the Langmuir adsorption isotherm and the partition equilibrium model, that neglect the activity coefficients; and (ii) the partition equilibrium model combined with the Gouy-Chapman formalism that considers electrostatic effects. A consistent quantitative analysis of each DNC-SP binding curve at different lipid composition was achieved by means of the Gouy-Chapman approach using a peptide effective interfacial charge (v) value of (0.95 +/- 0.02), which is lower than the physical charge of the peptide. For PC/PG membranes, the partition equilibrium constant were 7.8 x 10(3) M(-1) (9/1, mol/mol) and 6.9 x 10(3) M(-1) (7/3, mol/mol), whereas for PC/PS membranes an average value of 6.8 x 10(3) M(-1) was estimated. These partition equilibrium constants were similar to those obtained for the interaction of DNC-SP with neutral PC membranes (4.9 x 10(3) M(-1)), as theoretically expected. We demonstrate that the v parameter is a determinant factor to obtain a unique value of the binding constant independently of the surface charge density of the vesicles. Also, the potential of fluorescent dansylated SP analogue in studies involving interactions with cell membranes is discussed.  相似文献   

4.
The interaction of bovine prothrombin with phospholipids was measured, using as the lipid source monolayers spread at the air-buffer interface. Fluorescence spectroscopy was implemented to determine the equilibrium concentration of free prothrombin in the aqueous subphase of the protein-monolayer suspensions, in a continuous assay system. The increase in surface pressure (pi) from the protein-monolayer adsorption was also measured and, with values of the adsorbed protein concentration (c[s]), was used to calculate dc(s)/d(pi). At a particular phosphatidylserine (PS) content of liquid-expanded (LE) phosphatidylcholine (PC)/PS monolayers, dc(s)/d(pi) was independent of the initial surface pressure (pi[i]), when this latter value exceeded 30 mN/m. However, dc(s)/d(pi) varied significantly with the relative PS content of the monolayer. Values of the equilibrium dissociation constants calculated from the concentration dependence of delta(pi) indicated that the affinity of prothrombin for LE monolayers was higher at higher PS contents and lower packing densities. The affinity of prothrombin for liquid-condensed (LC) PC/PS monolayers was found to be much weaker relative to LE monolayers of similar phospholipid composition. This approach, employing spread monolayers to study prothrombin-phospholipid binding, coupled with a simple and accurate method to determine the free protein concentration in protein-monolayer suspensions, offers significant advantages for the investigation of protein-membrane interaction. The equilibrium characteristics that describe the interaction of prothrombin with the different phospholipid monolayers under various conditions also provide support for previous results which indicated that hydrophobic interactions are involved in the adsorption of vitamin K-dependent coagulation and anticoagulation proteins to model membrane systems.  相似文献   

5.
Antiphospholipid antibodies interact with phospholipid membranes via lipid binding plasma proteins, mostly, prothrombin and beta(2)-glycoprotein I. Using ellipsometry, we characterized prothrombin-mediated binding of lupus anticoagulant (LA) positive IgG, isolated from patients with antiphospholipid syndrome, to phosphatidylserine (PS)-containing membranes. LA IgG did not bind to membranes in the absence of prothrombin, but addition of prothrombin resulted in high-affinity binding of prothrombin-LA IgG complexes; half-maximal binding was attained at IgG and prothrombin concentrations of 10 microg/mL and 4 nM, respectively. Adsorption to membranes containing 10-40 mol % PS revealed that membrane-bound rather than solution-phase prothrombin determines the adsorption kinetics. Depletion of prothrombin and LA IgG from the solution results in rapid desorption which is strongly inhibited by addition of prothrombin but not of LA IgG. Prothrombin-mediated adsorption of monovalent Fab1 fragments prepared from patient LA IgG was negligible, indicating that monovalent interaction between prothrombin and LA IgG is weak. The kinetics of adsorption and desorption indicate that divalent binding of LA IgG to prothrombin at the lipid membrane occurs.  相似文献   

6.
It has been hypothesized that nonspecific reversible binding of cytoskeletal proteins to lipids in cells may guide their binding to integral membrane anchor proteins. In a model system, we measured desorption rates k(off) (off-rates) of the erythrocyte cytoskeletal proteins spectrin and protein 4.1 labeled with carboxyfluorescein (CF), at two different compositions of planar phospholipid membranes (supported on glass), using the total internal reflection/fluorescence recovery after photobleaching (TIR/FRAP) technique. The lipid membranes consisted of either pure phosphatidylcholine (PC) or a 3:1 mixture of PC with phosphatidylserine (PS). In general, the off-rates were not single exponentials and were fit to a combination of fast, slow, and irreversible fractions, reported both separately and as a weighted average. By a variation of TIR/FRAP, we also measured equilibrium affinities (the ratio of surface-bound to bulk protein concentration) and thereby calculated on-rates, k(on). The average off-rate of CF-4.1 from PC/PS (approximately 0.008/s) is much slower than that from pure PC (approximately 1.7/s). Despite the consequent increase in equilibrium affinity at PC/PS, the on-rate at PC/PS is also substantially decreased (by a factor of 40) relative to that at pure PC. The simultaneous presence of (unlabeled) spectrin tends to substantially decrease the on-rate (and the affinity) of CF-4.1 at both membrane types. Similar experiments for CF-spectrin alone showed much less sensitivity to membrane type and generally faster off-rates than those exhibited by CF-4.1. However, when mixed with (unlabeled) 4.1, both the on-rate and off-rate of CF-spectrin decreased drastically at PC/PS (but not PC), leading to a somewhat increased affinity. Clearly, changes in affinity often involve countervailing changes in both on-rates and off-rates. In many of these studies, the effect of varying ionic strength and bulk concentrations was examined; it appears that the binding is an electrostatic attraction and is far from saturation at the concentrations employed. These results and the techniques implemented carry general implications for understanding the functional role of nonspecific protein binding to cellular lipid membranes.  相似文献   

7.
Binding of the tricyclic antidepressant imipramine (IMI) to neutral and negatively charged lipid membranes was investigated using a radioligand binding assay combined with centrifugation or filtration. Lipid bilayers were composed of brain phosphatidylcholine (PC) and phosphatidylserine (PS). IMI binding isotherms were measured up to IMI concentration of 0.5 mmol/l. Due to electrostatic attraction, binding between the positively charged IMI and the negatively charged surfaces of PS membranes was augmented compared to binding to neutral PC membranes. After correction for electrostatic effects by means of the Gouy-Chapman theory, the binding isotherms were described both by surface partition coefficients and by binding parameters (association constants and binding capacities). It was confirmed that binding of IMI to model membranes is strongly affected by negatively charged phospholipids and that the binding is heterogeneous; in fact, weak surface adsorption and incorporation of the drug into the hydrophobic core of lipid bilayer can be seen and characterized. These results support the hypothesis suggesting that the lipid part of biological membranes plays a role in the mechanism of antidepressant action.  相似文献   

8.
Ross M  Gerke V  Steinem C 《Biochemistry》2003,42(10):3131-3141
By means of the quartz crystal microbalance (QCM) technique, we investigated the interaction of porcine heterotetrametric annexin A2t with solid supported lipid membranes. Dissociation and rate constants of annexin A2t binding to various lipid mixtures were determined as a function of Ca2+ concentrations in solution. In contrast to what has been observed for annexin A1, the binding affinity and kinetics of annexin A2t binding are not influenced by cholesterol. In the experimental setup chosen, the annexin A2t binding is strictly Ca2+-dependent and only affected by the amount of phosphatidylserine (PS) in the membrane and the Ca2+ concentration in solution. By Ca2+-titration experiments at constant annexin A2t concentration, we investigated the reversibility of annexin A2t adsorption and desorption. Surprisingly, Ca2+-titration curves display a significant hysteresis. Protein desorption curves starting from annexin A2t bound to the membrane at 1 mM CaCl2 exhibit high cooperativity with half-maximum Ca2+ concentrations in the submicromolar range. However, protein adsorption curves starting from an EGTA-containing solution with soluble annexin A2t always show two inflection points upon addition of Ca2+ ions. These two inflection points may be indicative of two protein populations differently bound to the solid-supported membrane. The ratio of these two annexin A2t populations depends on the amount of PS molecules and cholesterol in the membrane as well as on the Ca2+ concentration. We propose a model discussing the results obtained in terms of two binding sites differing in their affinity due to lipid rearrangement.  相似文献   

9.
Adsorption of ruthenium red to phospholipid membranes.   总被引:1,自引:0,他引:1       下载免费PDF全文
We have measured the distribution of the hexavalent ruthenium red cation (RuR) between water and phospholipid membranes, have shown the critical importance of membrane negative surface charge for RuR binding, and determined the association constant of RuR for different phospholipid bilayers. The studies were performed with liposomes made of mixtures of zwitterionic L-alpha-phosphatidylcholine (PC), and one of the negatively charged phospholipids: L-alpha-phosphatidylserine (PS), L-alpha-phosphatidylinositol (PI), or L-alpha-phosphatidylglycerol (PG). Lipid composition of PC:PX membranes was 1:0, 19:1, 9:1, and 4:1. Liposomes were processed using freeze-and-thaw treatment, and their size distribution was characterized by light scattering and electron microscopy. Experimental distribution isotherms of RuR obtained by ultracentrifugation and spectrophotometry can be reproduced with the Langmuir-Stern-Grahame model, assuming that RuR behaves in the diffuse double layer as an ion with effective valency < 6. In terms of this model, PC-PS, PC-PI, and PC-PG membranes were found to be electrostatically equivalent and the intrinsic association constants of RuR were obtained. RuR has highest affinity to PS-containing membranes; its association constant for PC-PI and PC-PG membranes is about 5 times smaller than that for PC-PS membranes. From the comparison of RuR binding to mixed negatively charged phospholipid membranes and RuR binding to sarcoplasmic reticulum (SR), we conclude that the low-affinity RuR binding sites may indeed be associated with the lipid bilayer of SR.  相似文献   

10.
Factor V(a) is a cofactor for the serine protease factor X(a) that activates prothrombin to thrombin in the presence of Ca(2+) and a platelet membrane surface. A platelet membrane lipid, phosphatidylserine (PS), regulates the proteolytic activity of factor X(a) as well as the structure of prothrombin. Here we ask whether PS also regulates the structure and cofactor activity of factor V(a), which is a heterodimer composed of one heavy chain (A1-A2 domains) and one light chain (A3-C1-C2 domains). We use fluorescence, circular dichroism, equilibrium dialysis, and activity measurements to demonstrate the following: (1) Factor V(a) has four sites for dicaproyl-sn-glycero-3-phospho-L-serine (C(6)PS, a soluble form of PS); the heavy and light chains each bind two C(6)PS molecules. (2) In the absence of Ca(2+), only two sites remain, one in the heavy chain and another in the light chain. (3) Binding to these sites causes conformational changes evidenced by changes in intrinsic fluorescence and in CD spectra and changes in cofactor activity. (4) At least some of the four lipid binding sites are nonspecific with respect to soluble lipid species, but the site(s) that regulate(s) cofactor activity is (are) specific for C(6)PS, phosphatidic acid, or phosphatidyl(homo)serine and produce a response comparable to that seen with a PS-containing membrane. (5) Like Ca(2+), C(6)PS also mediates the interaction between factor V(a) heavy (V(a)-HC) and light (V(a)-LC) chains. We conclude that PS regulates both the cofactor and the enzyme of the prothrombin-activating complex.  相似文献   

11.
This article addresses the role of platelet membrane phosphatidylserine (PS) in regulating the production of thrombin, the central regulatory molecule of blood coagulation. PS is normally located on the cytoplasmic face of the resting platelet membrane but appears on the plasma-oriented surface of discrete membrane vesicles that derive from activated platelets. Thrombin, the central molecule of coagulation, is produced from prothrombin by a complex ("prothrombinase") between factor Xa and its protein cofactor (factor V(a)) that forms on platelet-derived membranes. This complex enhances the rate of activation of prothrombin to thrombin by roughly 150,000 fold relative to factor X(a) in solution. It is widely accepted that the negatively charged surface of PS-containing platelet-derived membranes is at least partly responsible for this rate enhancement, although there is not universal agreement on mechanism by which this occurs. Our efforts have led to an alternative view, namely that PS molecules bind to discrete regulatory sites on both factors X(a) and V(a) and allosterically alter their proteolytic and cofactor activities. In this view, exposure of PS on the surface of activated platelet vesicles is a key regulatory event in blood coagulation, and PS serves as a second messenger in this regulatory process. This article reviews our knowledge of the prothrombinase reaction and summarizes recent evidence leading to this alternative viewpoint. This viewpoint suggests a key role for PS both in normal hemostasis and in thrombotic disease.  相似文献   

12.
Constituents of platelet membranes regulate the activity of the prothrombinase complex. We demonstrate that membranes containing phosphatidylcholine and phosphatidylethanolamine (PE) bind factor Va with high affinity (K(d) = ~10 nm) in the absence of phosphatidylserine (PS). These membranes support formation of a 60-70% functional prothrombinase complex at saturating factor Va concentrations. Although reduced interfacial packing does contribute to factor Va binding in the absence of PS, it does not correlate with the enhanced activity of the Xa-Va complex assembled on PE-containing membranes. Instead, specific protein-PE interactions appear to contribute to the effects of PE. In support of this, soluble C6PE binds to recombinant factor Va(2) (K(d) = ~6.5 μm) and to factor Xa (K(d) = ~91 μm). C6PE and C6PS binding sites of factor Xa are specific, distinct, and linked, because binding of one lipid enhances the binding and activity effects of the other. C6PE triggers assembly (K(d)(app) = ~40 nm) of a partially active prothrombinase complex between factor Xa and factor Va(2), compared with K(d)(app) for C6PS ~2 nm. These findings provide new insights into the possible synergistic roles of platelet PE and PS in regulating thrombin formation, particularly when exposed membrane PS may be limiting.  相似文献   

13.
Deposition of transthyretin (TTR) amyloid is a pathological hallmark of familial amyloidotic polyneuropathy (FAP). Recently we showed that TTR binds to membrane lipids via electrostatic interactions and that membrane binding is correlated with the cytotoxicity induced by amyloidogenic TTR. In the present study, we examined the role of lipid composition in membrane binding of TTR by a surface plasmon resonance (SPR) approach. TTR bound to lipid bilayers through both high- and low-affinity interactions. Increasing the mole fraction of cholesterol in the bilayer led to an increase in the amount of high-affinity binding of an amyloidogenic mutant (L55P) TTR. In addition, a greater amount of L55P TTR bound with high affinity to membranes made from anionic phospholipids, phosphatidylglycerol (PG) and phosphatidylserine (PS), than to membranes made from zwitterionic phospholipid phosphatidylcholine (PC). The anionic phospholipids (PS and PG) promoted the aggregation of L55P TTR by accelerating the nucleation phase of aggregation, whereas the zwitterionic phospholipid PC had little effect. These results suggest that cholesterol and anionic phospholipids may be important for TTR aggregation and TTR-induced cytotoxicity.  相似文献   

14.
Deposition of transthyretin (TTR) amyloid is a pathological hallmark of familial amyloidotic polyneuropathy (FAP). Recently we showed that TTR binds to membrane lipids via electrostatic interactions and that membrane binding is correlated with the cytotoxicity induced by amyloidogenic TTR. In the present study, we examined the role of lipid composition in membrane binding of TTR by a surface plasmon resonance (SPR) approach. TTR bound to lipid bilayers through both high- and low-affinity interactions. Increasing the mole fraction of cholesterol in the bilayer led to an increase in the amount of high-affinity binding of an amyloidogenic mutant (L55P) TTR. In addition, a greater amount of L55P TTR bound with high affinity to membranes made from anionic phospholipids, phosphatidylglycerol (PG) and phosphatidylserine (PS), than to membranes made from zwitterionic phospholipid phosphatidylcholine (PC). The anionic phospholipids (PS and PG) promoted the aggregation of L55P TTR by accelerating the nucleation phase of aggregation, whereas the zwitterionic phospholipid PC had little effect. These results suggest that cholesterol and anionic phospholipids may be important for TTR aggregation and TTR-induced cytotoxicity.  相似文献   

15.
Interactions between factor Va and membrane phosphatidylserine (PS) regulate activity of the prothrombinase complex. Two solvent-exposed hydrophobic residues located in the C2 domain, Trp(2063) and Trp(2064), have been proposed to contribute to factor Va membrane interactions by insertion into the hydrophobic membrane bilayer. However, the prothrombinase activity of rHFVa W(2063, 2064)A was found to be significantly impaired only at low concentrations of PS (5 mol %). In this study, we find that 10-fold higher concentrations of mutant factor Va are required for half-maximal prothrombinase activity on membranes containing 25% PS. The ability of the mutant factor Va to interact with factor Xa on a membrane was also impaired since 4-fold higher concentrations of factor Xa were required for half-maximal prothrombinase activity. The interaction of factor Va with 25% PS membranes was also characterized using fluorescence energy transfer and surface plasmon resonance. We found that the affinity of mutant factor Va for membranes containing 25% PS was reduced at least 400-fold with a K(d) > 10(-7) M. The binding of mutant factor Va to 25% PS membranes was markedly enhanced in the presence of factor Xa, indicating stabilization of the factor Va-factor Xa-membrane complex. Our findings indicate that Trp(2063) and Trp(2064) play a critical role in the high-affinity binding of factor Va to PS membranes. It remains to be determined whether occupancy of this PS binding site in factor Va is also required for high-affinity binding to factor Xa.  相似文献   

16.
The adsorption free energy of charged proteins on mixed membranes, containing varying amounts of (oppositely) charged lipids, is calculated based on a mean-field free energy expression that accounts explicitly for the ability of the lipids to demix locally, and for lateral interactions between the adsorbed proteins. Minimization of this free energy functional yields the familiar nonlinear Poisson-Boltzmann equation and the boundary condition at the membrane surface that allows for lipid charge rearrangement. These two self-consistent equations are solved simultaneously. The proteins are modeled as uniformly charged spheres and the (bare) membrane as an ideal two-dimensional binary mixture of charged and neutral lipids. Substantial variations in the lipid charge density profiles are found when highly charged proteins adsorb on weakly charged membranes; the lipids, at a certain demixing entropy penalty, adjust their concentration in the vicinity of the adsorbed protein to achieve optimal charge matching. Lateral repulsive interactions between the adsorbed proteins affect the lipid modulation profile and, at high densities, result in substantial lowering of the binding energy. Adsorption isotherms demonstrating the importance of lipid mobility and protein-protein interactions are calculated using an adsorption equation with a coverage-dependent binding constant. Typically, at bulk-surface equilibrium (i.e., when the membrane surface is "saturated" by adsorbed proteins), the membrane charges are "overcompensated" by the protein charges, because only about half of the protein charges (those on the hemispheres facing the membrane) are involved in charge neutralization. Finally, it is argued that the formation of lipid-protein domains may be enhanced by electrostatic adsorption of proteins, but its origin (e.g., elastic deformations associated with lipid demixing) is not purely electrostatic.  相似文献   

17.
We explore here the specificities of lipid regulatory sites on factor X(a) that affect the rate of factor X(a)-catalyzed prothrombin activation. We examined a series of 11 phosphatidylserine (PS) analogues in order to map the structural features of a lipid molecule that are needed to elicit both the structural response and the full increase in activity that can be obtained with the PS molecule. Our observations are interpreted in terms of a model in which factor X(a) is regulated by sequential occupancy of a pair of linked lipid binding sites, each of which have different minimum ligand structural requirements to induce structural changes. The first site is apparently of higher affinity and recognizes diacylglycerol (DAG) as a minimal binding structure. The second site is occupied with an affinity slightly less than the first site only when the first is occupied, but binds PS with very low affinity otherwise. It recognizes glycerophosphorylserine (GPS) as the minimal ligand. To test this interpretation, experiments were performed in which more than one lipid species was present. It was necessary to invoke the existence of factor X(a) species containing different lipids at each site, each having different structural and functional responses. For optimal activity enhancement, both binding sites must be occupied, the first by PS, although the second can be occupied with other lipids.  相似文献   

18.
S F Sui  T Urumow  E Sackmann 《Biochemistry》1988,27(19):7463-7469
In the first part, we study the interaction of the insulin receptor with model membranes of dimyristoylphosphatidylcholine (DMPC) by various techniques, including calorimetry, densitometry, static light scattering, and electron microscopy. By analyzing the pronounced depression of the lipid chain melting transition in terms of the Van Laar-Hildebrand theory of regular dilute solutions, an (exothermic) interaction energy of Wp = 2000 kJ.mol-1 is found for the receptor and of WL = 0.6 kJ.mol-1 for the lipid. This is interpreted in terms of an adsorption of the 2 hydrophilic head groups of the receptor to the membrane surface so that 1 protein interacts with about 2000 lipids. This number is verified by freeze-fracture electron microscopy. Binding of insulin induces a remarkable decoupling of the receptor head group from the membrane, pointing to a pronounced conformational change. In the second part, we introduce a simple fluorescence technique by which adsorption isotherms of water-soluble and fluorescent-labeled substrates, such as insulin, to membranes may be determined. It is based on the selective evanescent field excitation of ligands adsorbed to supported planar bilayers on argon-sputtered glass plates. These are deposited by the monolayer transfer technique or by vesicle condensation. The reconstituted receptor exhibits a weak (binding constant Kw = 3 X 10(9) L.M-1) and a strong (binding constant Ks greater than 10(10) L.M-1) binding site. Insulin exhibits a weak but remarkable nonspecific binding to bilayers of pure DMPC and DMPC containing 20% positively charged lipid and a strong binding to DMPC containing negatively charged lipids such as phosphatidylserine or ganglioside (GT1b).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
J W Orr  A C Newton 《Biochemistry》1992,31(19):4667-4673
The roles of specific and nonspecific interactions in the regulation of protein kinase C by lipid have been examined. Binding and activity measurements reveal two mechanisms by which protein kinase C interacts with membranes: (1) a specific binding to the activating lipid phosphatidylserine and (2) a nonspecific binding to nonactivating, acidic lipids. The specific interaction with phosphatidylserine is relatively insensitive to ionic strength, surface charge, and the presence of nonactivating lipids. The two second messengers of the kinase, diacylglycerol and Ca2+, increase markedly the affinity of the kinase for phosphatidylserine. In contrast, the nonspecific interaction is sensitive to ionic strength and surface charge, and is unaffected by diacylglycerol. These results suggest that electrostatic interactions promote the binding of protein kinase C to membranes but the cooperative and selective binding of phosphatidylserine is the dominant driving force in a productive protein-lipid interaction.  相似文献   

20.
The kinetic parameters of bovine prothrombin activation by factor Xa were determined in the absence and presence of factor Va as a function of the phospholipid concentration and composition. In the absence of factor Va, the Km for prothrombin increases proportionally with the phospholipid concentration and correlates well with the affinity of prothrombin for the different membranes. Phospholipid vesicles with a high affinity for prothrombin yield low Km values compared to membranes with less favorable binding parameters. At limited phospholipid concentrations, the Vmax of prothrombin activation correlates with the binding affinity of factor Xa for the various phospholipid vesicles. Membranes with a high affinity for factor Xa have high Vmax values, while for membranes with a low affinity a low Vmax is observed. Extrapolation of double-reciprocal plots of 1/Vmax vs. 1/[phospholipid] to infinite phospholipid concentrations, a condition at which all factor Xa would participate in prothrombin activation, yields a kcat of 2-4 min-1 independent of the type and amount of acidic phospholipid present in the vesicles. Also, in the presence of factor Va the Km for prothrombin varies proportionally with the phospholipid concentration. There is, however, no correlation between the binding parameters and the Km. Factor Va drastically lowers the Km for prothrombin for vesicles that have a low affinity for prothrombin. Vesicles composed of 20 mol % phosphatidylglycerol and 80 mol % phosphatidylcholine have a Km of 0.04 microM when factor Va is present, compared to 2.2 microM determined in the absence of factor Va.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号